I am trying to convert a table in HTML to a csv in Python. The table I am trying to extract is this one:
<table class="tblperiode">
<caption>Dades de període</caption>
<tr>
<th class="sortable"><span class="tooltip" title="Període (Temps Universal)">Període</span><br/>TU</th>
<th><span class="tooltip" title="Temperatura mitjana (°C)">TM</span><br/>°C</th>
<th><span class="tooltip" title="Temperatura màxima (°C)">TX</span><br/>°C</th>
<th><span class="tooltip" title="Temperatura mínima (°C)">TN</span><br/>°C</th>
<th><span class="tooltip" title="Humitat relativa mitjana (%)">HRM</span><br/>%</th>
<th><span class="tooltip" title="Precipitació (mm)">PPT</span><br/>mm</th>
<th><span class="tooltip" title="Velocitat mitjana del vent (km/h)">VVM (10 m)</span><br/>km/h</th>
<th><span class="tooltip" title="Direcció mitjana del vent (graus)">DVM (10 m)</span><br/>graus</th>
<th><span class="tooltip" title="Ratxa màxima del vent (km/h)">VVX (10 m)</span><br/>km/h</th>
<th><span class="tooltip" title="Irradiància solar global mitjana (W/m2)">RS</span><br/>W/m<sup>2</sup></th>
</tr>
<tr>
<th>
00:00 - 00:30
</th>
<td>16.2</td>
<td>16.5</td>
<td>15.4</td>
<td>93</td>
<td>0.0</td>
<td>6.5</td>
<td>293</td>
<td>10.4</td>
<td>0</td>
</tr>
<tr>
<th>
00:30 - 01:00
</th>
<td>16.4</td>
<td>16.5</td>
<td>16.1</td>
<td>90</td>
<td>0.0</td>
<td>5.8</td>
<td>288</td>
<td>8.6</td>
<td>0</td>
</tr>
And I want it to look something like this:
To achieve so, what I have tried is to parse the html and I have managed to build a dataframe with the data correctly doing the following:
from bs4 import BeautifulSoup
import csv
html = open("table.html").read()
soup = BeautifulSoup(html)
table = soup.select_one("table.tblperiode")
output_rows = []
for table_row in table.findAll('tr'):
columns = table_row.findAll('td')
output_row = []
for column in columns:
output_row.append(column.text)
output_rows.append(output_row)
df = pd.DataFrame(output_rows)
print(df)
However, I would like to have the columns name and a column indicating the interval of time, in the example of html above just two of them appear 00:00-00:30 and 00:30 1:00. Therefore my table should have two rows, one corresponding with the observations of 00:00-00:30 and another one with the observations of 00:30 and 1:00.
How could I get this information from my HTML?
Here's a way of doing it, it's probably not the nicest way but it works! You can read through the comments to figure out what the code is doing!
from bs4 import BeautifulSoup
import csv
#read the html
html = open("table.html").read()
soup = BeautifulSoup(html, 'html.parser')
# get the table from html
table = soup.select_one("table.tblperiode")
# find all rows
rows = table.findAll('tr')
# strip the header from rows
headers = rows[0]
header_text = []
# add the header text to array
for th in headers.findAll('th'):
header_text.append(th.text)
# init row text array
row_text_array = []
# loop through rows and add row text to array
for row in rows[1:]:
row_text = []
# loop through the elements
for row_element in row.findAll(['th', 'td']):
# append the array with the elements inner text
row_text.append(row_element.text.replace('\n', '').strip())
# append the text array to the row text array
row_text_array.append(row_text)
# output csv
with open("out.csv", "w") as f:
wr = csv.writer(f)
wr.writerow(header_text)
# loop through each row array
for row_text_single in row_text_array:
wr.writerow(row_text_single)
With this script:
import csv
from bs4 import BeautifulSoup
html = open('table.html').read()
soup = BeautifulSoup(html, features='lxml')
table = soup.select_one('table.tblperiode')
rows = []
for i, table_row in enumerate(table.findAll('tr')):
if i > 0:
periode = [' '.join(table_row.findAll('th')[0].text.split())]
data = [x.text for x in table_row.findAll('td')]
rows.append(periode + data)
header = ['Periode', 'TM', 'TX', 'TN', 'HRM', 'PPT', 'VVM', 'DVM', 'VVX', 'PM', 'RS']
with open('result.csv', 'w', newline='') as f:
w = csv.writer(f)
w.writerow(header)
w.writerows(rows)
I've managed to generate following CSV file on output:
Periode,TM,TX,TN,HRM,PPT,VVM,DVM,VVX,PM,RS
00:00 - 00:30,16.2,16.5,15.4,93,0.0,6.5,293,10.4,0
00:30 - 01:00,16.4,16.5,16.1,90,0.0,5.8,288,8.6,0
import csv
from bs4 import BeautifulSoup
import pandas as pd
html = open('test.html').read()
soup = BeautifulSoup(html, features='lxml')
#Specify table name which you want to read.
#Example: <table class="queryResults" border="0" cellspacing="1">
table = soup.select_one('table.queryResults')
def get_all_tables(soup):
return soup.find_all("table")
tbls = get_all_tables(soup)
for i, tablen in enumerate(tbls, start=1):
print(i)
print(tablen)
def get_table_headers(table):
headers = []
for th in table.find("tr").find_all("th"):
headers.append(th.text.strip())
return headers
head = get_table_headers(table)
#print(head)
def get_table_rows(table):
rows = []
for tr in table.find_all("tr")[1:]:
cells = []
# grab all td tags in this table row
tds = tr.find_all("td")
if len(tds) == 0:
# if no td tags, search for th tags
# can be found especially in wikipedia tables below the table
ths = tr.find_all("th")
for th in ths:
cells.append(th.text.strip())
else:
# use regular td tags
for td in tds:
cells.append(td.text.strip())
rows.append(cells)
return rows
table_rows = get_table_rows(table)
#print(table_rows)
def save_as_csv(table_name, headers, rows):
pd.DataFrame(rows, columns=headers).to_csv(f"{table_name}.csv")
save_as_csv("Test_table", head, table_rows)
Related
I am trying to scrape some data from a table, but they have the content that I actually would like in an attribute.
Example xml:
'''
<tr data-row="0">
<th scope ="row" class="left" data_append-csv="AlleRi00" data-stat="player" csk="Allen, Ricardo">
Ricardo Allen
</th>
<td class="center poptip out dnp" data-stat="week_4" data-tip"Out: Concussion" csk= "4">
<strong>O</strong>
</td>
'''
When scraping the table I use the following code:
'''
import pandas as pd
from bs4 import BeautifulSoup
import requests
url = 'https://www.pro-football-reference.com/teams/atl/2017_injuries.htm'
r = requests.get(url)
soup = BeautifulSoup(r.content, 'lxml')
table = soup.find('table', attrs={'class': 'sortable', 'id': 'team_injuries'})
table_rows = table.find_all('tr')
final_data = []
for tr in table_rows:
td = tr.find_all(['th','td'])
row = [tr.text for tr in td]
final_data.append(row)
df = pd.DataFrame(final_data[1:],final_data[0])
'''
With my current code, I get a good looking dataframe with headers and all the info that is visible when looking at the table. However, I would like to get "Out: Concussion" instead of "O" within the table. I've been trying numerous ways and cannot figure it out. Please let me know if this is possible with the current process or if I am approaching it all wrong.
This should help you:
import pandas as pd
from bs4 import BeautifulSoup
import requests
url = 'https://www.pro-football-reference.com/teams/atl/2017_injuries.htm'
r = requests.get(url)
soup = BeautifulSoup(r.content, 'lxml')
table = soup.find('table', attrs={'class': 'sortable', 'id': 'team_injuries'})
table_rows = table.find_all('tr')
final_data = []
for tr in table_rows:
td = tr.find_all(['th','td'])
row = [tr['data-tip'] if tr.has_attr("data-tip") else tr.text for tr in td]
final_data.append(row)
m = final_data[1:]
final_dataa = [[m[j][i] for j in range(len(m))] for i in range(len(m[0]))]
df = pd.DataFrame(final_dataa,final_data[0]).T
df.to_csv("D:\\injuries.csv", index = False)
Screenshot of csv file (I've done some formatting so that it looks neat):
I need to scrape a table from https://en.wikipedia.org/wiki/List_of_postal_codes_of_Canada:_M
and store this data in python dataframe.
I have pulled the table but unable to pick the columns (Postcode, Borough, Neighbourhood)
My table looks like this:
<table class="wikitable sortable">
<tbody><tr>
<th>Postcode</th>
<th>Borough</th>
<th>Neighbourhood
</th></tr>
<tr>
<td>M1A</td>
<td>Not assigned</td>
<td>Not assigned
</td></tr>
<tr>
<td>M2A</td>
<td>Not assigned</td>
<td>Not assigned
</td></tr>
<tr>
<td>M3A</td>
<td>North York</td>
<td>Parkwoods
</td></tr>
<tr>
<td>M4A</td>
<td>North York</td>
<td>Victoria Village
</td></tr>
...
url = 'https://en.wikipedia.org/wiki/List_of_postal_codes_of_Canada:_M'
response = requests.get(url)
soup= BeautifulSoup(response.text, "html.parser")
table = soup.find('table', {'class': 'wikitable sortable'})
df = []
for row in table.find_all('tr'):
columns = row.find_all('td')
Postcode = row.columns[1].get_text()
Borough = row.columns[2].get_text()
Neighbourhood = row.column[3].get_text()
df.append([Postcode,Borough,Neighbourhood])
With the above code I am getting
TypeError: 'NoneType' object is not subscriptable
I googled it and got to know that I cannot do
Postcode = row.columns[1].get_text()
because of inline propery of the function.
I tried something else too but got some "Index error message".
It's simple. I need to traverse the row and goes on picking the three columns for each row and store it in a list. But I am not able to write it in a code.
Expected output is
Postcode Borough Neighbourhood
M1A Not assigned Not assigned
M2A Not assigned Not assigned
M3A North York Parkwoods
The code for scraping is wrong in below parts.
import requests
from bs4 import BeautifulSoup
url = 'https://en.wikipedia.org/wiki/List_of_postal_codes_of_Canada:_M'
response = requests.get(url)
soup= BeautifulSoup(response.text, "html.parser")
table = soup.find('table', {'class': 'wikitable sortable'})
df = []
for row in table.find_all('tr'):
columns = row.find_all('td') # the first row is returning <th> tags, but since you queried <td> tags, it's returning empty list.
if len(columns)>0: #In order to skip first row or in general, empty rows, you need to put an if check.
#Use the indices properly to get different values.
Postcode = columns[0].get_text()
Borough =columns[1].get_text()
Neighbourhood = columns[2].get_text()
df.append([Postcode,Borough,Neighbourhood])
Then again, be careful, using get_text will also return the links and anchor tags intact. You might wanna change the code to avoid that.
Happy web scraping :)
I don't know pandas but I use this script to scrape table. Hope it is helpful.
import requests
from bs4 import BeautifulSoup
url = 'https://en.wikipedia.org/wiki/List_of_postal_codes_of_Canada:_M'
response = requests.get(url)
soup= BeautifulSoup(response.text, "html.parser")
tbl= soup.find('table', {'class': 'wikitable sortable'})
table_dict = {
"head": [th.text.strip() for th in tbl.find_all('th')],
"rows": [
[td.text.strip() for td in tr.find_all("td")]
for tr in tbl.find_all("tr")
if not tr.find("th")
]
}
If you want to scrape a table from web, you can use pandas library.
import pandas as pd
url = 'valid_url'
df = pd.read_html(url)
print(df[0].head())
I am trying to extract column headings from one of the tables from ABBV 10-k sec filing (`Issuer Purchases of Equity Securities' table on page 25 - below the graph.)
inside <td> tag in the column heading <tr> tag, text is in separate <div> tags as in the example below
<tr>
<td>
<div>string1</div>
<div>string2</div>
<div>string3</div>
</td>
</tr>
when trying to extract all text fro a tag, there is no space separation between texts (e.g. for the above html output will be string1string3string3 expectedstring1 string3 string3).
Using below code to extract column headings from table
url = 'https://www.sec.gov/Archives/edgar/data/1551152/000155115218000014/abbv-20171231x10k.htm'
htmlpage = requests.get(url)
soup = BeautifulSoup(htmlpage.text, "lxml")
table = soup.find_all('table')[76]
rows = table.find_all('tr')
table_data = []
for tr in rows[2:3]:
row_data=[]
cells = tr.find_all(['td', 'th'], recursive=False)
for cell in cells[1:4]:
row_data.append(cell.text.encode('utf-8'))
table_data.append([x.decode('utf-8').strip() for x in row_data])
print(table_data)
output:[['(a) TotalNumberof Shares(or Units)Purchased', '', '(b) AveragePricePaid per Share(or Unit)']]
Expected output:[['(a) Total Number of Shares (or Units) Purchased', '', '(b) Average Price Paid per Share (or Unit)']] (each word separated bay a space)
use the separator parameter with .get_text():
html = '''<tr>
<td>
<div>string1</div>
<div>string2</div>
<div>string3</div>
</td>
</tr>'''
import bs4
soup = bs4.BeautifulSoup(html, 'html.parser')
td = soup.find('td')
td.get_text(separator=' ')
Here's how it looks with your code:
from bs4 import BeautifulSoup
import requests
url = 'https://www.sec.gov/Archives/edgar/data/1551152/000155115218000014/abbv-20171231x10k.htm'
htmlpage = requests.get(url)
soup = BeautifulSoup(htmlpage.text, "lxml")
table = soup.find_all('table')[76]
rows = table.find_all('tr')
table_data = []
for tr in rows[2:3]:
row_data=[]
cells = tr.find_all(['td', 'th'], recursive=False)
for cell in cells[1:4]:
row_data.append(cell.get_text(separator=' ').encode('utf-8'))
table_data.append([x.decode('utf-8').strip() for x in row_data])
print(table_data)
Output:
print(table_data)
[['(a) Total Number of Shares (or Units) Purchased', '', '(b) Average Price Paid per Share (or Unit)']]
HTML code:
<td> <label class="identifier">Speed (avg./max):</label> </td> <td class="value"> <span class="block">4.5 kn<br>7.1 kn</span> </td>
I need to get values 4.5 kn and 7.1 as separate list items so I could append them separately. I do not want to split it I wanted to split the text string using re.sub, but it does not work. I tried too use replace to replace br, but it did not work. Can anybody provide any insight?
Python code:
def NameSearch(shipLink, mmsi, shipName):
from bs4 import BeautifulSoup
import urllib2
import csv
import re
values = []
values.append(mmsi)
values.append(shipName)
regex = re.compile(r'[\n\r\t]')
i = 0
with open('Ship_indexname.csv', 'wb')as f:
writer = csv.writer(f)
while True:
try:
shipPage = urllib2.urlopen(shipLink, timeout=5)
except urllib2.URLError:
continue
except:
continue
break
soup = BeautifulSoup(shipPage, "html.parser") # Read the web page HTML
#soup.find('br').replaceWith(' ')
#for br in soup('br'):
#br.extract()
table = soup.find_all("table", {"id": "vessel-related"}) # Finds table with class table1
for mytable in table: #Loops tables with class table1
table_body = mytable.find_all('tbody') #Finds tbody section in table
for body in table_body:
rows = body.find_all('tr') #Finds all rows
for tr in rows: #Loops rows
cols = tr.find_all('td') #Finds the columns
for td in cols: #Loops the columns
checker = td.text.encode('ascii', 'ignore')
check = regex.sub('', checker)
if check == ' Speed (avg./max): ':
i = 1
elif i == 1:
print td.text
pat=re.compile('<br\s*/>')
print pat.sub(" ",td.text)
values.append(td.text.strip("\n").encode('utf-8')) #Takes the second columns value and assigns it to a list called Values
i = 0
#print values
return values
NameSearch('https://www.fleetmon.com/vessels/kind-of-magic_0_3478642/','230034570','KIND OF MAGIC')
Locate the "Speed (avg./max)" label first and then go to the value via .find_next():
from bs4 import BeautifulSoup
data = '<td> <label class="identifier">Speed (avg./max):</label> </td> <td class="value"> <span class="block">4.5 kn<br>7.1 kn</span> </td>'
soup = BeautifulSoup(data, "html.parser")
label = soup.find("label", class_="identifier", text="Speed (avg./max):")
value = label.find_next("td", class_="value").get_text(strip=True)
print(value) # prints 4.5 kn7.1 kn
Now, you can extract the actual numbers from the string:
import re
speed_values = re.findall(r"([0-9.]+) kn", value)
print(speed_values)
Prints ['4.5', '7.1'].
You can then further convert the values to floats and unpack into separate variables:
avg_speed, max_speed = map(float, speed_values)
Suppose I have:
<tr>
<td class="prodSpecAtribute">word</td>
<td colspan="5">
another_word
</td>
</tr>
I want to extract text in 2 td classes (word and another_word:
So I used BeautifulSoup:
This is the code Matijn Pieters was asking for:
Basically, it grabs info from html page (from a table) and stores these values in a left and right column list. Then, I create a dictionary from this details (using the left col list as the key, and for the values, I use the right col list)
def get_data(page):
soup = BeautifulSoup(page)
left = []
right = []
#Obtain data from table and store into left and right columns
#Iterate through each row
for tr in soup.findAll('tr'):
#Find all table data(cols) in that row
tds = tr.findAll('td')
#Make sure there are 2 elements, a col and a row
if len(tds) >= 2:
#Find each entry in a row -> convert to text
right_col = []
inp = []
once = 0
no_class = 0
for td in tds:
if once == 0:
#Check if of class 'prodSpecAtribute'
if check(td) == True:
left_col = td.findAll(text=True)
left_col_x = re.sub('&\w+;', '', str(left_col[0]))
once = 1
else:
no_class = 1
break
else:
right_col = td.findAll(text=True)
right_col_x = ' '.join(text for text in right_col if text.strip())
right_col_x = re.sub('&\w+;', '', right_col_x)
inp.append(right_col_x)
if no_class == 0:
inps = '. '.join(inp)
left.append(left_col_x)
right.append(inps)
#Create a Dictionary for left and right cols
item = dict(zip(left, right))
return item
You may use HTQL (http://htql.net).
Here is for your example:
import htql
page="""
<tr>
<td class="prodSpecAtribute">word</td>
<td colspan="5">
another_word
</td>
</tr>
"""
query = """
<tr>{
c1 = <td (class='prodSpecAtribute')>1 &tx;
c2 = <td>2 &tx &trim;
}
"""
a=htql.query(page, query)
print(dict(a))
It prints:
{'word': 'another_word'}