Draw a circle on the plot that follows the mouse [duplicate] - python

I tried to write a simple script which updates a scatter plot for every timestep t. I wanted to do it as simple as possible. But all it does is to open a window where I can see nothing. The window just freezes. It is maybe just an small error, but I can not find it.
The the data.dat has the format
x y
Timestep 1 1 2
3 1
Timestep 2 6 3
2 1
(the file contains just the numbers)
import numpy as np
import matplotlib.pyplot as plt
import time
# Load particle positioins
with open('//home//user//data.dat', 'r') as fp:
particles = []
for line in fp:
line = line.split()
if line:
line = [float(i) for i in line]
particles.append(line)
T = 100
numbParticles = 2
x, y = np.array([]), np.array([])
plt.ion()
plt.figure()
plt.scatter(x,y)
for t in range(T):
plt.clf()
for k in range(numbP):
x = np.append(x, particles[numbParticles*t+k][0])
y = np.append(y, particles[numbParticles*t+k][1])
plt.scatter(x,y)
plt.draw()
time.sleep(1)
x, y = np.array([]), np.array([])

The simplest, cleanest way to make an animation is to use the matplotlib.animation module.
Since a scatter plot returns a matplotlib.collections.PathCollection, the way to update it is to call its set_offsets method. You can pass it an array of shape (N, 2) or a list of N 2-tuples -- each 2-tuple being an (x,y) coordinate.
For example,
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.animation as animation
T = 100
numbParticles = 2
particles = np.random.random((T,numbParticles)).tolist()
x, y = np.array([]), np.array([])
def init():
pathcol.set_offsets([[], []])
return [pathcol]
def update(i, pathcol, particles):
pathcol.set_offsets(particles[i])
return [pathcol]
fig = plt.figure()
xs, ys = zip(*particles)
xmin, xmax = min(xs), max(xs)
ymin, ymax = min(ys), max(ys)
ax = plt.axes(xlim=(xmin, xmax), ylim=(ymin, ymax))
pathcol = plt.scatter([], [], s=100)
anim = animation.FuncAnimation(
fig, update, init_func=init, fargs=(pathcol, particles), interval=1000, frames=T,
blit=True, repeat=True)
plt.show()

I finally found a solution. You can do it simply by using this script. I tried to keep it simple:
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.animation import FuncAnimation
# Helps me to get the data from the file I want to plot
N = 0
# Load particle positioins
with open('//home//user//data.dat', 'r') as fp:
particles = []
for line in fp:
line = line.split()
particles.append(line)
# Create new Figure and an Axes which fills it.
fig = plt.figure(figsize=(7, 7))
ax = fig.add_axes([0, 0, 1, 1], frameon=True)
border = 100
ax.set_xlim(-border, border), ax.set_xticks([])
ax.set_ylim(-border, border), ax.set_yticks([])
# particle data
p = 18 # number of particles
myPa = np.zeros(p, dtype=[('position', float, 2)])
# Construct the scatter which we will update during animation
scat = ax.scatter(myPa['position'][:, 0], myPa['position'][:, 1])
def update(frame_number):
# New positions
myPa['position'][:] = particles[N*p:N*p+p]
# Update the scatter collection, with the new colors, sizes and positions.
scat.set_offsets(myPa['position'])
increment()
def increment():
global N
N = N+1
# Construct the animation, using the update function as the animation director.
animation = FuncAnimation(fig, update, interval=20)
plt.show()

Related

FuncAnimation how to update text after each iteration

I am trying to create an animation of a Monte-Carlo estimation of the number pi, for each iteration I would like the numerical estimation to be in text on the plot, but the previous text is not removed and makes the values unreadable. I tried Artist.remove(frame) with no success. The plot is done with Jupiter Notebook.
#Enable interactive plot
%matplotlib notebook
import math
from matplotlib.path import Path
from matplotlib.animation import FuncAnimation
from matplotlib.path import Path
import numpy as np
import matplotlib.pyplot as plt
from scipy.spatial import ConvexHull
from matplotlib.artist import Artist
N = 10000
#create necessary arrays
x = np.arange(0,N)
y = np.zeros(N)
#set initial points to zero
inHull = 0
def inCircle(point):
#the function is given a point in R^n
#returns a boolean stating if the norm of the point is smaller than 1.
if np.sum(np.square(point)) <= 1:
return True
else:
return False
#iterate over each point
for i in range(N):
random_point = np.random.rand(2)*2 - 1
#determine if the point is inside the hull
if inCircle(random_point):
inHull += 1
#we store areas in array y.
y[i] = (inHull*4)/(i+1)
fig = plt.figure()
ax = plt.subplot(1, 1, 1)
data_skip = 20
def init_func():
ax.clear()
plt.xlabel('n points')
plt.ylabel('Estimated area')
plt.xlim((x[0], x[-1]))
plt.ylim((min(y)- 1, max(y)+0.5))
def update_plot(i):
ax.plot(x[i:i+data_skip], y[i:i+data_skip], color='k')
ax.scatter(x[i], y[i], color='none')
Artist.remove(ax.text(N*0.6, max(y)+0.25, "Estimation: "+ str(round(y[i],5))))
ax.text(N*0.6, max(y)+0.25, "Estimation: "+ str(round(y[i],5)))
anim = FuncAnimation(fig,
update_plot,
frames=np.arange(0, len(x), data_skip),
init_func=init_func,
interval=20)
plt.show()
Thank you.
As you have already done in init_func, you should clear the plot in each iteration with ax.clear(). Then it is necessary to edit slighlty the plot function:
ax.plot(x[i:i+data_skip], y[i:i+data_skip], color='k')
And finally you have to fix x axis limits in each iteration with ax.set_xlim(0, N).
Complete Code
#Enable interactive plot
%matplotlib notebook
import math
from matplotlib.path import Path
from matplotlib.animation import FuncAnimation
from matplotlib.path import Path
import numpy as np
import matplotlib.pyplot as plt
from scipy.spatial import ConvexHull
from matplotlib.artist import Artist
N = 10000
# create necessary arrays
x = np.arange(0, N)
y = np.zeros(N)
# set initial points to zero
inHull = 0
def inCircle(point):
# the function is given a point in R^n
# returns a boolean stating if the norm of the point is smaller than 1.
if np.sum(np.square(point)) <= 1:
return True
else:
return False
# iterate over each point
for i in range(N):
random_point = np.random.rand(2)*2 - 1
# determine if the point is inside the hull
if inCircle(random_point):
inHull += 1
# we store areas in array y.
y[i] = (inHull*4)/(i + 1)
fig = plt.figure()
ax = plt.subplot(1, 1, 1)
data_skip = 20
txt = ax.text(N*0.6, max(y) + 0.25, "")
def init_func():
ax.clear()
plt.xlabel('n points')
plt.ylabel('Estimated area')
plt.xlim((x[0], x[-1]))
plt.ylim((min(y) - 1, max(y) + 0.5))
def update_plot(i):
ax.clear()
ax.plot(x[:i + data_skip], y[:i + data_skip], color = 'k')
ax.scatter(x[i], y[i], color = 'none')
ax.text(N*0.6, max(y) + 0.25, "Estimation: " + str(round(y[i], 5)))
ax.set_xlim(0, N)
anim = FuncAnimation(fig,
update_plot,
frames = np.arange(0, len(x), data_skip),
init_func = init_func,
interval = 20)
plt.show()
Animation

Real time live graphs in Jupyter Notebook

I have just started learning python to plot realtime gragh. I have tried solutions provided on stackoverflow but none of them are working. Below is my code and it isn't woorking. Please help
import numpy as np
import matplotlib.pyplot as plt
import pyautogui as pg
from matplotlib.animation import FuncAnimation
%matplotlib notebook
binSize = 512
# fig(ax1,ax2) = plt.subplots(2,figsize=(12,6))
f = []
def animate(i):
try:
while True:
x, y = pg.position()
f.append(x)
except KeyboardInterrupt:
print('')
# f.append(15)
if len(f)<binSize :
plt.cla()
plt.plot(f, color='c',LineWidth=1.5,label="Noisy")
else:
plt.cla()
plt.plot(f[-binSize:],color='c',LineWidth=1.5,label="Noisy")
ani = FuncAnimation(plt.gcf(),animate,interval=1);
So I have updated the code and trying to draw two subplots but after sometime
Upper graph stopped clearing the canvas (Mouse X coordinates)
Lower graph stopped updating the plot (FFT)
When data grows beyond the binSize, notebook freezes and plots update really slowly
%matplotlib notebook
binSize = 256
# fig(ax1,ax2) = plt.subplots(2,figsize=(12,6))
f = []
t = 0
dt = 1
fig,axs = plt.subplots(2,1)
def animate(i):
x, y = pg.position()
f.append(x)
n = len(f)
if n<binSize :
plt.sca(axs[0])
plt.cla()
plt.plot(f, color='c',LineWidth=1.5,label="MOUSE")
else:
fhat = np.fft.fft(f,binSize)
PSD = fhat*np.conj(fhat)/binSize
freq = (1/(dt*binSize))*np.arange(binSize)
L = np.arange(1,np.floor(binSize/2),dtype='int')
# update the code third time
axs[0].clear()
axs[0].plot(f[-binSize:], color='c',LineWidth=1.5,label="MOUSE")
# axs[0].xlim(0,binSize) # this stopped the FFT graph to be plotted
# plt.cla()
axs[1].clear()
axs[1].plot(freq[L],PSD[L],color='r',LineWidth=2,label="FFT")
# plt.xlim(t[0],t[-1])
# plt.legend()
# plt.sca(axs[1])
# plt.plot(freq[L],PSD[L],color='c',LineWidth=2,label="Mouse FFT")
# plt.xlim(0,300)
# plt.legend()
# plt.cla()
# plt.plot(f[-binSize:],color='c',LineWidth=1.5,label="Mouse")
ani = FuncAnimation(plt.gcf(),animate,interval=dt)
To make it faster you may reduce data like in other answer
f.pop(0)
I use also different method to update plot which works much faster on my computer.
I create empty plots at start
# needs `,` to get first element from list
p1, = axs[0].plot([], [], color='c', LineWidth=1.5, label="MOUSE")
p2, = axs[1].plot([], [], color='r', LineWidth=2, label="FFT")
and later only update data in plots without clear() and plot() again
xdata = range(len(f))
ydata = f
p1.set_data(xdata, ydata)
and
# replace data in plot
xdata = range(binSize)
ydata = f[-binSize:]
p1.set_data(xdata, ydata)
#p1.set_xdata(xdata)
#p1.set_ydata(ydata)
# replace data in plot
xdata = freq[:(binSize//2)]
ydata = PSD[:(binSize//2)]
p2.set_data(xdata, ydata)
It needs only to run code which rescale plot
# rescale view
axs[0].relim()
axs[0].autoscale_view(True,True,True)
axs[1].relim()
axs[1].autoscale_view(True,True,True)
animate() has to also return new plots
# return plots
return p1, p2
And FuncAnimation() has to blit them
ani = FuncAnimation(..., blit=True)
EDIT:
Animation works much, much faster also because I run it normally python script.py, not in Jupuyter Notebook
EDIT:
when I run normally I found one problem which I could find solution: it doesn't update values/ticks on axes. Jupyter Notebook doesn't have this problem.
import numpy as np
import matplotlib.pyplot as plt
import pyautogui as pg
from matplotlib.animation import FuncAnimation
%matplotlib notebook
binSize = 256
f = []
t = 0
dt = 1
fig, axs = plt.subplots(2, 1)
# needs `,` to get first element from list
p1, = axs[0].plot([], [], color='c', LineWidth=1.5, label="MOUSE")
p2, = axs[1].plot([], [], color='r', LineWidth=2, label="FFT")
freq = np.arange(binSize)/(dt*binSize)
def animate(i):
x, y = pg.position()
n = len(f)
if n < binSize :
f.append(x)
# replace data in plot
xdata = range(len(f))
ydata = f
p1.set_data(xdata, ydata)
#p1.set_xdata(xdata)
#p1.set_ydata(ydata)
else:
f.pop(0)
f.append(x)
fhat = np.fft.fft(f, binSize)
PSD = fhat * np.conj(fhat) / binSize
# replace data in plot
#xdata = range(binSize)
ydata = f[-binSize:]
#p1.set_data(xdata, ydata)
#p1.set_xdata(xdata)
p1.set_ydata(ydata)
# replace data in plot
xdata = freq[:(binSize//2)]
ydata = PSD[:(binSize//2)]
p2.set_data(xdata, ydata)
# rescale view
axs[0].relim()
axs[0].autoscale_view(True,True,True)
axs[1].relim()
axs[1].autoscale_view(True,True,True)
# return plots
return p1, p2
ani = FuncAnimation(plt.gcf(), animate, interval=dt, blit=True)
plt.show()
You should try this. Instead of clearing the plt clear axs[0] and so on. Also, instead of plotting on plt.plot, plot on axs[0].plot
%matplotlib notebook
binSize = 256
# fig(ax1,ax2) = plt.subplots(2,figsize=(12,6))
f = []
t = 0
dt = 1
fig,axs = plt.subplots(2,1)
plt.sca(axs[0])
plt.sca(axs[1])
def animate(i):
x, y = pg.position()
n = len(f)
if n<binSize :
f.append(x*100)
axs[0].clear()
axs[0].plot(f, color='c',LineWidth=1.5,label="MOUSE")
else:
f.pop(0)
f.append(x)
fhat = np.fft.fft(f,binSize)
PSD = fhat*np.conj(fhat)/binSize
freq = (1/(dt*binSize))*np.arange(binSize)
L = np.arange(1,np.floor(binSize/2),dtype='int') # index array of [1,2,3..... binsize/2] type int
axs[0].clear()
axs[0].plot(f[-binSize:], color='c',LineWidth=1.5,label="MOUSE")
axs[1].clear()
axs[1].plot(freq[L],PSD[L],color='r',LineWidth=2,label="FFT")
ani = FuncAnimation(plt.gcf(),animate,interval=dt)
plt.show()

Animating a line plot over time in Python

Time series data is data over time. I am trying to animate a line plot of time series data in python. In my code below this translates to plotting xtraj as they and trange as the x. The plot does not seem to be working though.
I have found similar questions on Stack overflow but none of the solutions provided here seem to work. Some similar questions are matplotlib animated line plot stays empty, Matplotlib FuncAnimation not animating line plot and a tutorial referencing the help file Animations with Matplotlib.
I begin by creating the data with the first part and simulating it with the second. I tried renaming the data that would be used as y-values and x-values in order to make it easier to read.
import numpy as np
import matplotlib.pyplot as plt
from matplotlib import animation
dt = 0.01
tfinal = 5.0
x0 = 0
sqrtdt = np.sqrt(dt)
n = int(tfinal/dt)
xtraj = np.zeros(n+1, float)
trange = np.linspace(start=0,stop=tfinal ,num=n+1)
xtraj[0] = x0
for i in range(n):
xtraj[i+1] = xtraj[i] + np.random.normal()
x = trange
y = xtraj
# animation line plot example
fig = plt.figure(4)
ax = plt.axes(xlim=(-5, 5), ylim=(0, 5))
line, = ax.plot([], [], lw=2)
def init():
line.set_data([], [])
return line,
def animate(i):
line.set_data(x[:i], y[:i])
return line,
anim = animation.FuncAnimation(fig, animate, init_func=init, frames=len(x)+1,interval=200, blit=False)
plt.show()
Any help would be highly appreciated. I am new to working in Python and particularly trying to animate plots. So I must apologize if this question is trivial.
Summary
So to summarize my question how does one animate time series in Python, iterating over the time steps (x-values).
Check this code:
import numpy as np
import matplotlib.pyplot as plt
from matplotlib import animation
dt = 0.01
tfinal = 1
x0 = 0
sqrtdt = np.sqrt(dt)
n = int(tfinal/dt)
xtraj = np.zeros(n+1, float)
trange = np.linspace(start=0,stop=tfinal ,num=n+1)
xtraj[0] = x0
for i in range(n):
xtraj[i+1] = xtraj[i] + np.random.normal()
x = trange
y = xtraj
# animation line plot example
fig, ax = plt.subplots(1, 1, figsize = (6, 6))
def animate(i):
ax.cla() # clear the previous image
ax.plot(x[:i], y[:i]) # plot the line
ax.set_xlim([x0, tfinal]) # fix the x axis
ax.set_ylim([1.1*np.min(y), 1.1*np.max(y)]) # fix the y axis
anim = animation.FuncAnimation(fig, animate, frames = len(x) + 1, interval = 1, blit = False)
plt.show()
The code above reproduces this animation:

Animate Points Movement in Scatter plot (matplotlib python)

I'm not a beginner, but I'm also not advanced dev of python code.
I'm been trying to animate points movement in scatter plot and to put annotation on every point. All I have done is animation of one point with no annotation. I've searched similar solutions, but it's so confusing. Any help is welcome. This is what I've done.
from mpl_toolkits.mplot3d import axes3d
import matplotlib.pyplot as plt
import matplotlib.animation as animation
frame_count = 0
points = reading_file("some_data") # this method is not of intrest
def make_one_point(i):
global frame_count, points
ex = [1]
ey = [1]
ez = [1]
point = points[i]
frame = point[frame_count]
ex[0] = frame[0]
ey[0] = frame[1]
ez[0] = frame[2]
frame_count += 1
return ex, ey, ez
def update(i):
global frame_count, points
if frame_count < len(points[i]):
return make_one_point(i)
else:
frame_count = 0
return make_one_point(i)
fig = plt.figure()
ax1 = fig.add_subplot(111, projection='3d')
ax1.set_xlim3d(-500, 2000)
ax1.set_ylim3d(-500, 2000)
ax1.set_zlim3d(0, 2000)
x = [1]
y = [1]
z = [1]
scat = ax1.scatter(x,y,z)
def animate(i):
scat._offsets3d = update(0)
ani = animation.FuncAnimation(fig, animate,
frames=len(points[10]),
interval=100, repeat=True)
plt.show()
How to animate more points at the same time, and put annontation on every one of them? There are 50 points, and I'm not so consern about efficiency, just to make it work.
This code output is moving one point animation
It turns out animating Text in 3D was harder than I anticipated. Not surprisingly, I was able to find the solution to the problem in an answer from #ImportanceOfBeingErnest. I then simply adapted the code I had already written in a previous answer, and produced the following code:
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D, proj3d
import matplotlib.animation as animation
N_points = 10
def update(num, my_ax):
# the following corresponds to whatever logic must append in your code
# to get the new coordinates of your points
# in this case, we're going to move each point by a quantity (dx,dy,dz)
dx, dy, dz = np.random.normal(size=(3,N_points), loc=0, scale=1)
debug_text.set_text("{:d}".format(num)) # for debugging
x,y,z = graph._offsets3d
new_x, new_y, new_z = (x+dx, y+dy, z+dz)
graph._offsets3d = (new_x, new_y, new_z)
for t, new_x_i, new_y_i, new_z_i in zip(annots, new_x, new_y, new_z):
# animating Text in 3D proved to be tricky. Tip of the hat to #ImportanceOfBeingErnest
# for this answer https://stackoverflow.com/a/51579878/1356000
x_, y_, _ = proj3d.proj_transform(new_x_i, new_y_i, new_z_i, my_ax.get_proj())
t.set_position((x_,y_))
return [graph,debug_text]+annots
# create N_points initial points
x,y,z = np.random.normal(size=(3,N_points), loc=0, scale=10)
fig = plt.figure(figsize=(5, 5))
ax = fig.add_subplot(111, projection="3d")
graph = ax.scatter(x, y, z, color='orange')
debug_text = fig.text(0, 1, "TEXT", va='top') # for debugging
annots = [ax.text2D(0,0,"POINT") for _ in range(N_points)]
# Creating the Animation object
ani = animation.FuncAnimation(fig, update, fargs=[ax], frames=100, interval=50, blit=True)
plt.show()

Make a point move on the plot without clearing earlier plots in matplotlib [duplicate]

I tried to write a simple script which updates a scatter plot for every timestep t. I wanted to do it as simple as possible. But all it does is to open a window where I can see nothing. The window just freezes. It is maybe just an small error, but I can not find it.
The the data.dat has the format
x y
Timestep 1 1 2
3 1
Timestep 2 6 3
2 1
(the file contains just the numbers)
import numpy as np
import matplotlib.pyplot as plt
import time
# Load particle positioins
with open('//home//user//data.dat', 'r') as fp:
particles = []
for line in fp:
line = line.split()
if line:
line = [float(i) for i in line]
particles.append(line)
T = 100
numbParticles = 2
x, y = np.array([]), np.array([])
plt.ion()
plt.figure()
plt.scatter(x,y)
for t in range(T):
plt.clf()
for k in range(numbP):
x = np.append(x, particles[numbParticles*t+k][0])
y = np.append(y, particles[numbParticles*t+k][1])
plt.scatter(x,y)
plt.draw()
time.sleep(1)
x, y = np.array([]), np.array([])
The simplest, cleanest way to make an animation is to use the matplotlib.animation module.
Since a scatter plot returns a matplotlib.collections.PathCollection, the way to update it is to call its set_offsets method. You can pass it an array of shape (N, 2) or a list of N 2-tuples -- each 2-tuple being an (x,y) coordinate.
For example,
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.animation as animation
T = 100
numbParticles = 2
particles = np.random.random((T,numbParticles)).tolist()
x, y = np.array([]), np.array([])
def init():
pathcol.set_offsets([[], []])
return [pathcol]
def update(i, pathcol, particles):
pathcol.set_offsets(particles[i])
return [pathcol]
fig = plt.figure()
xs, ys = zip(*particles)
xmin, xmax = min(xs), max(xs)
ymin, ymax = min(ys), max(ys)
ax = plt.axes(xlim=(xmin, xmax), ylim=(ymin, ymax))
pathcol = plt.scatter([], [], s=100)
anim = animation.FuncAnimation(
fig, update, init_func=init, fargs=(pathcol, particles), interval=1000, frames=T,
blit=True, repeat=True)
plt.show()
I finally found a solution. You can do it simply by using this script. I tried to keep it simple:
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.animation import FuncAnimation
# Helps me to get the data from the file I want to plot
N = 0
# Load particle positioins
with open('//home//user//data.dat', 'r') as fp:
particles = []
for line in fp:
line = line.split()
particles.append(line)
# Create new Figure and an Axes which fills it.
fig = plt.figure(figsize=(7, 7))
ax = fig.add_axes([0, 0, 1, 1], frameon=True)
border = 100
ax.set_xlim(-border, border), ax.set_xticks([])
ax.set_ylim(-border, border), ax.set_yticks([])
# particle data
p = 18 # number of particles
myPa = np.zeros(p, dtype=[('position', float, 2)])
# Construct the scatter which we will update during animation
scat = ax.scatter(myPa['position'][:, 0], myPa['position'][:, 1])
def update(frame_number):
# New positions
myPa['position'][:] = particles[N*p:N*p+p]
# Update the scatter collection, with the new colors, sizes and positions.
scat.set_offsets(myPa['position'])
increment()
def increment():
global N
N = N+1
# Construct the animation, using the update function as the animation director.
animation = FuncAnimation(fig, update, interval=20)
plt.show()

Categories

Resources