Rename a column values in pandas - python

I have a dataset with column named region. Sample values are
Eg. region_1, region_2, region_3 etc.
I need to replace these values to
Eg. 1,2,3, etc.
Any specific function to deal with this easy transformation?
Thanks

I believe you need split with select second value and if necessary convert to integers:
df.region = df.region.str.split('_').str[1].astype(int)
Or use extract with regex for extract integers:
df.region = df.region.str.extract('(\d+)', expand=False).astype(int)
Sample:
df = pd.DataFrame({'region':['region_1','region_2','region_3']})
df.region = df.region.str.extract('(\d+)', expand=False).astype(int)
print (df)
region
0 1
1 2
2 3

Related

How to standardize column in pandas

I have dataframe which contains id column with the following sample values
16620625 5686
16310427-5502
16501010 4957
16110430 8679
16990624/4174
16230404.1177
16820221/3388
I want to standardise to XXXXXXXX-XXXX (i.e. 8 and 4 digits separated by a dash), How can I achieve that using python.
here's my code
df['id']
df.replace(" ", "-")
Can use DataFrame.replace() function using a regular expression like this:
df = df.replace(regex=r'^(\d{8})\D(\d{4})$', value=r'\1-\2')
Here's example code with sample data.
import pandas as pd
df = pd.DataFrame({'id': [
'16620625 5686',
'16310427-5502',
'16501010 4957',
'16110430 8679',
'16990624/4174',
'16230404.1177',
'16820221/3388']})
# normalize matching strings with 8-digits + delimiter + 4-digits
df = df.replace(regex=r'^(\d{8})\D(\d{4})$', value=r'\1-\2')
print(df)
Output:
id
0 16620625-5686
1 16310427-5502
2 16501010-4957
3 16110430-8679
4 16990624-4174
5 16230404-1177
6 16820221-3388
If any value does not match the regexp of the expected format then it's value will not be changed.
inside a for loop:
convert your data frame entry to a string.
traverse this string up to 7th index.
concatenate '-' after 7th index to the string.
concatenate remaining string to the end.
traverse to next data frame entry.

Pandas - contains from other DF

I have 2 dataframes:
DF A:
and DF B:
I need to check every row in the DFA['item'] if it contains some of the values in the DFB['original'] and if it does, then add new column in DFA['my'] that would correspond to the value in DFB['my'].
So here is the result I need:
I tought of converting the DFB['original'] into list and then use regex, but this way I wont get the matching result from column 'my'.
Ok, maybe not the best solution, but it seems to be working.
I did cartesian join and then check the records which contains the data needed
dfa['join'] = 1
dfb['join'] = 1
dfFull = dfa.merge(dfb, on='join').drop('join' , axis=1)
dfFull['match'] = dfFull.apply(lambda x: x.original in x.item, axis = 1)
dfFull[dfFull['match']]

How to split the values of a column to differenet columns in a dataframe

I have a dataframe in the below format. I want to split the values of points column into different columns like A,B,C and so on based on the number of items in the list by deleting the original column.
df:
x y points
0 82.123610 16.724781 [1075038212.0, -18.099967840282456, -18.158378...
1 82.126540 16.490998 [1071765909.0, -20.406018294234215, -15.850444...
2 82.369578 17.402203 [1072646747.0, -16.839004016179505, -18.334996...
3 81.612240 17.464167 [1096294130.0, -15.335239025421126, -15.303402...
I think best here is create numeric columns names:
df = df.join(pd.DataFrame(df.pop('points').tolist(), index=df.index))
If length of list is less like 27 is possible use:
import string
d = dict(enumerate(string.ascii_lowercase))
df = df.join(pd.DataFrame(df.pop('points').tolist(), index=df.index).rename(columns=d))

Wide to long returns empty output - Python dataframe

I have a dataframe which can be generated from the code as given below
df = pd.DataFrame({'person_id' :[1,2,3],'date1':
['12/31/2007','11/25/2009','10/06/2005'],'val1':
[2,4,6],'date2': ['12/31/2017','11/25/2019','10/06/2015'],'val2':[1,3,5],'date3':
['12/31/2027','11/25/2029','10/06/2025'],'val3':[7,9,11]})
I followed the below solution to convert it from wide to long
pd.wide_to_long(df, stubnames=['date', 'val'], i='person_id',
j='grp').sort_index(level=0)
Though this works with sample data as shown below, it doesn't work with my real data which has more than 200 columns. Instead of person_id, my real data has subject_ID which is values like DC0001,DC0002 etc. Does "I" always have to be numeric? Instead it adds the stub values as new columns in my dataset and has zero rows
This is how my real columns looks like
My real data might contains NA's as well. So do I have to fill them with default values for wide_to_long to work?
Can you please help as to what can be the issue? Or any other approach to achieve the same result is also helpful.
Try adding additional argument in the function which allows the strings suffix.
pd.long_to_wide(.......................,suffix='\w+')
The issue is with your column names, the numbers used to convert from wide to long need to be at the end of your column names or you need to specify a suffix to groupby. I think the easiest solution is to create a function that accepts regex and the dataframe.
import pandas as pd
import re
def change_names(df, regex):
# Select one of three column groups
old_cols = df.filter(regex = regex).columns
# Create list of new column names
new_cols = []
for col in old_cols:
# Get the stubname of the original column
stub = ''.join(re.split(r'\d', col))
# Get the time point
num = re.findall(r'\d+', col) # returns a list like ['1']
# Make new column name
new_col = stub + num[0]
new_cols.append(new_col)
# Create dictionary mapping old column names to new column names
dd = {oc: nc for oc, nc in zip(old_cols, new_cols)}
# Rename columns
df.rename(columns = dd, inplace = True)
return df
tdf = pd.DataFrame({'person_id' :[1,2,3],'h1date': ['12/31/2007','11/25/2009','10/06/2005'],'t1val': [2,4,6],'h2date': ['12/31/2017','11/25/2019','10/06/2015'],'t2val':[1,3,5],'h3date': ['12/31/2027','11/25/2029','10/06/2025'],'t3val':[7,9,11]})
# Change date columns
tdf = change_names(tdf, 'date$')
tdf = change_names(tdf, 'val$')
print(tdf)
person_id hdate1 tval1 hdate2 tval2 hdate3 tval3
0 1 12/31/2007 2 12/31/2017 1 12/31/2027 7
1 2 11/25/2009 4 11/25/2019 3 11/25/2029 9
2 3 10/06/2005 6 10/06/2015 5 10/06/2025 11
This is quite late to answer this question. But putting the solution here in case someone else find it useful
tdf = pd.DataFrame({'person_id' :[1,2,3],'h1date': ['12/31/2007','11/25/2009','10/06/2005'],'t1val': [2,4,6],'h2date': ['12/31/2017','11/25/2019','10/06/2015'],'t2val':[1,3,5],'h3date': ['12/31/2027','11/25/2029','10/06/2025'],'t3val':[7,9,11]})
## You can use m13op22 solution to rename your columns with numeric part at the
## end of the column name. This is important.
tdf = tdf.rename(columns={'h1date': 'hdate1', 't1val': 'tval1',
'h2date': 'hdate2', 't2val': 'tval2',
'h3date': 'hdate3', 't3val': 'tval3'})
## Then use the non-numeric portion, (in this example 'hdate', 'tval') as
## stubnames. The mistake you were doing was using ['date', 'val'] as stubnames.
df = pd.wide_to_long(tdf, stubnames=['hdate', 'tval'], i='person_id', j='grp').sort_index(level=0)
print(df)

How to obtain the content of a pandas multilevel index entry?

I set up a pandas dataframes that besides my data stores the respective units with it using a MultiIndex like this:
Name Relative_Pressure Volume_STP
Unit - ccm/g
Description p/p0
0 0.042691 29.3601
1 0.078319 30.3071
2 0.129529 31.1643
3 0.183355 31.8513
4 0.233435 32.3972
5 0.280847 32.8724
Now I can for example extract only the Volume_STP data by
Unit ccm/g
Description
0 29.3601
1 30.3071
2 31.1643
3 31.8513
4 32.3972
5 32.8724
With .values I can obtain a numpy array of the data. However how can I get the stored unit? I can't figure out what I need to do to receive the stored ccm/g string.
EDIT: Added example how data frame is generated
Let's say I have a string that looks like this:
Relative Volume # STP
Pressure
cc/g
4.26910e-02 29.3601
7.83190e-02 30.3071
1.29529e-01 31.1643
1.83355e-01 31.8513
2.33435e-01 32.3972
2.80847e-01 32.8724
3.34769e-01 33.4049
3.79123e-01 33.8401
I then use this function:
def read_result(contents, columns, units, descr):
df = pd.read_csv(StringIO(contents), skiprows=4, delim_whitespace=True,index_col=False,header=None)
df.drop(df.index[-1], inplace=True)
index = pd.MultiIndex.from_arrays((columns, units, descr))
df.columns = index
df.columns.names = ['Name','Unit','Description']
df = df.apply(pd.to_numeric)
return df
like this
def isotherm(contents):
columns = ['Relative_Pressure','Volume_STP']
units = ['-','ccm/g']
descr = ['p/p0','']
df = read_result(contents, columns, units, descr)
return df
to generate the DataFrame at the beginning of my question.
As df has a MultiIndex as columns, df.Volume_STP is still a pandas DataFrame. So you can still access its columns attribute, and the relevant item will be at index 0 because the dataframe contains only 1 Series.
So, you can extract the names that way:
print(df.Volume_STP.columns[0])
which should give: ('ccm/g', '')
At the end you extract the unit with .colums[0][0] and the description with .columns[0][1]
You can do something like this:
df.xs('Volume_STP', axis=1).columns.remove_unused_levels().get_level_values(0).tolist()[0]
Output:
'ccm/g'
Slice the dataframe from the 'Volume_STP' using xs, then select the columns remove the unused parts of the column headers, then get the value for the top most level of that slice which is the Units. Convert to a list as select the first value.
A generic way of accessing values on multi-index/columns is by using the index.get_level_values or columns.get_level_values functions of a data frame.
In your example, try df.columns.get_level_values(1) to access the second level of the multi-level column "Unit". If you have already selected a column, say "Volume_STP", then you have removed the top level and in this case, your units would be in the 0th level.

Categories

Resources