Here I'm attaching python code, data & error, I want to split the data by stratified random sample method,but its getting error.The method I followed is mentioning here, let me know what is wrong with this program.
from sklearn.model_selection import StratifiedShuffleSplit
import pandas as pd
data = pd.read_csv('strat.csv')
data = data[data.columns[0:47]]
req_f = data[data.columns[0:3]]
feature = pd.get_dummies(req_f)
target = data[data.columns[3:]]
sss = StratifiedShuffleSplit( n_splits=5,test_size=0.5, random_state=42)
sss.get_n_splits(feature, target)
for train_index, test_index in sss.split(feature, target):
x_train = feature.iloc[train_index]
x_test = feature.iloc[test_index]
y_train = target.iloc[train_index]
y_test = feature.iloc[test_index]
print(x_test)
print(y_test)
Where 'strat.csv' looks like:
ReviewerID,ReviewText ,ProductId,C1,C2,C3,C4,C5,C6,C7,C8,C9,C10,C11,C12,C13,C14,C15,C16,C17,C18,C19,C20,C21,C22,C23,C24,C25,C26,C27,C28,C29,C30,C31,C32,C33,C34,C35,C36,C37,C38,C39,C40,C41,C42,C43,C44
1212,good product,14444425,0,0,1,0,1,0,1,0,0,1,1,1,1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0,1,1,0,0,0,1,0,1,0,1,0,0,0,0,1,1
1233,will buy again,324532,0,0,1,0,1,0,1,0,0,1,1,1,1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0,1,1,0,0,0,1,0,1,0,1,0,0,0,0,1,1
5432,not recomended,789654123,0,0,1,0,1,0,0,0,1,1,1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0,1,1,0,0,0,1,0,1,0,1,0,0,0,0,1,1
1212,good product,14444425,0,0,1,0,1,0,1,0,0,1,1,0,1,1,0,0,1,0,1,0,0,0,1,0,1,0,0,0,1,1,0,1,0,1,0,1,0,1,0,0,0,0,1,1
1233,will buy again,324532,0,0,1,0,1,0,1,0,0,1,1,1,1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0,1,1,0,0,0,1,0,1,0,1,0,0,0,0,1,1
Thank you
Related
I am totally new to machine learning, I am currently playing with MNIST machine learning, using RandomForestClassifier.
I use sklearn and panda.
I have a training CSV data set.
import pandas as pd
import numpy as np
from sklearn import model_selection
from sklearn.ensemble import RandomForestClassifier
from sklearn.svm import LinearSVC
from sklearn.linear_model import SGDClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import accuracy_score
train = pd.read_csv("train.csv")
features = train.columns[1:]
X = train[features]
y = train['label']
user_train = pd.read_csv("input.csv")
user_features = user_train.columns[1:]
y_train = user_train[user_features]
user_y = user_train['label']
X_train, X_test, y_train, y_test = model_selection.train_test_split(X/255.,y,test_size=1,random_state=0)
clf_rf = RandomForestClassifier()
clf_rf.fit(X_train, y_train)
y_pred_rf = clf_rf.predict(X_test)
acc_rf = accuracy_score(y_test, y_pred_rf)
print("pred : ", y_pred_rf)
print("random forest accuracy: ",acc_rf)
I have the current code, which works well. It takes the training set, split and take one element for testing, and does the prediction.
What I want now is to use the testing data from an input, I have a new csv called "input.csv", and I want to predict the value inside this csv.
How can I replace the model_selection.train_test_split with my input data ?
I am sure the response is very obvious, and I didn't find anything.
The following part of your code is unused
user_train = pd.read_csv("input.csv")
user_features = user_train.columns[1:]
y_train = user_train[user_features]
user_y = user_train['label']
If input.csv has the same structure of train.csv you may want to:
train a classifier and test it on a split of the input.csv dataset: (please refer to http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html to know how to set the test size)
input_train = pd.read_csv("input.csv")
input_features = user_train.columns[1:]
input_data = user_train[input_features]
input_labels = user_train['label']
data_train, data_test, labels_train, labels_test = model_selection.train_test_split(input_data/255.,input_labels,test_size=1,random_state=0)
clf_rf = RandomForestClassifier()
clf_rf.fit(data_train, labels_train)
labels_pred_rf = clf_rf.predict(data_test)
acc_rf = accuracy_score(labels_test, labels_pred_rf)
test the previously trained classifier on the whole input.csv file
input_train = pd.read_csv("input.csv")
input_features = user_train.columns[1:]
input_data = user_train[input_features]
input_labels = user_train['label']
labels_pred_rf = clf_rf.predict(input_data)
acc_rf = accuracy_score(input_labels, labels_pred_rf)
I'm trying to train a logistic classifier. My dataset has the following columns.
name , review, rating, reviews_cleaned , word_count, sentiment,
The sentiment is either +1 or -1 based on whether the rating is greater than 3 or less. The word count contains a dict of words with occurences and reviews_cleaned just strips off the reviews off punctuations.
This is my code to train a LogisticClassifier.
train_data, test_data = train_test_split(products, test_size = 0.2)
sentiment_model = LogisticRegression(penalty='l2', C=1)
sentiment_model.fit(products['sentiment'], products['word_count'])
I get the following error,
ValueError: Found input variables with inconsistent numbers of samples: [1, 166752]
PS: The equivalent statment using graphLab create is
sentiment_model = graphlab.logistic_classifier.create(train_data,
target = 'sentiment',
features=['word_count'],
validation_set=None)
What am I doing wrong?
Your training data looks like it's a 1-dimensional vector but sklearn requires it to be 2-dimensional - if you reshape it you should be okay. Also you make your train/test split but you're not actually using the data that you're producing (fit with train_data instead).
Using GraphLab in that course is very irritating to say the least. Give this a whirl:
from sklearn.cross_validation import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.feature_extraction.text import CountVectorizer
df = pd.read_csv('amazon_baby.csv', header = 0)
df.dropna(how="any", inplace= True)
products = df[df['rating'] != 3] #drop the products with 3-star rating
products['sentiment'] = products['rating'] >= 4
X_train, X_test, y_train, y_test = train_test_split(products['review'], products['sentiment'], test_size = .2 ,random_state = 0)
vect = CountVectorizer()
X_train = vect.fit_transform(X_train.values)
X_test = vect.transform(X_test.values)
model = LogisticRegression(penalty ='l2', C = 1)
model.fit(X_train, y_train)
I'm not sure what the direct translation between Sklearn/Pandas and GraphLab is, but this looks like it's what they are doing.
When I score the model, I get:
model.score(X_test, y_test)
> .93155480
Let me know what results you get or if this works for you.
I am trying to use the "class_weight" parameter in scikit-learn for the binary svm.SVC classifier. Which I am basically trying to do is to vary precision in class 1 by changing class weights.
Unfortunately after weeks of trying, I am not able to achieve this goal, which makes me think, that there still might be inconsistencies in sklearn...
Here is my code mini-example:
import os
import numpy as np
import pandas as pd
from sklearn.cross_validation import train_test_split
from sklearn import svm
from sklearn import preprocessing
from sklearn.metrics import confusion_matrix
scaler = preprocessing.StandardScaler()
data = pd.read_csv("...", header=0, delimiter=";", quoting=3, low_memory=False)
def Train_Test_Split(test_size, dataframe, name_y, name_X):
X = dataframe.ix[:,name_X :]
y = dataframe[name_y]
y= np.asarray(y,dtype=int)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=test_size, stratify=y)
y_train = np.asarray(y_train,dtype=int)
y_test = np.asarray(y_test,dtype=int)
return(X_train, y_train, X_test, y_test)
def Score(y_test, y_pred):
a = confusion_matrix(y_test,y_pred, labels=[1,0])
Precision_stables = a[0][0]/(a[0][0]+a[1][0])
Precision_instables = a[1][1]/(a[1][1]+a[0][1])
return(Precision_stables, Precision_instables)
def Eval_svm(class_ponder,testsize, dataframe, name_y, name_X):
X_train, y_train, X_test, y_test = Train_Test_Split(testsize, dataframe, name_y, name_X)
clf_svm = svm.SVC(kernel='linear',class_weight=class_ponder,probability=True)
clf_svm_optimal = clf_svm.fit(X_train, y_train)
y_pred_svm = clf_svm_optimal.predict(X_test)
PRS_svm, PRI_svm = Score(y_test, y_pred_svm)
return(PRS_svm, PRI_svm)
name_y = "...variableofinterest..."
name_x = "...explanatoryvariables..."
a,b=Eval_svm({0: 100, 1: 1},0.3, data, name_y, name_x)
print(a,b)
I can choose whatever weighting I'd like, the precision in class 1 or even 0 doesn't change at all.
Could someone help me here? It's kind of exasperating...
Thank you very much in advance!
Best regards,
F
I have a fairly large dataset in the form of a dataframe and I was wondering how I would be able to split the dataframe into two random samples (80% and 20%) for training and testing.
Thanks!
Scikit Learn's train_test_split is a good one. It will split both numpy arrays and dataframes.
from sklearn.model_selection import train_test_split
train, test = train_test_split(df, test_size=0.2)
I would just use numpy's randn:
In [11]: df = pd.DataFrame(np.random.randn(100, 2))
In [12]: msk = np.random.rand(len(df)) < 0.8
In [13]: train = df[msk]
In [14]: test = df[~msk]
And just to see this has worked:
In [15]: len(test)
Out[15]: 21
In [16]: len(train)
Out[16]: 79
Pandas random sample will also work
train=df.sample(frac=0.8,random_state=200)
test=df.drop(train.index)
For the same random_state value you will always get the same exact data in the training and test set. This brings in some level of repeatability while also randomly separating training and test data.
I would use scikit-learn's own training_test_split, and generate it from the index
from sklearn.model_selection import train_test_split
y = df.pop('output')
X = df
X_train,X_test,y_train,y_test = train_test_split(X.index,y,test_size=0.2)
X.iloc[X_train] # return dataframe train
No need to convert to numpy. Just use a pandas df to do the split and it will return a pandas df.
from sklearn.model_selection import train_test_split
train, test = train_test_split(df, test_size=0.2)
And if you want to split x from y
X_train, X_test, y_train, y_test = train_test_split(df[list_of_x_cols], df[y_col],test_size=0.2)
And if you want to split the whole df
X, y = df[list_of_x_cols], df[y_col]
There are many ways to create a train/test and even validation samples.
Case 1: classic way train_test_split without any options:
from sklearn.model_selection import train_test_split
train, test = train_test_split(df, test_size=0.3)
Case 2: case of a very small datasets (<500 rows): in order to get results for all your lines with this cross-validation. At the end, you will have one prediction for each line of your available training set.
from sklearn.model_selection import KFold
kf = KFold(n_splits=10, random_state=0)
y_hat_all = []
for train_index, test_index in kf.split(X, y):
reg = RandomForestRegressor(n_estimators=50, random_state=0)
X_train, X_test = X[train_index], X[test_index]
y_train, y_test = y[train_index], y[test_index]
clf = reg.fit(X_train, y_train)
y_hat = clf.predict(X_test)
y_hat_all.append(y_hat)
Case 3a: Unbalanced datasets for classification purpose. Following the case 1, here is the equivalent solution:
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, stratify=y, test_size=0.3)
Case 3b: Unbalanced datasets for classification purpose. Following the case 2, here is the equivalent solution:
from sklearn.model_selection import StratifiedKFold
kf = StratifiedKFold(n_splits=10, random_state=0)
y_hat_all = []
for train_index, test_index in kf.split(X, y):
reg = RandomForestRegressor(n_estimators=50, random_state=0)
X_train, X_test = X[train_index], X[test_index]
y_train, y_test = y[train_index], y[test_index]
clf = reg.fit(X_train, y_train)
y_hat = clf.predict(X_test)
y_hat_all.append(y_hat)
Case 4: you need to create a train/test/validation sets on big data to tune hyperparameters (60% train, 20% test and 20% val).
from sklearn.model_selection import train_test_split
X_train, X_test_val, y_train, y_test_val = train_test_split(X, y, test_size=0.6)
X_test, X_val, y_test, y_val = train_test_split(X_test_val, y_test_val, stratify=y, test_size=0.5)
You can use below code to create test and train samples :
from sklearn.model_selection import train_test_split
trainingSet, testSet = train_test_split(df, test_size=0.2)
Test size can vary depending on the percentage of data you want to put in your test and train dataset.
There are many valid answers. Adding one more to the bunch.
from sklearn.cross_validation import train_test_split
#gets a random 80% of the entire set
X_train = X.sample(frac=0.8, random_state=1)
#gets the left out portion of the dataset
X_test = X.loc[~df_model.index.isin(X_train.index)]
You may also consider stratified division into training and testing set. Startified division also generates training and testing set randomly but in such a way that original class proportions are preserved. This makes training and testing sets better reflect the properties of the original dataset.
import numpy as np
def get_train_test_inds(y,train_proportion=0.7):
'''Generates indices, making random stratified split into training set and testing sets
with proportions train_proportion and (1-train_proportion) of initial sample.
y is any iterable indicating classes of each observation in the sample.
Initial proportions of classes inside training and
testing sets are preserved (stratified sampling).
'''
y=np.array(y)
train_inds = np.zeros(len(y),dtype=bool)
test_inds = np.zeros(len(y),dtype=bool)
values = np.unique(y)
for value in values:
value_inds = np.nonzero(y==value)[0]
np.random.shuffle(value_inds)
n = int(train_proportion*len(value_inds))
train_inds[value_inds[:n]]=True
test_inds[value_inds[n:]]=True
return train_inds,test_inds
df[train_inds] and df[test_inds] give you the training and testing sets of your original DataFrame df.
You can use ~ (tilde operator) to exclude the rows sampled using df.sample(), letting pandas alone handle sampling and filtering of indexes, to obtain two sets.
train_df = df.sample(frac=0.8, random_state=100)
test_df = df[~df.index.isin(train_df.index)]
If you need to split your data with respect to the lables column in your data set you can use this:
def split_to_train_test(df, label_column, train_frac=0.8):
train_df, test_df = pd.DataFrame(), pd.DataFrame()
labels = df[label_column].unique()
for lbl in labels:
lbl_df = df[df[label_column] == lbl]
lbl_train_df = lbl_df.sample(frac=train_frac)
lbl_test_df = lbl_df.drop(lbl_train_df.index)
print '\n%s:\n---------\ntotal:%d\ntrain_df:%d\ntest_df:%d' % (lbl, len(lbl_df), len(lbl_train_df), len(lbl_test_df))
train_df = train_df.append(lbl_train_df)
test_df = test_df.append(lbl_test_df)
return train_df, test_df
and use it:
train, test = split_to_train_test(data, 'class', 0.7)
you can also pass random_state if you want to control the split randomness or use some global random seed.
To split into more than two classes such as train, test, and validation, one can do:
probs = np.random.rand(len(df))
training_mask = probs < 0.7
test_mask = (probs>=0.7) & (probs < 0.85)
validatoin_mask = probs >= 0.85
df_training = df[training_mask]
df_test = df[test_mask]
df_validation = df[validatoin_mask]
This will put approximately 70% of data in training, 15% in test, and 15% in validation.
shuffle = np.random.permutation(len(df))
test_size = int(len(df) * 0.2)
test_aux = shuffle[:test_size]
train_aux = shuffle[test_size:]
TRAIN_DF =df.iloc[train_aux]
TEST_DF = df.iloc[test_aux]
Just select range row from df like this
row_count = df.shape[0]
split_point = int(row_count*1/5)
test_data, train_data = df[:split_point], df[split_point:]
import pandas as pd
from sklearn.model_selection import train_test_split
datafile_name = 'path_to_data_file'
data = pd.read_csv(datafile_name)
target_attribute = data['column_name']
X_train, X_test, y_train, y_test = train_test_split(data, target_attribute, test_size=0.8)
This is what I wrote when I needed to split a DataFrame. I considered using Andy's approach above, but didn't like that I could not control the size of the data sets exactly (i.e., it would be sometimes 79, sometimes 81, etc.).
def make_sets(data_df, test_portion):
import random as rnd
tot_ix = range(len(data_df))
test_ix = sort(rnd.sample(tot_ix, int(test_portion * len(data_df))))
train_ix = list(set(tot_ix) ^ set(test_ix))
test_df = data_df.ix[test_ix]
train_df = data_df.ix[train_ix]
return train_df, test_df
train_df, test_df = make_sets(data_df, 0.2)
test_df.head()
There are many great answers above so I just wanna add one more example in the case that you want to specify the exact number of samples for the train and test sets by using just the numpy library.
# set the random seed for the reproducibility
np.random.seed(17)
# e.g. number of samples for the training set is 1000
n_train = 1000
# shuffle the indexes
shuffled_indexes = np.arange(len(data_df))
np.random.shuffle(shuffled_indexes)
# use 'n_train' samples for training and the rest for testing
train_ids = shuffled_indexes[:n_train]
test_ids = shuffled_indexes[n_train:]
train_data = data_df.iloc[train_ids]
train_labels = labels_df.iloc[train_ids]
test_data = data_df.iloc[test_ids]
test_labels = data_df.iloc[test_ids]
if you want to split it to train, test and validation set you can use this function:
from sklearn.model_selection import train_test_split
import pandas as pd
def train_test_val_split(df, test_size=0.15, val_size=0.45):
temp, test = train_test_split(df, test_size=test_size)
total_items_count = len(df.index)
val_length = total_items_count * val_size
new_val_propotion = val_length / len(temp.index)
train, val = train_test_split(temp, test_size=new_val_propotion)
return train, test, val
If your wish is to have one dataframe in and two dataframes out (not numpy arrays), this should do the trick:
def split_data(df, train_perc = 0.8):
df['train'] = np.random.rand(len(df)) < train_perc
train = df[df.train == 1]
test = df[df.train == 0]
split_data ={'train': train, 'test': test}
return split_data
I think you also need to a get a copy not a slice of dataframe if you wanna add columns later.
msk = np.random.rand(len(df)) < 0.8
train, test = df[msk].copy(deep = True), df[~msk].copy(deep = True)
You can make use of df.as_matrix() function and create Numpy-array and pass it.
Y = df.pop()
X = df.as_matrix()
x_train, x_test, y_train, y_test = train_test_split(X, Y, test_size = 0.2)
model.fit(x_train, y_train)
model.test(x_test)
A bit more elegant to my taste is to create a random column and then split by it, this way we can get a split that will suit our needs and will be random.
def split_df(df, p=[0.8, 0.2]):
import numpy as np
df["rand"]=np.random.choice(len(p), len(df), p=p)
r = [df[df["rand"]==val] for val in df["rand"].unique()]
return r
you need to convert pandas dataframe into numpy array and then convert numpy array back to dataframe
import pandas as pd
df=pd.read_csv('/content/drive/My Drive/snippet.csv', sep='\t')
from sklearn.model_selection import train_test_split
train, test = train_test_split(df, test_size=0.2)
train1=pd.DataFrame(train)
test1=pd.DataFrame(test)
train1.to_csv('/content/drive/My Drive/train.csv',sep="\t",header=None, encoding='utf-8', index = False)
test1.to_csv('/content/drive/My Drive/test.csv',sep="\t",header=None, encoding='utf-8', index = False)
In my case, I wanted to split a data frame in Train, test and dev with a specific number. Here I am sharing my solution
First, assign a unique id to a dataframe (if already not exist)
import uuid
df['id'] = [uuid.uuid4() for i in range(len(df))]
Here are my split numbers:
train = 120765
test = 4134
dev = 2816
The split function
def df_split(df, n):
first = df.sample(n)
second = df[~df.id.isin(list(first['id']))]
first.reset_index(drop=True, inplace = True)
second.reset_index(drop=True, inplace = True)
return first, second
Now splitting into train, test, dev
train, test = df_split(df, 120765)
test, dev = df_split(test, 4134)
The sample method selects a part of data, you can shuffle the data first by passing a seed value.
train = df.sample(frac=0.8, random_state=42)
For test set you can drop the rows through indexes of train DF and then reset the index of new DF.
test = df.drop(train_data.index).reset_index(drop=True)
How about this?
df is my dataframe
total_size=len(df)
train_size=math.floor(0.66*total_size) (2/3 part of my dataset)
#training dataset
train=df.head(train_size)
#test dataset
test=df.tail(len(df) -train_size)
I would use K-fold cross validation.
It's been proven to give much better results than the train_test_split Here's an article on how to apply it with sklearn from the documentation itself: https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.KFold.html
Split df into train, validate, test. Given a df of augmented data, select only the dependent and independent columns. Assign 10% of most recent rows (using 'dates' column) to test_df. Randomly assign 10% of remaining rows to validate_df with rest being assigned to train_df. Do not reindex. Check that all rows are uniquely assigned. Use only native python and pandas libs.
Method 1: Split rows into train, validate, test dataframes.
train_df = augmented_df[dependent_and_independent_columns]
test_df = train_df.sort_values('dates').tail(int(len(augmented_df)*0.1)) # select latest 10% of dates for test data
train_df = train_df.drop(test_df.index) # drop rows assigned to test_df
validate_df = train_df.sample(frac=0.1) # randomly assign 10%
train_df = train_df.drop(validate_df.index) # drop rows assigned to validate_df
assert len(augmented_df) == len(set(train_df.index).union(validate_df.index).union(test_df.index)) # every row must be uniquely assigned to a df
Method 2: Split rows when validate must be subset of train (fastai)
train_validate_test_df = augmented_df[dependent_and_independent_columns]
test_df = train_validate_test_df.loc[augmented_df.sort_values('dates').tail(int(len(augmented_df)*0.1)).index] # select latest 10% of dates for test data
train_validate_df = train_validate_test_df.drop(test_df.index) # drop rows assigned to test_df
validate_df = train_validate_df.sample(frac=validate_ratio) # assign 10% to validate_df
train_df = train_validate_df.drop(validate_df.index) # drop rows assigned to validate_df
assert len(augmented_df) == len(set(train_df.index).union(validate_df.index).union(test_df.index)) # every row must be uniquely assigned to a df
# fastai example usage
dls = fastai.tabular.all.TabularDataLoaders.from_df(
train_validate_df, valid_idx=train_validate_df.index.get_indexer_for(validate_df.index))
That's what I do:
train_dataset = dataset.sample(frac=0.80, random_state=200)
val_dataset = dataset.drop(train_dataset.index).sample(frac=1.00, random_state=200, ignore_index = True).copy()
train_dataset = train_dataset.sample(frac=1.00, random_state=200, ignore_index = True).copy()
del dataset
I have a fairly large dataset in the form of a dataframe and I was wondering how I would be able to split the dataframe into two random samples (80% and 20%) for training and testing.
Thanks!
Scikit Learn's train_test_split is a good one. It will split both numpy arrays and dataframes.
from sklearn.model_selection import train_test_split
train, test = train_test_split(df, test_size=0.2)
I would just use numpy's randn:
In [11]: df = pd.DataFrame(np.random.randn(100, 2))
In [12]: msk = np.random.rand(len(df)) < 0.8
In [13]: train = df[msk]
In [14]: test = df[~msk]
And just to see this has worked:
In [15]: len(test)
Out[15]: 21
In [16]: len(train)
Out[16]: 79
Pandas random sample will also work
train=df.sample(frac=0.8,random_state=200)
test=df.drop(train.index)
For the same random_state value you will always get the same exact data in the training and test set. This brings in some level of repeatability while also randomly separating training and test data.
I would use scikit-learn's own training_test_split, and generate it from the index
from sklearn.model_selection import train_test_split
y = df.pop('output')
X = df
X_train,X_test,y_train,y_test = train_test_split(X.index,y,test_size=0.2)
X.iloc[X_train] # return dataframe train
No need to convert to numpy. Just use a pandas df to do the split and it will return a pandas df.
from sklearn.model_selection import train_test_split
train, test = train_test_split(df, test_size=0.2)
And if you want to split x from y
X_train, X_test, y_train, y_test = train_test_split(df[list_of_x_cols], df[y_col],test_size=0.2)
And if you want to split the whole df
X, y = df[list_of_x_cols], df[y_col]
There are many ways to create a train/test and even validation samples.
Case 1: classic way train_test_split without any options:
from sklearn.model_selection import train_test_split
train, test = train_test_split(df, test_size=0.3)
Case 2: case of a very small datasets (<500 rows): in order to get results for all your lines with this cross-validation. At the end, you will have one prediction for each line of your available training set.
from sklearn.model_selection import KFold
kf = KFold(n_splits=10, random_state=0)
y_hat_all = []
for train_index, test_index in kf.split(X, y):
reg = RandomForestRegressor(n_estimators=50, random_state=0)
X_train, X_test = X[train_index], X[test_index]
y_train, y_test = y[train_index], y[test_index]
clf = reg.fit(X_train, y_train)
y_hat = clf.predict(X_test)
y_hat_all.append(y_hat)
Case 3a: Unbalanced datasets for classification purpose. Following the case 1, here is the equivalent solution:
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, stratify=y, test_size=0.3)
Case 3b: Unbalanced datasets for classification purpose. Following the case 2, here is the equivalent solution:
from sklearn.model_selection import StratifiedKFold
kf = StratifiedKFold(n_splits=10, random_state=0)
y_hat_all = []
for train_index, test_index in kf.split(X, y):
reg = RandomForestRegressor(n_estimators=50, random_state=0)
X_train, X_test = X[train_index], X[test_index]
y_train, y_test = y[train_index], y[test_index]
clf = reg.fit(X_train, y_train)
y_hat = clf.predict(X_test)
y_hat_all.append(y_hat)
Case 4: you need to create a train/test/validation sets on big data to tune hyperparameters (60% train, 20% test and 20% val).
from sklearn.model_selection import train_test_split
X_train, X_test_val, y_train, y_test_val = train_test_split(X, y, test_size=0.6)
X_test, X_val, y_test, y_val = train_test_split(X_test_val, y_test_val, stratify=y, test_size=0.5)
You can use below code to create test and train samples :
from sklearn.model_selection import train_test_split
trainingSet, testSet = train_test_split(df, test_size=0.2)
Test size can vary depending on the percentage of data you want to put in your test and train dataset.
There are many valid answers. Adding one more to the bunch.
from sklearn.cross_validation import train_test_split
#gets a random 80% of the entire set
X_train = X.sample(frac=0.8, random_state=1)
#gets the left out portion of the dataset
X_test = X.loc[~df_model.index.isin(X_train.index)]
You may also consider stratified division into training and testing set. Startified division also generates training and testing set randomly but in such a way that original class proportions are preserved. This makes training and testing sets better reflect the properties of the original dataset.
import numpy as np
def get_train_test_inds(y,train_proportion=0.7):
'''Generates indices, making random stratified split into training set and testing sets
with proportions train_proportion and (1-train_proportion) of initial sample.
y is any iterable indicating classes of each observation in the sample.
Initial proportions of classes inside training and
testing sets are preserved (stratified sampling).
'''
y=np.array(y)
train_inds = np.zeros(len(y),dtype=bool)
test_inds = np.zeros(len(y),dtype=bool)
values = np.unique(y)
for value in values:
value_inds = np.nonzero(y==value)[0]
np.random.shuffle(value_inds)
n = int(train_proportion*len(value_inds))
train_inds[value_inds[:n]]=True
test_inds[value_inds[n:]]=True
return train_inds,test_inds
df[train_inds] and df[test_inds] give you the training and testing sets of your original DataFrame df.
You can use ~ (tilde operator) to exclude the rows sampled using df.sample(), letting pandas alone handle sampling and filtering of indexes, to obtain two sets.
train_df = df.sample(frac=0.8, random_state=100)
test_df = df[~df.index.isin(train_df.index)]
If you need to split your data with respect to the lables column in your data set you can use this:
def split_to_train_test(df, label_column, train_frac=0.8):
train_df, test_df = pd.DataFrame(), pd.DataFrame()
labels = df[label_column].unique()
for lbl in labels:
lbl_df = df[df[label_column] == lbl]
lbl_train_df = lbl_df.sample(frac=train_frac)
lbl_test_df = lbl_df.drop(lbl_train_df.index)
print '\n%s:\n---------\ntotal:%d\ntrain_df:%d\ntest_df:%d' % (lbl, len(lbl_df), len(lbl_train_df), len(lbl_test_df))
train_df = train_df.append(lbl_train_df)
test_df = test_df.append(lbl_test_df)
return train_df, test_df
and use it:
train, test = split_to_train_test(data, 'class', 0.7)
you can also pass random_state if you want to control the split randomness or use some global random seed.
To split into more than two classes such as train, test, and validation, one can do:
probs = np.random.rand(len(df))
training_mask = probs < 0.7
test_mask = (probs>=0.7) & (probs < 0.85)
validatoin_mask = probs >= 0.85
df_training = df[training_mask]
df_test = df[test_mask]
df_validation = df[validatoin_mask]
This will put approximately 70% of data in training, 15% in test, and 15% in validation.
shuffle = np.random.permutation(len(df))
test_size = int(len(df) * 0.2)
test_aux = shuffle[:test_size]
train_aux = shuffle[test_size:]
TRAIN_DF =df.iloc[train_aux]
TEST_DF = df.iloc[test_aux]
Just select range row from df like this
row_count = df.shape[0]
split_point = int(row_count*1/5)
test_data, train_data = df[:split_point], df[split_point:]
import pandas as pd
from sklearn.model_selection import train_test_split
datafile_name = 'path_to_data_file'
data = pd.read_csv(datafile_name)
target_attribute = data['column_name']
X_train, X_test, y_train, y_test = train_test_split(data, target_attribute, test_size=0.8)
This is what I wrote when I needed to split a DataFrame. I considered using Andy's approach above, but didn't like that I could not control the size of the data sets exactly (i.e., it would be sometimes 79, sometimes 81, etc.).
def make_sets(data_df, test_portion):
import random as rnd
tot_ix = range(len(data_df))
test_ix = sort(rnd.sample(tot_ix, int(test_portion * len(data_df))))
train_ix = list(set(tot_ix) ^ set(test_ix))
test_df = data_df.ix[test_ix]
train_df = data_df.ix[train_ix]
return train_df, test_df
train_df, test_df = make_sets(data_df, 0.2)
test_df.head()
There are many great answers above so I just wanna add one more example in the case that you want to specify the exact number of samples for the train and test sets by using just the numpy library.
# set the random seed for the reproducibility
np.random.seed(17)
# e.g. number of samples for the training set is 1000
n_train = 1000
# shuffle the indexes
shuffled_indexes = np.arange(len(data_df))
np.random.shuffle(shuffled_indexes)
# use 'n_train' samples for training and the rest for testing
train_ids = shuffled_indexes[:n_train]
test_ids = shuffled_indexes[n_train:]
train_data = data_df.iloc[train_ids]
train_labels = labels_df.iloc[train_ids]
test_data = data_df.iloc[test_ids]
test_labels = data_df.iloc[test_ids]
if you want to split it to train, test and validation set you can use this function:
from sklearn.model_selection import train_test_split
import pandas as pd
def train_test_val_split(df, test_size=0.15, val_size=0.45):
temp, test = train_test_split(df, test_size=test_size)
total_items_count = len(df.index)
val_length = total_items_count * val_size
new_val_propotion = val_length / len(temp.index)
train, val = train_test_split(temp, test_size=new_val_propotion)
return train, test, val
If your wish is to have one dataframe in and two dataframes out (not numpy arrays), this should do the trick:
def split_data(df, train_perc = 0.8):
df['train'] = np.random.rand(len(df)) < train_perc
train = df[df.train == 1]
test = df[df.train == 0]
split_data ={'train': train, 'test': test}
return split_data
I think you also need to a get a copy not a slice of dataframe if you wanna add columns later.
msk = np.random.rand(len(df)) < 0.8
train, test = df[msk].copy(deep = True), df[~msk].copy(deep = True)
You can make use of df.as_matrix() function and create Numpy-array and pass it.
Y = df.pop()
X = df.as_matrix()
x_train, x_test, y_train, y_test = train_test_split(X, Y, test_size = 0.2)
model.fit(x_train, y_train)
model.test(x_test)
A bit more elegant to my taste is to create a random column and then split by it, this way we can get a split that will suit our needs and will be random.
def split_df(df, p=[0.8, 0.2]):
import numpy as np
df["rand"]=np.random.choice(len(p), len(df), p=p)
r = [df[df["rand"]==val] for val in df["rand"].unique()]
return r
you need to convert pandas dataframe into numpy array and then convert numpy array back to dataframe
import pandas as pd
df=pd.read_csv('/content/drive/My Drive/snippet.csv', sep='\t')
from sklearn.model_selection import train_test_split
train, test = train_test_split(df, test_size=0.2)
train1=pd.DataFrame(train)
test1=pd.DataFrame(test)
train1.to_csv('/content/drive/My Drive/train.csv',sep="\t",header=None, encoding='utf-8', index = False)
test1.to_csv('/content/drive/My Drive/test.csv',sep="\t",header=None, encoding='utf-8', index = False)
In my case, I wanted to split a data frame in Train, test and dev with a specific number. Here I am sharing my solution
First, assign a unique id to a dataframe (if already not exist)
import uuid
df['id'] = [uuid.uuid4() for i in range(len(df))]
Here are my split numbers:
train = 120765
test = 4134
dev = 2816
The split function
def df_split(df, n):
first = df.sample(n)
second = df[~df.id.isin(list(first['id']))]
first.reset_index(drop=True, inplace = True)
second.reset_index(drop=True, inplace = True)
return first, second
Now splitting into train, test, dev
train, test = df_split(df, 120765)
test, dev = df_split(test, 4134)
The sample method selects a part of data, you can shuffle the data first by passing a seed value.
train = df.sample(frac=0.8, random_state=42)
For test set you can drop the rows through indexes of train DF and then reset the index of new DF.
test = df.drop(train_data.index).reset_index(drop=True)
How about this?
df is my dataframe
total_size=len(df)
train_size=math.floor(0.66*total_size) (2/3 part of my dataset)
#training dataset
train=df.head(train_size)
#test dataset
test=df.tail(len(df) -train_size)
I would use K-fold cross validation.
It's been proven to give much better results than the train_test_split Here's an article on how to apply it with sklearn from the documentation itself: https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.KFold.html
Split df into train, validate, test. Given a df of augmented data, select only the dependent and independent columns. Assign 10% of most recent rows (using 'dates' column) to test_df. Randomly assign 10% of remaining rows to validate_df with rest being assigned to train_df. Do not reindex. Check that all rows are uniquely assigned. Use only native python and pandas libs.
Method 1: Split rows into train, validate, test dataframes.
train_df = augmented_df[dependent_and_independent_columns]
test_df = train_df.sort_values('dates').tail(int(len(augmented_df)*0.1)) # select latest 10% of dates for test data
train_df = train_df.drop(test_df.index) # drop rows assigned to test_df
validate_df = train_df.sample(frac=0.1) # randomly assign 10%
train_df = train_df.drop(validate_df.index) # drop rows assigned to validate_df
assert len(augmented_df) == len(set(train_df.index).union(validate_df.index).union(test_df.index)) # every row must be uniquely assigned to a df
Method 2: Split rows when validate must be subset of train (fastai)
train_validate_test_df = augmented_df[dependent_and_independent_columns]
test_df = train_validate_test_df.loc[augmented_df.sort_values('dates').tail(int(len(augmented_df)*0.1)).index] # select latest 10% of dates for test data
train_validate_df = train_validate_test_df.drop(test_df.index) # drop rows assigned to test_df
validate_df = train_validate_df.sample(frac=validate_ratio) # assign 10% to validate_df
train_df = train_validate_df.drop(validate_df.index) # drop rows assigned to validate_df
assert len(augmented_df) == len(set(train_df.index).union(validate_df.index).union(test_df.index)) # every row must be uniquely assigned to a df
# fastai example usage
dls = fastai.tabular.all.TabularDataLoaders.from_df(
train_validate_df, valid_idx=train_validate_df.index.get_indexer_for(validate_df.index))
That's what I do:
train_dataset = dataset.sample(frac=0.80, random_state=200)
val_dataset = dataset.drop(train_dataset.index).sample(frac=1.00, random_state=200, ignore_index = True).copy()
train_dataset = train_dataset.sample(frac=1.00, random_state=200, ignore_index = True).copy()
del dataset