How to create nested parameters for the requests library - python

I'm using the popular requests library to request data from an API. The following works:
import requests
parameters = {
'action': 'query_plugins',
'per_page': 10,
'browse': 1,
'page': 1,
}
response = requests.get('https://api.wordpress.org/plugins/info/1.1/', parameters)
results = response.json()
print(results)
But there are some parameters which are nested, for example, here is a URL I might query:
https://api.wordpress.org/plugins/info/1.1/?action=query_plugins&request[per_page]=10&request[browse]=1&request[page]=1&request[fields][description]=0&request[fields][sections]=0'
In the above case I need to pass the following nested parameters:
request[fields][description]
request[fields][sections]
How can this be accomplished?

If I read this issue correctly, you can simply use the bracketed name as the key for your parameters (see this comment):
import requests
parameters = {
'action': 'query_plugins',
'per_page': 10,
'browse': 1,
'page': 1,
'request[fields][description]': 0,
'request[fields][sections]': 0
}
response = requests.get('https://api.wordpress.org/plugins/info/1.1/', parameters)
results = response.json()

You can use a recursive function to flatten the parameters from a dict of dicts to the key-value pairs in the square-bracketed format the API requires:
def params(name, parameters):
def flatten(d):
for k, v in d.items():
if isinstance(v, dict):
for s, i in flatten(v):
yield '[%s]%s' % (k, s), i
else:
yield '[%s]' % k, v
return {name + k: v for k, v in flatten(parameters)}
parameters = {
'per_page': 10,
'browse': 1,
'page': 1,
'fields': {
'description': 0,
'sections': 0
}
}
response = requests.get(
'https://api.wordpress.org/plugins/info/1.1/',
{'action': 'query_plugins', **params('request', parameters)}
)

Related

How to check each key separately from a list in a loop without creating multiple loops. Which may have a KeyError etc

I wrote a code that takes 9 keys from API.
The authors, isbn_one, isbn_two, thumbinail, page_count fields may not always be retrievable, and if any of them are missing, I would like it to be None. Unfortunately, if, or even nested, doesn't work. Because that leads to a lot of loops. I also tried try and except KeyError etc. because each key has a different error and it is not known which to assign none to. Here is an example of logic when a photo is missing:
th = result['volumeInfo'].get('imageLinks')
if th is not None:
book_exists_thumbinail = {
'thumbinail': result['volumeInfo']['imageLinks']['thumbnail']
}
dnew = {**book_data, **book_exists_thumbinail}
book_import.append(dnew)
else:
book_exists_thumbinail_n = {
'thumbinail': None
}
dnew_none = {**book_data, **book_exists_thumbinail_n}
book_import.append(dnew_none)
When I use logic, you know when one condition is met, e.g. for thumbinail, the rest is not even checked.
When I use try and except, it's similar. There's also an ISBN in the keys, but there's a list in the dictionary over there, and I need to use something like this:
isbn_zer = result['volumeInfo']['industryIdentifiers']
dic = collections.defaultdict(list)
for d in isbn_zer:
for k, v in d.items():
dic[k].append(v)
Output data: [{'type': 'ISBN_10', 'identifier': '8320717507'}, {'type': 'ISBN_13', 'identifier': '9788320717501'}]
I don't know what to use anymore to check each key separately and in the case of its absence or lack of one ISBN (identifier) assign the value None. I have already tried many ideas.
The rest of the code:
book_import = []
if request.method == 'POST':
filter_ch = BookFilterForm(request.POST)
if filter_ch.is_valid():
cd = filter_ch.cleaned_data
filter_choice = cd['choose_v']
filter_search = cd['search']
search_url = "https://www.googleapis.com/books/v1/volumes?"
params = {
'q': '{}{}'.format(filter_choice, filter_search),
'key': settings.BOOK_DATA_API_KEY,
'maxResults': 2,
'printType': 'books'
}
r = requests.get(search_url, params=params)
results = r.json()['items']
for result in results:
book_data = {
'title': result['volumeInfo']['title'],
'authors': result['volumeInfo']['authors'][0],
'publish_date': result['volumeInfo']['publishedDate'],
'isbn_one': result['volumeInfo']['industryIdentifiers'][0]['identifier'],
'isbn_two': result['volumeInfo']['industryIdentifiers'][1]['identifier'],
'page_count': result['volumeInfo']['pageCount'],
'thumbnail': result['volumeInfo']['imageLinks']['thumbnail'],
'country': result['saleInfo']['country']
}
book_import.append(book_data)
else:
filter_ch = BookFilterForm()
return render(request, "BookApp/book_import.html", {'book_import': book_import,
'filter_ch': filter_ch})```

Convert HTML dictionary to PYTHON dictionary

i need to get values only for Czechia country from this website list "https://coronavirus-19-api.herokuapp.com/countries" and store like a variable dictionary in ptyhon.
Like this:
Czechia = {"cases":434,"todayCases":0,"deaths":0,"todayDeaths":0,"recovered":3,"active":431,"critical":2}
You could use requests to GET the JSON data from your server URL, then construct a new dictionary with country as the key:
from requests import get
URL = "https://coronavirus-19-api.herokuapp.com/countries"
req = get(URL).json()
result = {obj['country']: {k: v for k, v in obj.items() if k != 'country'} for obj in req}
print(result)
Output:
{'China': {'cases': 80894, 'todayCases': 13, 'deaths': 3237, 'todayDeaths': 11, 'recovered': 69614, 'active': 8043, 'critical': 2622}, 'Italy': {'cases': 31506, 'todayCases': 0, 'deaths': 2503, 'todayDeaths': 0, 'recovered': 2941, 'active': 26062, 'critical': 2060}...
Now you can access your data in O(1) time instead of doing a O(N) linear scan:
print(result["Czechia"])
# {'cases': 464, 'todayCases': 30, 'deaths': 0, 'todayDeaths': 0, 'recovered': 3, 'active': 461, 'critical': 2}
Note: Its probably also safe to ensure req.status_code is 200 OK or whatever else you expect to receive from the server.
In [1]: import requests
...: import json
...:
...: data = requests.get('https://coronavirus-19-api.herokuapp.com/countries').json()
...: result = next(item for item in data if item["country"] == "Czechia")
...: print(json.dumps(result, indent=4))
{
"country": "Czechia",
"cases": 464,
"todayCases": 30,
"deaths": 0,
"todayDeaths": 0,
"recovered": 3,
"active": 461,
"critical": 2
}
In [2]:
While the RoadRunner 's answers solves your problem, I am just giving you the one other way of doing it using python's urllib module.
from urllib.request import urlopen
##import ast
import json
def Corona_Tracker():
res = urlopen('https://coronavirus-19-api.herokuapp.com/countries')
result = res.read().strip()
result_str = json.loads(result)
return result_str
if __name__ == "__main__":
result_str=Corona_Tracker()
while True:
for data in result_str:
if data['country'] == "India":
print(data)
Just replace India with your country , it gives the below output
>>> {'country': 'India', 'cases': 148, 'todayCases': 5, 'deaths': 3, 'todayDeaths': 0, 'recovered': 14, 'active': 131, 'critical': 0}

Update values inside dictionary of a dictionary

I have a dictionary that contains the information to make a POST request to site and fetch data.
Below is my dictionary
request_dict = {
"scope_id": "user1",
"tool_id": "appdynamics",
"api_id": "get metrics names",
"input_params": {"user": "abcd", "pwd": "1234", "acc_id": "ab12", "app_id": "TestApp",
"metric-path": "ars",
"time-range-type": "BEFORE_NOW", "duration-in-mins": 10},
"output_filters": null
}
I have another dictionary which contains the updated value for some of the keys mentioned in the above dictionary.Below is the dictionary
new_metric_dict = {'tool_id': 'appdynamics', 'pwd': '5678', 'user': 'efgh', 'metric-path': 'ars', 'app_id': 'TestApp', 'acc_id': 'cd34'}
As you can see I got new values for user, pwd and acc_id.But I am unable to put these values into the POST request dictionary since they are inside input_params.
I tried doing something like this
for i in request_dict:
if type(request_dict[i]) == dict:
for j in request_dict:
if j in new_metric_dict:
request_dict[j] = new_metric_dict[j]
if i in new_metric_dict:
request_dict[i] = new_metric_dict[i]
But it doesn't work.What is an efficient way to achieve this?
This is one way, which creates a new dictionary with the desired updates.
def update_dict(d, new):
out = {}
for m, val in d.items():
if isinstance(d[m], dict):
out[m] = {k: new.get(k, d[m][k]) for k, v in d[m].items()}
else:
out[m] = new.get(m, val)
return out
new = update_dict(request_dict, new_metric_dict)
# {'api_id': 'get metrics names',
# 'input_params': {'acc_id': 'cd34',
# 'app_id': 'TestApp',
# 'duration-in-mins': 10,
# 'metric-path': 'ars',
# 'pwd': '5678',
# 'time-range-type': 'BEFORE_NOW',
# 'user': 'efgh'},
# 'output_filters': 'null',
# 'scope_id': 'user1',
# 'tool_id': 'appdynamics'}

Targets don't match node IDs in networkx json file

I have a network I want to output to a json file. However, when I output it, node targets become converted to numbers and do not match the node ids which are strings.
For example:
G = nx.DiGraph(data)
G.edges()
results in:
[(22, 'str1'),
(22, 'str2'),
(22, 'str3')]
in python. This is correct.
But in the output, when I write out the data like so...
json.dump(json_graph.node_link_data(G), f,
indent = 4, sort_keys = True, separators=(',',':'))
while the ids for the three target nodes 'str1', 'str2', and 'str3'...
{
"id":"str1"
},
{
"id":"str2"
},
{
"id":"str3"
}
The targets of node 22 have been turned into numbers
{
"source":22,
"target":972
},
{
"source":22,
"target":1261
},
{
"source":22,
"target":1259
}
This happens for all nodes that have string ids
Why is this, and how can I prevent it?
The desired result is that either "target" fields should keep the string ids, or that the string ids become numeric in a way that they match the targets.
Why is this
It's a feature. Not all graph libraries accept strings as identifiers, but all that I know of accept integers.
how can I prevent it?
Replace the ids by node names using the nodes map:
>>> import networkx as nx
>>> import pprint
>>> g = nx.DiGraph()
>>> g.add_edge(1, 'foo')
>>> g.add_edge(2, 'bar')
>>> g.add_edge('foo', 'bar')
>>> res = nx.node_link_data(g)
>>> pprint.pprint(res)
{'directed': True,
'graph': {},
'links': [{'source': 0, 'target': 3},
{'source': 1, 'target': 2},
{'source': 3, 'target': 2}],
'multigraph': False,
'nodes': [{'name': 1}, {'name': 2}, {'name': 'bar'}, {'name': 'foo'}]}
>>> res['links'] = [
{
'source': res['nodes'][link['source']]['name'],
'target': res['nodes'][link['target']]['name']
}
for link in res['links']]
>>> pprint.pprint(res)
{'directed': True,
'graph': {},
'links': [{'source': 1, 'target': 'foo'},
{'source': 2, 'target': 'bar'},
{'source': 'foo', 'target': 'bar'}],
'multigraph': False,
'nodes': [{'name': 1}, {'name': 2}, {'name': 'bar'}, {'name': 'foo'}]}
To make the output conform to the d3 template that is linked in the node_link_data documentation, you can make a couple simple changes to the node_link_data function. Just run the below function and use it instead. All I changed was to trim some of the unnecessary outputs for the template, and to store the graph label instead of an index. The index the original function used for target and destination was created in the function, so it isn't something you can extract from the graph itself, so if you want to be certain that your node labels correspond to your links, it's safest to modify node_link_data.
The D3 Template this creates data for is here
Note that if you use the below data without adding a node or link attribute, you will need to delete the following lines from the d3 template:
.attr("stroke-width", function(d) { return Math.sqrt(d.value); })
and
.attr("fill", function(d) { return color(d.group); })
Modified function:
from itertools import chain, count
import json
import networkx as nx
from networkx.utils import make_str
__author__ = """Aric Hagberg <hagberg#lanl.gov>"""
_attrs = dict(id='id', source='source', target='target', key='key')
def node_link_data(G, attrs=_attrs):
"""Return data in node-link format that is suitable for JSON serialization
and use in Javascript documents.
"""
multigraph = G.is_multigraph()
id_ = attrs['id']
source = attrs['source']
target = attrs['target']
# Allow 'key' to be omitted from attrs if the graph is not a multigraph.
key = None if not multigraph else attrs['key']
if len(set([source, target, key])) < 3:
raise nx.NetworkXError('Attribute names are not unique.')
mapping = dict(zip(G, count()))
data = {}
data['nodes'] = [dict(chain(G.node[n].items(), [(id_, n)])) for n in G]
if multigraph:
data['links'] = [
dict(chain(d.items(),
[(source, u), (target,v), (key, k)]))
for u, v, k, d in G.edges_iter(keys=True, data=True)]
else:
data['links'] = [
dict(chain(d.items(),
[(source, u), (target, v)]))
for u, v, d in G.edges_iter(data=True)]
return data

JSON serialize a dictionary with tuples as key

Is there a way in Python to serialize a dictionary that is using a tuple as key?
e.g.
a = {(1, 2): 'a'}
simply using json.dumps(a) raises this error:
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/usr/lib/python2.6/json/__init__.py", line 230, in dumps
return _default_encoder.encode(obj)
File "/usr/lib/python2.6/json/encoder.py", line 367, in encode
chunks = list(self.iterencode(o))
File "/usr/lib/python2.6/json/encoder.py", line 309, in _iterencode
for chunk in self._iterencode_dict(o, markers):
File "/usr/lib/python2.6/json/encoder.py", line 268, in _iterencode_dict
raise TypeError("key {0!r} is not a string".format(key))
TypeError: key (1, 2) is not a string
You can't serialize that as json, json has a much less flexible idea about what counts as a dict key than python.
You could transform the mapping into a sequence of key, value pairs, something like this:
import json
def remap_keys(mapping):
return [{'key':k, 'value': v} for k, v in mapping.iteritems()]
...
json.dumps(remap_keys({(1, 2): 'foo'}))
>>> '[{"value": "foo", "key": [1, 2]}]'
from json import loads, dumps
from ast import literal_eval
x = {(0, 1): 'la-la la', (0, 2): 'extricate'}
# save: convert each tuple key to a string before saving as json object
s = dumps({str(k): v for k, v in x.items()})
# load in two stages:
# (i) load json object
obj = loads(s)
# (ii) convert loaded keys from string back to tuple
d = {literal_eval(k): v for k, v in obj.items()}
See https://stackoverflow.com/a/12337657/2455413.
JSON only supports strings as keys. You'll need to choose a way to represent those tuples as strings.
You could just use str((1,2)) as key because json only expects the keys as strings but if you use this you'll have to use a[str((1,2))] to get the value.
json can only accept strings as keys for dict,
what you can do, is to replace the tuple keys with string like so
with open("file", "w") as f:
k = dic.keys()
v = dic.values()
k1 = [str(i) for i in k]
json.dump(json.dumps(dict(zip(*[k1,v]))),f)
And than when you want to read it, you can change the keys back to tuples using
with open("file", r) as f:
data = json.load(f)
dic = json.loads(data)
k = dic.keys()
v = dic.values()
k1 = [eval(i) for i in k]
return dict(zip(*[k1,v]))
This solution:
Avoids the security risk of eval().
Is short.
Is copy-pastable as save and load functions.
Keeps the structure of tuple as the key, in case you are editing the JSON by hand.
Adds ugly \" to the tuple representation, which is worse than the other str()/eval() methods here.
Can only handle tuples as keys at the first level for nested dicts (as of this writing no other solution here can do better)
def json_dumps_tuple_keys(mapping):
string_keys = {json.dumps(k): v for k, v in mapping.items()}
return json.dumps(string_keys)
def json_loads_tuple_keys(string):
mapping = json.loads(string)
return {tuple(json.loads(k)): v for k, v in mapping.items()}
m = {(0,"a"): "first", (1, "b"): [9, 8, 7]}
print(m) # {(0, 'a'): 'first', (1, 'b'): [9, 8, 7]}
s = json_dumps_tuple_keys(m)
print(s) # {"[0, \"a\"]": "first", "[1, \"b\"]": [9, 8, 7]}
m2 = json_loads_tuple_keys(s)
print(m2) # {(0, 'a'): 'first', (1, 'b'): [9, 8, 7]}
print(m==m2) # True
Here is one way to do it. It will require the key to be json decoded after the main dictionary is decoded and the whole dictionary re-sequenced, but it is doable:
import json
def jsonEncodeTupleKeyDict(data):
ndict = dict()
# creates new dictionary with the original tuple converted to json string
for key,value in data.iteritems():
nkey = json.dumps(key)
ndict[nkey] = value
# now encode the new dictionary and return that
return json.dumps(ndict)
def main():
tdict = dict()
for i in range(10):
key = (i,"data",5*i)
tdict[key] = i*i
try:
print json.dumps(tdict)
except TypeError,e:
print "JSON Encode Failed!",e
print jsonEncodeTupleKeyDict(tdict)
if __name__ == '__main__':
main()
I make no claim to any efficiency of this method. I needed this for saving some joystick mapping data to a file. I wanted to use something that would create a semi-human readable format so it could be edited if needed.
You can actually not serialize tuples as key to json, but you can convert the tuple to a string and recover it, after you have deserialized the file.
with_tuple = {(0.1, 0.1): 3.14} ## this will work in python but is not serializable in json
{(0.1, 0.1): 3.14}
But you cannot serialize it with json. However, you can use
with_string = {str((0.1, 0.1))[1:-1]: 3.14} ## the expression [1,-1] removes the parenthesis surrounding the tuples in python.
{'0.1, 0.1': 3.14} # This is serializable
With a bit of cheating, you will recover the original tuple (after having deserialized the whole file) by treating each key (as str) separately
tuple(json.loads("["+'0.1, 0.1'+"]")) ## will recover the tuple from string
(0.1, 0.1)
It is a bit of overload to convert a string to a tuple using json.loads, but it will work. Encapsulate it and you are done.
Peace out and happy coding!
Nicolas
Here are two functions you could use to convert a dict_having_tuple_as_key into a json_array_having_key_and_value_as_keys and then de-convert it the way back
import json
def json_dumps_dict_having_tuple_as_key(dict_having_tuple_as_key):
if not isinstance(dict_having_tuple_as_key, dict):
raise Exception('Error using json_dumps_dict_having_tuple_as_key: The input variable is not a dictionary.')
list_of_dicts_having_key_and_value_as_keys = [{'key': k, 'value': v} for k, v in dict_having_tuple_as_key.items()]
json_array_having_key_and_value_as_keys = json.dumps(list_of_dicts_having_key_and_value_as_keys)
return json_array_having_key_and_value_as_keys
def json_loads_dictionary_split_into_key_and_value_as_keys_and_underwent_json_dumps(json_array_having_key_and_value_as_keys):
list_of_dicts_having_key_and_value_as_keys = json.loads(json_array_having_key_and_value_as_keys)
if not all(['key' in diz for diz in list_of_dicts_having_key_and_value_as_keys]) and all(['value' in diz for diz in list_of_dicts_having_key_and_value_as_keys]):
raise Exception('Error using json_loads_dictionary_split_into_key_and_value_as_keys_and_underwent_json_dumps: at least one dictionary in list_of_dicts_having_key_and_value_as_keys ismissing key "key" or key "value".')
dict_having_tuple_as_key = {}
for dict_having_key_and_value_as_keys in list_of_dicts_having_key_and_value_as_keys:
dict_having_tuple_as_key[ tuple(dict_having_key_and_value_as_keys['key']) ] = dict_having_key_and_value_as_keys['value']
return dict_having_tuple_as_key
usage example:
my_dict = {
('1', '1001', '2021-12-21', '1', '484'): {"name": "Carl", "surname": "Black", "score": 0},
('1', '1001', '2021-12-22', '1', '485'): {"name": "Joe", "id_number": 134, "percentage": 11}
}
my_json = json_dumps_dict_having_tuple_as_key(my_dict)
print(my_json)
[{'key': ['1', '1001', '2021-12-21', '1', '484'], 'value': {'name': 'Carl', 'surname': 'Black', 'score': 0}},
{'key': ['1', '1001', '2021-12-22', '1', '485'], 'value': {'name': 'Joe', 'id_number': 134, 'percentage': 11}}]
my_dict_reconverted = json_loads_dictionary_split_into_key_and_value_as_keys_and_underwent_json_dumps(my_json)
print(my_dict_reconverted)
{('1', '1001', '2021-12-21', '1', '484'): {'name': 'Carl', 'surname': 'Black', 'score': 0},
('1', '1001', '2021-12-22', '1', '485'): {'name': 'Joe', 'id_number': 134, 'percentage': 11}}
# proof of working 1
my_dict == my_dict_reconverted
True
# proof of working 2
my_dict == json_loads_dictionary_split_into_key_and_value_as_keys_and_underwent_json_dumps(
json_dumps_dict_having_tuple_as_key(my_dict)
)
True
(Using concepts expressed by #SingleNegationElimination to answer #Kvothe comment)
Here's a complete example to encode/decode nested dictionaries with tuple keys and values into/from json. tuple key will be a string in JSON.
values of types tuple or set will be converted to list
def JSdecoded(item:dict, dict_key=False):
if isinstance(item, list):
return [ JSdecoded(e) for e in item ]
elif isinstance(item, dict):
return { literal_eval(key) : value for key, value in item.items() }
return item
def JSencoded(item, dict_key=False):
if isinstance(item, tuple):
if dict_key:
return str(item)
else:
return list(item)
elif isinstance(item, list):
return [JSencoded(e) for e in item]
elif isinstance(item, dict):
return { JSencoded(key, True) : JSencoded(value) for key, value in item.items() }
elif isinstance(item, set):
return list(item)
return item
usage
import json
pydata = [
{ ('Apple','Green') : "Tree",
('Orange','Yellow'):"Orchard",
('John Doe', 1945) : "New York" }
]
jsstr= json.dumps(JSencoded(pydata), indent='\t')
print(jsstr)
#[
# {
# "('Apple', 'Green')": "Tree",
# "('Orange', 'Yellow')": "Orchard",
# "('John Doe', 1945)": "New York"
# }
#]
data = json.loads(jsstr) #string keys
newdata = JSdecoded(data) #tuple keys
print(newdata)
#[{('Apple', 'Green'): 'Tree', ('Orange', 'Yellow'): 'Orchard', ('John Doe', 1945): 'New York'}]
def stringify_keys(d):
if isinstance(d, dict):
return {str(k): stringify_keys(v) for k, v in d.items()}
if isinstance(d, (list, tuple)):
return type(d)(stringify_keys(v) for v in d)
return d
json.dumps(stringify_keys(mydict))

Categories

Resources