I use the below python script to read the world coordinate system (WCS) form a fits file and plot it.
from astropy.io import fits
import matplotlib.pyplot as plt
from astropy.wcs import WCS
hdu = fits.open('file.fits')
header = hdu[0].header
data = hdu[0].data
wcs = WCS(header, naxis=2)
plt.figure().add_subplot(1,1,1, projection=wcs)
plt.imshow(data)
plt.grid()
plt.show()
However, the above script projects the image in RA and DEC. I was wondering if there is a way to make it show the image in Azimuth and Elevation.
Thanks.
Related
How do I convert a 3D object in any STL file into a JPG or PNG image.
I tried searching a little bit online but I wasn't been able to arrive at finding any possible solutions.
Can anyone help me with the code that can do this straight forward task with Python? IS there any libraries that can help with that?
EDIT :
Code Sample:
from mpl_toolkits import mplot3d
from matplotlib import pyplot
import pathlib
DIR = str(pathlib.Path(__file__).parent.resolve()).replace('\\', '/')
path = f'{DIR}/any_stl_file.stl'
# Create a new plot
figure = pyplot.figure()
axes = mplot3d.Axes3D(figure)
# Load the STL files and add the vectors to the plot
your_mesh = mesh.Mesh.from_file(path)
axes.add_collection3d(mplot3d.art3d.Poly3DCollection(your_mesh.vectors))
# Auto scale to the mesh size
scale = your_mesh.points.flatten()
axes.auto_scale_xyz(scale, scale, scale)
pyplot.savefig(f"{DIR}/the_image.jpg")```
Take a look at https://pypi.org/project/numpy-stl/
This code snippet is from the link above:
from stl import mesh
from mpl_toolkits import mplot3d
from matplotlib import pyplot
# Create a new plot
figure = pyplot.figure()
axes = mplot3d.Axes3D(figure)
# Load the STL files and add the vectors to the plot
your_mesh = mesh.Mesh.from_file('tests/stl_binary/HalfDonut.stl')
axes.add_collection3d(mplot3d.art3d.Poly3DCollection(your_mesh.vectors))
# Auto scale to the mesh size
scale = your_mesh.points.flatten()
axes.auto_scale_xyz(scale, scale, scale)
# Show the plot to the screen
pyplot.show()
To save a pyplot object as an image:
pyplot.savefig("file_name.jpg")
%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np
fig,ax=plt.subplots(2,2,figsize=(15,10))
x=np.linspace(-3,3)
ax[0,0].plot(x,foo-function)
now I need a way to save each of the 4 plots into one file like this:
plt1=topleft_plot.saveNOTfigBUTplot('quadfunction.pdf')
how?
Using the answer here: https://stackoverflow.com/a/4328608/16299117
We can do the following to save a SINGLE subplot from the overall figure:
import matplotlib.pyplot as plt
import numpy as np
fig,ax=plt.subplots(2,2,figsize=(15,10))
x=np.linspace(-3,3)
ax[0,0].plot(x,x**2) # This is just to make an actual plot.
# I am not using jupyter notebook, so I use this to show it instead of %inline
plt.show()
# Getting only the axes specified by ax[0,0]
extent = ax[0,0].get_window_extent().transformed(fig.dpi_scale_trans.inverted())
# Saving it to a pdf file.
fig.savefig('ax2_figure.pdf', bbox_inches=extent.expanded(1.1, 1.2))
EDIT: I believe I may have misunderstood what you want. If you want to save EACH plot individually, say as 4 different pages in a pdf, you can do the following adapted from this answer: https://stackoverflow.com/a/29435953/16299117
This will save each subplot from the figure as a different page in a single pdf.
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.backends.backend_pdf import PdfPages
fig,ax=plt.subplots(2,2,figsize=(15,10))
x=np.linspace(-3,3)
ax[0,0].plot(x,x**2) # This is just to make an actual plot.
with PdfPages('foo.pdf') as pdf:
for x in range(ax.shape[0]):
for y in range(ax.shape[1]):
extent = ax[x, y].get_window_extent().transformed(fig.dpi_scale_trans.inverted())
pdf.savefig(bbox_inches=extent.expanded(1.1, 1.2))
This seems like it's going to be something simple that will fix my code but I think I've just looked at the code too much at the moment and need to get some fresh eyes on it. I'm simply trying to bring in a Grib2 file that I've downloaded from NCEP for the HRRR model. According to their information the grid type is Lambert Conformal with the extents of (21.13812, 21.14055, 47.84219, 47.83862) for the latitudes of the corners and (-122.7195, -72.28972, -60.91719, -134.0955) for the longitudes of the corners for the models domain.
Before even trying to zoom into my area of interest I just wanted to simply display an image in the appropriate CRS however when I try to do this for the domain of the model I get the borders and coastlines to fall within that extent but the actual image produced from the Grib2 file is just zoomed into. I've tried to use extent=[my domain extent] but it always seems to crash the notebook I'm testing it in. Here is my code and the associated image that I get from it.
import matplotlib.pyplot as plt
import cartopy.crs as ccrs
import cartopy
from mpl_toolkits.basemap import Basemap
from osgeo import gdal
gdal.SetConfigOption('GRIB_NORMALIZE_UNITS', 'NO')
plt.figure()
filename='C:\\Users\\Public\\Documents\\GRIB\\hrrr.t18z.wrfsfcf00.grib2'
grib = gdal.Open(filename, gdal.GA_ReadOnly)
z00 = grib.GetRasterBand(47)
meta00 = z00.GetMetadata()
band_description = z00.GetDescription()
bz00 = z00.ReadAsArray()
latitude_south = 21.13812 #38.5
latitude_north = 47.84219 #50
longitude_west = -134.0955 #-91
longitude_east = -60.91719 #-69
fig = plt.figure(figsize=(20, 20))
title= meta00['GRIB_COMMENT']+' at '+meta00['GRIB_SHORT_NAME']
fig.set_facecolor('white')
ax = plt.axes(projection=ccrs.LambertConformal())
ax.add_feature(cartopy.feature.BORDERS, linestyle=':')
ax.coastlines(resolution='110m')
ax.imshow(bz00,origin='upper',transform=ccrs.LambertConformal())
plt.title(title)
plt.show()
Returns Just Grib File
If I change:
ax = plt.axes(projection=ccrs.LambertConformal()
to
ax = plt.axes(projection=ccrs.LambertConformal(central_longitude=-95.5,
central_latitude=38.5,cutoff=21.13)
I get my borders but my actual data is not aligned and it creates what I'm dubbing a Batman plot.
Batman Plot
A similar issue occurs even when I do zoom into the domain and still have my borders present. The underlying data from the Grib file doesn't change to correspond to what I'm trying to get.
So as I've already said this is probably something that is an easy fix that I'm just missing but if not, it would be nice to know what step or what process I'm screwing up that I can learn from so that I don't do it in the future!
Updated 1:
I've added and changed some code and am back to getting only the image to show without the borders and coastlines showing up.
test_extent = [longitude_west,longitude_east,latitude_south,latitude_north]
ax.imshow(bz00,origin='upper',extent=test_extent)
This gives me the following image.
Looks exactly like image 1.
The other thing that I'm noticing which maybe the root cause of all of this is that when I'm printing out the value for plt.gca().get_ylim() and plt.gca().get_xlim() I'm getting hugely different values depending on what is being displayed.
It seems that my problem arises from the fact that the Grib file regardless of whether or not it can be displayed properly in other programs just doesn't play nicely with Matplotlib and Cartopy out of the box. Or at the very least does not with the Grib files that I was using. Which for sake of this perhaps helping others in the future are from the NCEP HRRR model that you can get here or here.
Everything seems to work nicely if you convert the file from Grib2 format to NetCDF format and I was able to get what I wanted with the borders, coastlines, etc. on the map. I've attached the code and the output below to show how it worked. Also I hand picked a single dataset that I wanted to display to test versus my previous code so incase you want to look at the rest of datasets available in the file you'll need to utilize ncdump or something similar to view the information on the datasets.
import numpy as np
from netCDF4 import Dataset
import matplotlib.pyplot as plt
import cartopy.crs as ccrs
import cartopy
import cartopy.feature as cfeature
from osgeo import gdal
gdal.SetConfigOption('GRIB_NORMALIZE_UNITS', 'NO')
nc_f = 'C:\\Users\\Public\\Documents\\GRIB\\test.nc' # Your filename
nc_fid = Dataset(nc_f, 'r') # Dataset is the class behavior to open the
# file and create an instance of the ncCDF4
# class
# Extract data from NetCDF file
lats = nc_fid.variables['gridlat_0'][:]
lons = nc_fid.variables['gridlon_0'][:]
temp = nc_fid.variables['TMP_P0_L1_GLC0'][:]
fig = plt.figure(figsize=(20, 20))
states_provinces = cfeature.NaturalEarthFeature(category='cultural', \
name='admin_1_states_provinces_lines',scale='50m', facecolor='none')
proj = ccrs.LambertConformal()
ax = plt.axes(projection=proj)
plt.pcolormesh(lons, lats, temp, transform=ccrs.PlateCarree(),
cmap='RdYlBu_r', zorder=1)
ax.add_feature(cartopy.feature.BORDERS, linestyle=':', zorder=2)
ax.add_feature(states_provinces, edgecolor='black')
ax.coastlines()
plt.show()
Final Preview of Map
I have a .fit file. I have read the file, displayed the image with scale. When I want to write this image in .png file, the .png file is displaying the image without scale. I am attaching the code that I have tried.
import pyfits
import matplotlib
import matplotlib.pyplot as plt
%matplotlib inline
hdulist = pyfits.open('HMI20170425_134641_6173.fits')
image_data = hdulist[0].data
hdulist.close()
fig=plt.imshow(image_data, cmap='gray')
plt.colorbar()
fig.write_png('image.png')
It is showing output image with scale. However, the 'image.png' file showing image without scale.
Please help me in this regard.
I guess what you call the scale is actually the colorbar ? Which indeed is missing when you use fig.write_png because here you are saving only the image part of the plot. You should use plt.savefig instead:
# use astropy instead of pyfits which is no more maintained
import astropy.io.fits as pyfits
import matplotlib.pyplot as plt
%matplotlib inline
image_data = pyfits.getdata('HMI20170425_134641_6173.fits')
plt.imshow(image_data, cmap='gray')
plt.colorbar()
plt.savefig('image.png')
I need to load an image file with matplotlib and see the coordinates of points within it, as if it were a simple x,y scatter plot.
I can assume that the x axis extension is [0, 1], and the y axis follows the same scaling. I can load the above image file with
from PIL import Image
im = Image.open("del.png")
im.show()
but this uses ImageMagick (I'm on a Linux system) to display the image, and no coordinates are shown in the bottom left part of the plot window as would for a simple data plot:
Use pyplot for that:
from matplotlib import pyplot as plt
plt.imshow(plt.imread('del.png'))