Streaming JSON Objects From a Large Compressed File - python

I am working on a personal project which involves reading in large files of JSON objects, which consist of potentially millions of entries, which are compressed using GZip. The problem that I am having is in determining how to efficiently parse these objects line-by-line and store them in memory such that they do not use up all of the RAM on my system. It must be able to access or construct these objects at a later time for analysis. What I have attempted thus far is as follows
def parse_data(file):
accounts = []
with gzip.open(file, mode='rb') as accounts_data:
for line in accounts_data:
# if line is not empty
if len(line,strip()) != 0:
account = BytesIO(line)
accounts.append(account)
return accounts
def getaccounts(accounts, idx):
account = json.load(accounts[idx])
# creates account object using fields in account dict
return account_from_dict(account)
A major problem with this implementation is that I am unable to access the same object in accounts twice without it resulting in a JSONDecodeError's being generated. I also am not sure whether or not this is the most compact way I could be doing this.
Any assistance would be much appreciated.
Edit: The format of the data stored in these files are as follows:
{JSON Object 1}
{JSON Object 2}
...
{JSON Object n}
Edit: It is my intention to use the information stored in these JSON account entries to form a graph of similarities or patterns in account information.

Here's how to randomly access JSON objects in the gzipped file by first uncompressing it into a temporary file and then using tell() and seek() to retrieve them by index — thus requiring only enough memory to hold the offsets of each one.
I'm posting this primarily because you asked me for an example of doing it in the comments...which I wouldn't have otherwise, because it not quite the same thing as streaming data. The major difference is that, unlike doing that, it gives access to all the data including being able to randomly access any of the objects at will.
Uncompressing the entire file first does introduce some additional overhead, so unless you need to be able to access the JSON object more than once, probably wouldn't be worth it. The implementation shown could probably be sped-up by caching previous loaded objects, but without knowing precisely what the access patterns will be, it hard to say for sure.
import collections.abc
import gzip
import json
import random
import tempfile
class GZ_JSON_Array(collections.abc.Sequence):
""" Allows objects in gzipped file of JSON objects, one-per-line, to be
treated as an immutable sequence of JSON objects.
"""
def __init__(self, gzip_filename):
self.tmpfile = tempfile.TemporaryFile('w+b')
# Decompress a gzip file into a temp file and save offsets of the
# start of each line in it.
self.offsets = []
with gzip.open(gzip_filename, mode='rb') as gzip_file:
for line in gzip_file:
line = line.rstrip().decode('utf-8')
if line:
self.offsets.append(self.tmpfile.tell())
self.tmpfile.write(bytes(line + '\n', encoding='utf-8'))
def __len__(self):
return len(self.offsets)
def __iter__(self):
for index in range(len(self)):
yield self[index]
def __getitem__(self, index):
""" Return a JSON object at offsets[index] in the given open file. """
if index not in range(len(self.offsets)):
raise IndexError
self.tmpfile.seek(self.offsets[index])
try:
size = self.offsets[index+1] - self.offsets[index] # Difference with next.
except IndexError:
size = -1 # Last one - read all remaining data.
return json.loads(self.tmpfile.read(size).decode())
def __del__(self):
try:
self.tmpfile.close() # Allow it to auto-delete.
except Exception:
pass
if __name__ == '__main__':
gzip_filename = 'json_objects.dat.gz'
json_array = GZ_JSON_Array(gzip_filename)
# Randomly access some objects in the JSON array.
for index in random.sample(range(len(json_array)), 3):
obj = json_array[index]
print('object[{}]: {!r}'.format(index, obj))

Hhi, perhaps use an incremental json reader such as ijson. That does not require loading the entire structure into memory at once.

Based on your answers in the comments, it seems like you just need to scan through the objects:
def evaluate_accounts(file):
results = {}
with gzip.open(file) as records:
for json_rec in records:
if json_rec.strip():
account = json.loads(json_rec)
results[account['id']] = evaluate_account(account)
return results

Related

How to extract relation members from .osm xml files

All,
I've been trying to build a website (in Django) which is to be an index of all MTB routes in the world. I'm a Pythonian so wherever I can I try to use Python.
I've successfully extracted data from the OSM API (Display relation (trail) in leaflet) but found that doing this for all MTB trails (tag: route=mtb) is too much data (processing takes very long). So I tried to do everything locally by downloading a torrent of the entire OpenStreetMap dataset (from Latest Weekly Planet XML File) and filtering for tag: route=mtb using osmfilter (part of osmctools in Ubuntu 20.04), like this:
osmfilter $unzipped_osm_planet_file --keep="route=mtb" -o=$osm_planet_dir/world_mtb_routes.osm
This produces a file of about 1.2 GB and on closer inspection seems to contain all the data I need. My goal was to transform the file into a pandas.DataFrame() so I could do some further filtering en transforming before pushing relevant aspects into my Django DB. I tried to load the file as a regular XML file using Python Pandas but this crashed the Jupyter notebook Kernel. I guess the data is too big.
My second approach was this solution: How to extract and visualize data from OSM file in Python. It worked for me, at least, I can get some of the information, like the tags of the relations in the file (and the other specified details). What I'm missing is the relation members (the ways) and then the way members (the nodes) and their latitude/longitudes. I need these to achieve what I did here: Plotting OpenStreetMap relations does not generate continuous lines
I'm open to many solutions, for example one could break the file up into many different files containing 1 relation and it's members per file, using an osmium based script. Perhaps then I can move on with pandas.read_xml(). This would be nice for batch processing en filling the Database. Loading the whole OSM XML file into a pd.DataFrame would be nice but I guess this really is a lot of data. Perhaps this can also be done on a per-relation basis with pyosmium?
Any help is appreciated.
Ok, I figured out how to get what I want (all information per relation of the type "route=mtb" stored in an accessible way), it's a multi-step process, I'll describe it here.
First, I downloaded the world file (went to wiki.openstreetmap.org/wiki/Planet.osm, opened the xml of the pbf file and downloaded the world file as .pbf (everything on Linux, and this file is referred to as $osm_planet_file below).
I converted this file to o5m using osmconvert (available in Ubuntu 20.04 by doing apt install osmctools, on the Linux cli:
osmconvert --verbose --drop-version $osm_planet_file -o=$osm_planet_dir/planet.o5m
The next step is to filter all relations of interest out of this file (in my case I wanted all MTB routes: route=mtb) and store them in a new file, like this:
osmfilter $osm_planet_dir/planet.o5m --keep="route=mtb" -o=$osm_planet_dir/world_mtb_routes.o5m
This creates a much smaller file that contains all information on the relations that are MTB routes.
From there on I switched to a Jupyter notebook and used Python3 to further divide the file into useful, manageable chunks. I first installed osmium using conda (in the env I created first but that can be skipped):
conda install -c conda-forge osmium
Then I made a recommended osm.SimpleHandle class, this class iterates through the large o5m file and while doing this it can do actions. This is the way to deal with these files because they are far to big for memory. I made the choice to iterate through the file and store everything I needed into separate json files. This does generate more than 12.000 json files but it can be done on my laptop with 8 GB of memory. This is the class:
import osmium as osm
import json
import os
data_dump_dir = '../data'
class OSMHandler(osm.SimpleHandler):
def __init__(self):
osm.SimpleHandler.__init__(self)
self.osm_data = []
def tag_inventory(self, elem, elem_type):
for tag in elem.tags:
data = dict()
data['version'] = elem.version,
data['members'] = [int(member.ref) for member in elem.members if member.type == 'w'], # filter nodes from waylist => could be a mistake
data['visible'] = elem.visible,
data['timestamp'] = str(elem.timestamp),
data['uid'] = elem.uid,
data['user'] = elem.user,
data['changeset'] = elem.changeset,
data['num_tags'] = len(elem.tags),
data['key'] = tag.k,
data['value'] = tag.v,
data['deleted'] = elem.deleted
with open(os.path.join(data_dump_dir, str(elem.id)+'.json'), 'w') as f:
json.dump(data, f)
def relation(self, r):
self.tag_inventory(r, "relation")
Run the class like this:
osmhandler = OSMHandler()
osmhandler.apply_file("../data/world_mtb_routes.o5m")
Now we have json files with the relation number as their filename and with all metadata, and a list of the ways. But we want a list of the ways and then also all the nodes per way, so we can plot the full relations (the MTB routes). To achieve this, we parse the o5m file again (using a class build on the osm.SimpleHandler class) and this time we extract all way members (the nodes), and create a dictionary:
class OSMHandler(osm.SimpleHandler):
def __init__(self):
osm.SimpleHandler.__init__(self)
self.osm_data = dict()
def tag_inventory(self, elem, elem_type):
for tag in elem.tags:
self.osm_data[int(elem.id)] = dict()
# self.osm_data[int(elem.id)]['is_closed'] = str(elem.is_closed)
self.osm_data[int(elem.id)]['nodes'] = [str(n) for n in elem.nodes]
def way(self, w):
self.tag_inventory(w, "way")
Execute the class:
osmhandler = OSMHandler()
osmhandler.apply_file("../data/world_mtb_routes.o5m")
ways = osmhandler.osm_data
This gives is dict (called ways) of all ways as keys and the node IDs (!Meaning we need some more steps!) as values.
len(ways.keys())
>>> 337597
In the next (and almost last) step we add the node IDs for all ways to our relation jsons, so they become part of the files:
all_data = dict()
for relation_file in [
os.path.join(data_dump_dir,file) for file in os.listdir(data_dump_dir) if file.endswith('.json')
]:
with open(relation_file, 'r') as f:
data = json.load(f)
if 'members' in data: # Make sure these steps are never performed twice
try:
data['ways'] = dict()
for way in data['members'][0]:
data['ways'][way] = ways[way]['nodes']
del data['members']
with open(relation_file, 'w') as f:
json.dump(data, f)
except KeyError as err:
print(err, relation_file) # Not sure why some relations give errors?
So now we have relation jsons with all ways and all ways have all node IDs, the last thing to do is to replace the node IDs with their values (latitude and longitude). I also did this in 2 steps, first I build a nodeID:lat/lon dictionary, again using an osmium.SimpleHandler based class :
import osmium
class CounterHandler(osmium.SimpleHandler):
def __init__(self):
osmium.SimpleHandler.__init__(self)
self.osm_data = dict()
def node(self, n):
self.osm_data[int(n.id)] = [n.location.lat, n.location.lon]
Execute the class:
h = CounterHandler()
h.apply_file("../data/world_mtb_routes.o5m")
nodes = h.osm_data
This gives us dict with a latitude/longitude pair for every node ID. We can use this on our json files to fill the ways with coordinates (where there are now still only node IDs), I create these final json files in a new directory (data/with_coords in my case) because if there is an error, my original (input) json file is not affected and I can try again:
import os
relation_files = [file for file in os.listdir('../data/') if file.endswith('.json')]
for relation in relation_files:
relation_file = os.path.join('../data/',relation)
relation_file_with_coords = os.path.join('../data/with_coords',relation)
with open(relation_file, 'r') as f:
data = json.load(f)
try:
for way in data['ways']:
node_coords_per_way = []
for node in data['ways'][way]:
node_coords_per_way.append(nodes[int(node)])
data['ways'][way] = node_coords_per_way
with open(relation_file_with_coords, 'w') as f:
json.dump(data, f)
except KeyError:
print(relation)
Now I have what I need and I can start adding the info to my Django database, but that is beyond the scope of this question.
Btw, there are some relations that give an error, I suspect that for some relations ways were labelled as nodes but I'm not sure. I'll update here if I find out. I also have to do this process regularly (when the world file updates, or every now and then) so I'll probably write something more concise later on, but for now this works and the steps are understandable, to me, after a lot of thinking at least.
All of the complexity comes from the fact that the data is not big enough for memory, otherwise I'd have created a pandas.DataFrame in step one and be done with it. I could also have loaded the data in a database in one go perhaps, but I'm not that good with databases, yet.

How can we get annotations from pickle file which will tell us about number of objects stored & details of that in pickle file?

Someone stored more than one objects in Pickle file. Now I want to unpickle that file, but how can I know how many objects are stored in the Pickle file? Is their any annotations or something else from which we may get information about Pickle file?
Pickle doesn't store that information and doesn't support storing more than one top-level object in a pickle at once anyway. So the simple answer is: it's always one object. Note that objects can be trivially nested, so you could store a list of objects, for example. That's still a single top-level list.
If you need to add multiple pickles to a file, you have to invent your own metadata, and store that in addition to the pickle data.
For example, you could store both the number of objects and, for each object, pickled separately, the length of the pickle data stream as a fixed-length number:
import pickle
import struct
with open(some_filename, 'wb') as output:
output.write(struct.pack('I', len(sequence_of_objects)))
for obj in sequence_of_objects:
pickled = pickle.dumps(obj)
output.write(struct.pack('I', len(pickled)))
output.write(pickled)
The above uses 4-byte unsigned integers to record how many objects there are as well as the pickle lengths; adjust as needed if your object counts or sizes can be that large.
The above can then be read again with, say, a generator function:
import pickle
import struct
def read_objects(filename):
with open(filename, 'rb') as inf:
count, = struct.unpack('I', inf.read(4))
logger.info("Reading up to %d objects from %s", count, filename)
while True:
length_bytes = inf.read(4)
if not length_bytes:
return
length, = struct.unpack('I', length_bytes)
yield pickle.loads(inf.read(length))

how to save torchtext Dataset?

I'm working with text and use torchtext.data.Dataset.
Creating the dataset takes a considerable amount of time.
For just running the program this is still acceptable. But I would like to debug the torch code for the neural network. And if python is started in debug mode, the dataset creation takes roughly 20 minutes (!!). That's just to get a working environment where I can debug-step through the neural network code.
I would like to save the Dataset, for example with pickle. This sample code is taken from here, but I removed everything that is not necessary for this example:
from torchtext import data
from fastai.nlp import *
PATH = 'data/aclImdb/'
TRN_PATH = 'train/all/'
VAL_PATH = 'test/all/'
TRN = f'{PATH}{TRN_PATH}'
VAL = f'{PATH}{VAL_PATH}'
TEXT = data.Field(lower=True, tokenize="spacy")
bs = 64;
bptt = 70
FILES = dict(train=TRN_PATH, validation=VAL_PATH, test=VAL_PATH)
md = LanguageModelData.from_text_files(PATH, TEXT, **FILES, bs=bs, bptt=bptt, min_freq=10)
with open("md.pkl", "wb") as file:
pickle.dump(md, file)
To run the code, you need the aclImdb dataset, it can be downloaded from here. Extract it into a data/ folder next to this code snippet. The code produces an error in the last line, where pickle is used:
Traceback (most recent call last):
File "/home/lhk/programming/fastai_sandbox/lesson4-imdb2.py", line 27, in <module>
pickle.dump(md, file)
TypeError: 'generator' object is not callable
The samples from fastai often use dill instead of pickle. But that doesn't work for me either.
I came up with the following functions for myself:
import dill
from pathlib import Path
import torch
from torchtext.data import Dataset
def save_dataset(dataset, path):
if not isinstance(path, Path):
path = Path(path)
path.mkdir(parents=True, exist_ok=True)
torch.save(dataset.examples, path/"examples.pkl", pickle_module=dill)
torch.save(dataset.fields, path/"fields.pkl", pickle_module=dill)
def load_dataset(path):
if not isinstance(path, Path):
path = Path(path)
examples = torch.load(path/"examples.pkl", pickle_module=dill)
fields = torch.load(path/"fields.pkl", pickle_module=dill)
return Dataset(examples, fields)
Not that actual objects could be a bit different, for example, if you save TabularDataset, then load_dataset returns an instance of class Dataset. This unlikely affect the data pipeline but may require extra diligence for tests.
In the case of a custom tokenizer, it should be serializable as well (e.g. no lambda functions, etc).
You can use dill instead of pickle. It works for me.
You can save a torchtext Field like
TEXT = data.Field(sequential=True, tokenize=tokenizer, lower=True,fix_length=200,batch_first=True)
with open("model/TEXT.Field","wb")as f:
dill.dump(TEXT,f)
And load a Field like
with open("model/TEXT.Field","rb")as f:
TEXT=dill.load(f)
The offical code suppport is under development,you can follow https://github.com/pytorch/text/issues/451 and https://github.com/pytorch/text/issues/73 .
You can always use the pickle to dump the objects, but keep in mind one thing that dumping a list of dictionary or fields objects are not taken care of by the module, so to the best try to decompose the list first
To Store the DataSet Object to a pickle file for later easy loading
def save_to_pickle(dataSetObject,PATH):
with open(PATH,'wb') as output:
for i in dataSetObject:
pickle.dump(vars(i), output, pickle.HIGHEST_PROTOCOL)
The toughest thing is yet to come, Yeah loading the pickle file.... ;)
First, try to look for all field names and field attributes and then go for the kill
To load the pickle file into the DataSetObject
def load_pickle(PATH, FIELDNAMES, FIELD):
dataList = []
with open(PATH, "rb") as input_file:
while True:
try:
# Taking the dictionary instance as the input Instance
inputInstance = pickle.load(input_file)
# plugging it into the list
dataInstance = [inputInstance[FIELDNAMES[0]],inputInstance[FIELDNAMES[1]]]
# Finally creating an example objects list
dataList.append(Example().fromlist(dataInstance,fields=FIELD))
except EOFError:
break
# At last creating a data Set Object
exampleListObject = Dataset(dataList, fields=data_fields)
return exampleListObject
This hackish solution has worked in my case, hope you will find it useful in your case too.
Btw any suggestion is welcome :).
The pickle/dill approach is fine if your dataset is small. But if you are working with large datasets I won't recommend it as it will be too slow.
I simply save the examples (iteratively) as JSON-strings. The reason behind this is because saving the whole Dataset object takes a lot of time, plus you need serialization tricks such a dill, which makes the serialization even slower.
Moreover, these serializers take a lot of memory (some of them even create copies of the dataset) and if they start making use of the swap memory, you're done. That process is gonna take so long that you will probably terminate it before it finishes.
Therefore, I end up with the following approach:
Iterate over the examples
Convert each example (on the fly) to a JSON-string
Write that JSON-string into a text file (one sample per
line)
When loading, add the examples to the Dataset object along with the fields
def save_examples(dataset, savepath):
with open(savepath, 'w') as f:
# Save num. elements (not really need it)
f.write(json.dumps(total)) # Write examples length
f.write("\n")
# Save elements
for pair in dataset.examples:
data = [pair.src, pair.trg]
f.write(json.dumps(data)) # Write samples
f.write("\n")
def load_examples(filename):
examples = []
with open(filename, 'r') as f:
# Read num. elements (not really need it)
total = json.loads(f.readline())
# Save elements
for i in range(total):
line = f.readline()
example = json.loads(line)
# example = data.Example().fromlist(example, fields) # Create Example obj. (you can do it here or later)
examples.append(example)
end = time.time()
print(end - start)
return examples
Then, you can simply rebuild the dataset by:
# Define fields
SRC = data.Field(...)
TRG = data.Field(...)
fields = [('src', SRC), ('trg', TRG)]
# Load examples from JSON and convert them to "Example objects"
examples = load_examples(filename)
examples = [data.Example().fromlist(d, fields) for d in examples]
# Build dataset
mydataset = Dataset(examples, fields)
The reason why I use JSON instead of pickle, dill, msgpack, etc is not arbitrary.
I did some tests and these are the results:
Dataset size: 2x (1,960,641)
Saving times:
- Pickle/Dill*: >30-45 min (...or froze my computer)
- MessagePack (iterative): 123.44 sec
100%|██████████| 1960641/1960641 [02:03<00:00, 15906.52it/s]
- JSON (iterative): 16.33 sec
100%|██████████| 1960641/1960641 [00:15<00:00, 125955.90it/s]
- JSON (bulk): 46.54 sec (memory problems)
Loading times:
- Pickle/Dill*: -
- MessagePack (iterative): 143.79 sec
100%|██████████| 1960641/1960641 [02:23<00:00, 13635.20it/s]
- JSON (iterative): 33.83 sec
100%|██████████| 1960641/1960641 [00:33<00:00, 57956.28it/s]
- JSON (bulk): 27.43 sec
*Similar approach as the other answers

using cPickle returns only the first entry in the file

I am storing a dictionary object into file using cPickle, and not able to get any other entry other than the first one. Initially the file tweets.pkl is empty, and the EOFError is raised. I am sure it has something to do with it. Thanks
#!/usr/bin/env python
from urllib import urlencode, urlopen
from simplejson import loads
from hashlib import md5
from collections import defaultdict
import json
import cPickle as pickle
def fetch_tweets(new_feeds):
dic = json.loads(new_feeds)
feeds_file = open('tweets.pkl','r+b')
try:
feeds = pickle.load(feeds_file)
except EOFError:
#THIS IS BAD
feeds = defaultdict()
feeds_file.close()
# RETURNS ONLY THE FIRST FEED ENTRY
for i in feeds.iteritems():
print str(i)
for i in dic['results']:
hash = computeHash(i['text'])
if hash not in feeds:
appendfeed(hash, i, 'tweets.pkl')
def appendfeed(hash, new_feed, file):
feed = defaultdict()
file = open(file, 'a+b')
feed[hash] = new_feed
pickle.dump(feed, file)
file.close()
def computeHash(data):
h = md5(data.encode('utf-8'))
return h.hexdigest()
You're constructing a new dictionary (feed = defaultdict()) every time appendfeed is called, so that new dictionary loses all previous references. You're then appending the new (single-entry) dict to the file.
If you want to restore multiple separate calls to dump like this, then you will need multiple matching calls to load or unpickle, I believe. Each call should then return a separate dict with one element each.
If you want to store one dictionary with multiple keys, lose the append mode and just re-pickle the entire dictionary whenever you need to save. If you want something more efficient for storing simple mappings, have a look at shelve or shove

Is there a memory efficient and fast way to load big JSON files?

I have some json files with 500MB.
If I use the "trivial" json.load() to load its content all at once, it will consume a lot of memory.
Is there a way to read partially the file? If it was a text, line delimited file, I would be able to iterate over the lines. I am looking for analogy to it.
There was a duplicate to this question that had a better answer. See https://stackoverflow.com/a/10382359/1623645, which suggests ijson.
Update:
I tried it out, and ijson is to JSON what SAX is to XML. For instance, you can do this:
import ijson
for prefix, the_type, value in ijson.parse(open(json_file_name)):
print prefix, the_type, value
where prefix is a dot-separated index in the JSON tree (what happens if your key names have dots in them? I guess that would be bad for Javascript, too...), theType describes a SAX-like event, one of 'null', 'boolean', 'number', 'string', 'map_key', 'start_map', 'end_map', 'start_array', 'end_array', and value is the value of the object or None if the_type is an event like starting/ending a map/array.
The project has some docstrings, but not enough global documentation. I had to dig into ijson/common.py to find what I was looking for.
So the problem is not that each file is too big, but that there are too many of them, and they seem to be adding up in memory. Python's garbage collector should be fine, unless you are keeping around references you don't need. It's hard to tell exactly what's happening without any further information, but some things you can try:
Modularize your code. Do something like:
for json_file in list_of_files:
process_file(json_file)
If you write process_file() in such a way that it doesn't rely on any global state, and doesn't
change any global state, the garbage collector should be able to do its job.
Deal with each file in a separate process. Instead of parsing all the JSON files at once, write a
program that parses just one, and pass each one in from a shell script, or from another python
process that calls your script via subprocess.Popen. This is a little less elegant, but if
nothing else works, it will ensure that you're not holding on to stale data from one file to the
next.
Hope this helps.
Yes.
You can use jsonstreamer SAX-like push parser that I have written which will allow you to parse arbitrary sized chunks, you can get it here and checkout the README for examples. Its fast because it uses the 'C' yajl library.
It can be done by using ijson. The working of ijson has been very well explained by Jim Pivarski in the answer above. The code below will read a file and print each json from the list. For example, file content is as below
[{"name": "rantidine", "drug": {"type": "tablet", "content_type": "solid"}},
{"name": "nicip", "drug": {"type": "capsule", "content_type": "solid"}}]
You can print every element of the array using the below method
def extract_json(filename):
with open(filename, 'rb') as input_file:
jsonobj = ijson.items(input_file, 'item')
jsons = (o for o in jsonobj)
for j in jsons:
print(j)
Note: 'item' is the default prefix given by ijson.
if you want to access only specific json's based on a condition you can do it in following way.
def extract_tabtype(filename):
with open(filename, 'rb') as input_file:
objects = ijson.items(input_file, 'item.drugs')
tabtype = (o for o in objects if o['type'] == 'tablet')
for prop in tabtype:
print(prop)
This will print only those json whose type is tablet.
On your mention of running out of memory I must question if you're actually managing memory. Are you using the "del" keyword to remove your old object before trying to read a new one? Python should never silently retain something in memory if you remove it.
Update
See the other answers for advice.
Original answer from 2010, now outdated
Short answer: no.
Properly dividing a json file would take intimate knowledge of the json object graph to get right.
However, if you have this knowledge, then you could implement a file-like object that wraps the json file and spits out proper chunks.
For instance, if you know that your json file is a single array of objects, you could create a generator that wraps the json file and returns chunks of the array.
You would have to do some string content parsing to get the chunking of the json file right.
I don't know what generates your json content. If possible, I would consider generating a number of managable files, instead of one huge file.
Another idea is to try load it into a document-store database like MongoDB.
It deals with large blobs of JSON well. Although you might run into the same problem loading the JSON - avoid the problem by loading the files one at a time.
If path works for you, then you can interact with the JSON data via their client and potentially not have to hold the entire blob in memory
http://www.mongodb.org/
"the garbage collector should free the memory"
Correct.
Since it doesn't, something else is wrong. Generally, the problem with infinite memory growth is global variables.
Remove all global variables.
Make all module-level code into smaller functions.
in addition to #codeape
I would try writing a custom json parser to help you figure out the structure of the JSON blob you are dealing with. Print out the key names only, etc. Make a hierarchical tree and decide (yourself) how you can chunk it. This way you can do what #codeape suggests - break the file up into smaller chunks, etc
You can parse the JSON file to CSV file and you can parse it line by line:
import ijson
import csv
def convert_json(self, file_path):
did_write_headers = False
headers = []
row = []
iterable_json = ijson.parse(open(file_path, 'r'))
with open(file_path + '.csv', 'w') as csv_file:
csv_writer = csv.writer(csv_file, ',', '"', csv.QUOTE_MINIMAL)
for prefix, event, value in iterable_json:
if event == 'end_map':
if not did_write_headers:
csv_writer.writerow(headers)
did_write_headers = True
csv_writer.writerow(row)
row = []
if event == 'map_key' and not did_write_headers:
headers.append(value)
if event == 'string':
row.append(value)
So simply using json.load() will take a lot of time. Instead, you can load the json data line by line using key and value pair into a dictionary and append that dictionary to the final dictionary and convert it to pandas DataFrame which will help you in further analysis
def get_data():
with open('Your_json_file_name', 'r') as f:
for line in f:
yield line
data = get_data()
data_dict = {}
each = {}
for line in data:
each = {}
# k and v are the key and value pair
for k, v in json.loads(line).items():
#print(f'{k}: {v}')
each[f'{k}'] = f'{v}'
data_dict[i] = each
Data = pd.DataFrame(data_dict)
#Data will give you the dictionary data in dataFrame (table format) but it will
#be in transposed form , so will then finally transpose the dataframe as ->
Data_1 = Data.T

Categories

Resources