I have to do my study in a parallel way to run it much faster. I am new to multiprocessing library in python, and could not yet make it run successfully.
Here, I am investigating if each pair of (origin, target) remains at certain locations between various frames of my study. Several points:
It is one function, which I want to run faster (It is not several processes).
The process is performed subsequently; it means that each frame is compared with the previous one.
This code is a very simpler form of the original code. The code outputs a residece_list.
I am using Windows OS.
Can someone check the code (the multiprocessing section) and help me improve it to make it work. Thanks.
import numpy as np
from multiprocessing import Pool, freeze_support
def Main_Residence(total_frames, origin_list, target_list):
Previous_List = {}
residence_list = []
for frame in range(total_frames): #Each frame
Current_List = {} #Dict of pair and their residence for frames
for origin in range(origin_list):
for target in range(target_list):
Pair = (origin, target) #Eahc pair
if Pair in Current_List.keys(): #If already considered, continue
continue
else:
if origin == target:
if (Pair in Previous_List.keys()): #If remained from the previous frame, add residence
print "Origin_Target remained: ", Pair
Current_List[Pair] = (Previous_List[Pair] + 1)
else: #If new, add it to the current
Current_List[Pair] = 1
for pair in Previous_List.keys(): #Add those that exited from residence to the list
if pair not in Current_List.keys():
residence_list.append(Previous_List[pair])
Previous_List = Current_List
return residence_list
if __name__ == '__main__':
pool = Pool(processes=5)
Residence_List = pool.apply_async(Main_Residence, args=(20, 50, 50))
print Residence_List.get(timeout=1)
pool.close()
pool.join()
freeze_support()
Residence_List = np.array(Residence_List) * 5
Multiprocessing does not make sense in the context you are presenting here.
You are creating five subprocesses (and three threads belonging to the pool, managing workers, tasks and results) to execute one function once. All of this is coming at a cost, both in system resources and execution time, while four of your worker processes don't do anything at all. Multiprocessing does not speed up the execution of a function. The code in your specific example will always be slower than plainly executing Main_Residence(20, 50, 50) in the main process.
For multiprocessing to make sense in such a context, your work at hand would need to be broken down to a set of homogenous tasks that can be processed in parallel with their results potentially being merged later.
As an example (not necessarily a good one), if you want to calculate the largest prime factors for a sequence of numbers, you can delegate the task of calculating that factor for any specific number to a worker in a pool. Several workers would then do these individual calculations in parallel:
def largest_prime_factor(n):
p = n
i = 2
while i * i <= n:
if n % i:
i += 1
else:
n //= i
return p, n
if __name__ == '__main__':
pool = Pool(processes=3)
start = datetime.now()
# this delegates half a million individual tasks to the pool, i.e.
# largest_prime_factor(0), largest_prime_factor(1), ..., largest_prime_factor(499999)
pool.map(largest_prime_factor, range(500000))
pool.close()
pool.join()
print "pool elapsed", datetime.now() - start
start = datetime.now()
# same work just in the main process
[largest_prime_factor(i) for i in range(500000)]
print "single elapsed", datetime.now() - start
Output:
pool elapsed 0:00:04.664000
single elapsed 0:00:08.939000
(the largest_prime_factor function is taken from #Stefan in this answer)
As you can see, the pool is only roughly twice as fast as single process execution of the same amount of work, all while running in three processes in parallel. That's due to the overhead introduced by multiprocessing/the pool.
So, you stated that the code in your example has been simplified. You'll have to analyse your original code to see if it can be broken down to homogenous tasks that can be passed down to your pool for processing. If that is possible, using multiprocessing might help you speed up your program. If not, multiprocessing will likely cost you time, rather than save it.
Edit:
Since you asked for suggestions on the code. I can hardly say anything about your function. You said yourself that it is just a simplified example to provide an MCVE (much appreciated by the way! Most people don't take the time to strip down their code to its bare minimum). Requests for a code review are anyway better suited over at Codereview.
Play around a bit with the available methods of task delegation. In my prime factor example, using apply_async came with a massive penalty. Execution time increased ninefold, compared to using map. But my example is using just a simple iterable, yours needs three arguments per task. This could be a case for starmap, but that is only available as of Python 3.3.Anyway, the structure/nature of your task data basically determines the correct method to use.
I did some q&d testing with multiprocessing your example function.
The input was defined like this:
inp = [(20, 50, 50)] * 5000 # that makes 5000 tasks against your Main_Residence
I ran that in Python 3.6 in three subprocesses with your function unaltered, except for the removal of the print statment (I/O is costly). I used, starmap, apply, starmap_async and apply_async and also iterated through the results each time to account for the blocking get() on the async results.
Here's the output:
starmap elapsed 0:01:14.506600
apply elapsed 0:02:11.290600
starmap async elapsed 0:01:27.718800
apply async elapsed 0:01:12.571200
# btw: 5k calls to Main_Residence in the main process looks as bad
# as using apply for delegation
single elapsed 0:02:12.476800
As you can see, the execution times differ, although all four methods do the same amount of work; the apply_async you picked appears to be the fastest method.
Coding Style. Your code looks quite ... unconventional :) You use Capitalized_Words_With_Underscore for your names (both, function and variable names), that's pretty much a no-no in Python. Also, assigning the name Previous_List to a dictionary is ... questionable. Have a look at PEP 8, especially the section Naming Conventions to see the commonly accepted coding style for Python.
Judging by the way your print looks, you are still using Python 2. I know that in corporate or institutional environments that's sometimes all you have available. Still, keep in mind that the clock for Python 2 is ticking
Related
I am trying to figure out how to perfom a multiprocessing task with an unusual formulation.
Basically, given two lists containing 10 matrices for each list, I have to check if applying an operation (that I'll call fn) gives the same results if the input is (A, B) or vice versa (B, A).
With a sequential approach, the solution is streightforward:
#Given
A = [matrix_a1, ... , matrix_a10]
B = [matrix_b1, ... , matrix_b10]
AB_BA= [fn(A[i], B[i])==fn(B[i], A[i]) for i in range(0, len(A)) ]
The next task is a bit strange because it requires setting strictly more than ten threads and applying multiprocessing. The restriction is that you can not assign all the single comparisons to ten different processes because the remaining processes will be unused. I do not know why the request seems to be using "process" and "thread" interchangeably.
This task seems a bit confusing because in multiprocessing, generally, you set the maximum number of workers, not the minimum.
I tried to use a solution that uses a ProcessPoolExecutor, as follows:
def equality(A, B,i):
res= fn(A[i], B[i]) == fn(B[i],A[i] )
return(res)
with concurrent.futures.ProcessPoolExecutor(max_workers=20) as executor:
idx=range(0, len(A))
results= executor.map(equality, A, B, idx)
for result in results:
print(result)
My problem is that I am not sure how to check resource usage. I have naively tried to monitor the CPU usage using the ubuntu system monitor as well as "top" from the command line.
In addition, this solution is the most efficient among those I tried, but there is not a direct specification to use at least 11 workers, so this solution seems not to stick with what was requested.
I also tried other solutions, such as using pool directly. This causes to evoke 10 python instances using top, but again, not more than 10. Here's what I tried:
def equality(A, B):
res=fn(A, B) == fn(B,A )
return(res)
with mp.Pool(20) as p:
print(p.starmap(equality, ((A[i], B[i]) for i in range(0, len(A)))))
Do you have any suggestions to address this request as well as monitor the resource usage to be sure it is working as expected?
Thank you very much for your help in advance.
I wish you had published the actual problem word for word, since your description is a bit unclear. But this is what I know (or think I know):
Unless the amount of CPU processing done by your worker function equality is great enough so that what is gained by running the function in parallel more than offsets the additional multiprocessing overhead you would not otherwise have if not using multiprocessing (i.e. starting processes, moving data from one address space to another, etc.), your multiprocessing code will run more slowly. Therefore, you should design your worker function to do the most work possible and to pass as little data as possible.
When you specify ...
results = executor.map(equality, A, B, idx)
... your equality function will be invoked once for each element of A, B and idx. So what is being passed is not the entire lists A and B but rather individual elements (e.g. matrix_a1 and matrix_b1). Therefore, there is no point in even passing an idx argument:
def equality(matrix_a, matrix_b):
"""
matrix_a and matrix_a are each single elements of
lists A and B respecticely.
"""
return fn(matrix_a) == fn(matrix_b)
def main():
from os import cpu_count
from concurrent.futures import ProcessPoolExecutor
A = [matrix_a1, ... , matrix_a10]
B = [matrix_b1, ... , matrix_b10]
# Do not create more processes then we have either
# CPU cores or the number of tasks that need to submit:
pool_size = min(cpu_count(), len(A))
with ProcessPoolExecutor(max_workers=pool_size) as executor:
AB_BA = list(executor.map(equality, A, B))
# This will be a list of 10 elements, each either `True` or `False`:
print(AB_BA)
# Required for Windows:
if __name__ == '__main__':
main()
So we will be submitting 10 tasks to a pool size of 10. Internally there is a "task queue" on which all the arguments being passed to equality exist:
matrix_a1, matrix_b1 # task 1
matrix_a2, matrix_b2 # task 2
...
matrix_a10, matrix_b10 # task 10
Any process in the pool that is idle will grap the next task in the queue to work on and the results will be returned in task submission order. But since equality is such a short-running function unless function fn is sufficiently complicated, there is the possibility that the pool process that grabs the first task can complete it and then grab the second task before some other pool process is dispatched by the operating system and can grab it. So there is no guarantee that all 10 tasks will be worked on in parallel by 10 pool processes even if function fn is sufficiently CPU-intensive. If you were to insert a call to time.sleep(.1) at the beginning of equality, that would give the other pool processes a chance to "wake up" and grab its own task from the task queue. But that would slow your program down even more since sleeping for this purposes is totally non-productive. But the point I am trying to make is that you cannot ensure that all pool processes will always be active concurrently.
I have a function which I will run using multi-processing. However the function returns a value and I do not know how to store that value once it's done.
I read somewhere online about using a queue but I don't know how to implement it or if that'd even work.
cores = []
for i in range(os.cpu_count()):
cores.append(Process(target=processImages, args=(dataSets[i],)))
for core in cores:
core.start()
for core in cores:
core.join()
Where the function 'processImages' returns a value. How do I save the returned value?
In your code fragment you have input dataSets which is a list of some unspecified size. You have a function processImages which takes a dataSet element and apparently returns a value you want to capture.
cpu_count == dataset length ?
The first problem I notice is that os.cpu_count() drives the range of values i which then determines which datasets you process. I'm going to assume you would prefer these two things to be independent. That is, you want to be able to crunch some X number of datasets and you want it to work on any machine, having anywhere from 1 - 1000 (or more...) cores.
An aside about CPU-bound work
I'm also going to assume that you have already determined that the task really is CPU-bound, thus it makes sense to split by core. If, instead, your task is disk io-bound, you would want more workers. You could also be memory bound or cache bound. If optimal parallelization is important to you, you should consider doing some trials to see which number of workers really gives you maximum performance.
Here's more reading if you like
Pool class
Anyway, as mentioned by Michael Butscher, the Pool class simplifies this for you. Yours is a standard use case. You have a set of work to be done (your list of datasets to be processed) and a number of workers to do it (in your code fragment, your number of cores).
TLDR
Use those simple multiprocessing concepts like this:
from multiprocessing import Pool
# Renaming this variable just for clarity of the example here
work_queue = datasets
# This is the number you might want to find experimentally. Or just run with cpu_count()
worker_count = os.cpu_count()
# This will create processes (fork) and join all for you behind the scenes
worker_pool = Pool(worker_count)
# Farm out the work, gather the results. Does not care whether dataset count equals cpu count
processed_work = worker_pool.map(processImages, work_queue)
# Do something with the result
print(processed_work)
You cannot return the variable from another process. The recommended way would be to create a Queue (multiprocessing.Queue), then have your subprocess put the results to that queue, and once it's done, you may read them back -- this works if you have a lot of results.
If you just need a single number -- using Value or Array could be easier.
Just remember, you cannot use a simple variable for that, it has to be wrapped with above mentioned classes from multiprocessing lib.
If you want to use the result object returned by a multiprocessing, try this
from multiprocessing.pool import ThreadPool
def fun(fun_argument1, ... , fun_argumentn):
<blabla>
return object_1, object_2
pool = ThreadPool(processes=number_of_your_process)
async_num1 = pool.apply_async(fun, (fun_argument1, ... , fun_argumentn))
object_1, object_2 = async_num1.get()
then you can do whatever you want.
I am experiencing a strange thing: I wrote a program to simulate economies. Instead of running this simulation one by one on one CPU core, I want to use multiprocessing to make things faster. So I run my code (fine), and I want to get some stats from the simulations I am doing. Then arises one surprise: all the simulations done at the same time yield the very same result! Is there some strange relationship between Pool() and random.seed()?
To be much clearer, here is what the code can be summarized as:
class Economy(object):
def __init__(self,i):
self.run_number = i
self.Statistics = Statistics()
self.process()
def run_and_return(i):
eco = Economy(i)
return eco
collection = []
def get_result(x):
collection.append(x)
if __name__ == '__main__':
pool = Pool(processes=4)
for i in range(NRUN):
pool.apply_async(run_and_return, (i,), callback=get_result)
pool.close()
pool.join()
The process(i) is the function that goes through every step of the simulation, during i steps. Basically I simulate NRUN Economies, from which I get the Statistics that I put in the list collection.
Now the strange thing is that the output of this is exactly the same for the first 4 runs: during the same "wave" of simulations, I get the very same output. Once I get to the second wave, then I get a different output for the next 4 simulations!
All these simulations run well if I use the same program with processes=1: I get different results when I only work on one core, taking simulations one by one... I have tried a few things, but can't get my head around this, hence my post...
Thank you very much for taking the time to read this long post, do not hesitate to ask for more precisions!
All the best,
If you are on Linux then each pool process is made by forking the parent process. This means the process is literally duplicated - this includes the seed any random object may be using.
The random module selects the seed for its default functions on import. Meaning the seed has already been selected before you create the Pool.
To get around this you must use an initialiser for each pool process that sets the random seed to something unique.
A decent way to seed random would be to use the process id and the current time. The process id is bound to be unique on a single run of your program. Whilst using the time will ensure uniqueness over multiple runs in case the same process id is produced. Passing process id and time through as a string will mean that the digest of the string is also used to seed the random number generator -- meaning two similar strings will produce substantially different seeds. Alternatively, you could use the uuid module to generate seeds.
def proc_init():
random.seed(str(os.getpid()) + str(time.time()))
pool = Pool(num_procs, initializer=proc_init)
New to python and I want to do parallel programming in the following code, and want to use multiprocessing in python to do it. So how to modify the code? I've been searching method by using Pool, but found limited examples that I can follow. Anyone can help me? Thank you.
Note that setinner and setouter are two independent functions and that's where I want to use parallel programming to reduce the running time.
def solve(Q,G,n):
i = 0
tol = 10**-4
while i < 1000:
inneropt,partition,x = setinner(Q,G,n)
outeropt = setouter(Q,G,n)
if (outeropt - inneropt)/(1 + abs(outeropt) + abs(inneropt)) < tol:
break
node1 = partition[0]
node2 = partition[1]
G = updateGraph(G,node1,node2)
if i == 999:
print "Maximum iteration reaches"
print inneropt
It's hard to parallelize code that needs to mutate the same shared data from different tasks. So, I'm going to assume that setinner and setouter are non-mutating functions; if that's not true, things will be more complicated.
The first step is to decide what you want to do in parallel.
One obvious thing is to do the setinner and setouter at the same time. They're completely independent of each other, and always need to both get done. So, that's what I'll do. Instead of doing this:
inneropt,partition,x = setinner(Q,G,n)
outeropt = setouter(Q,G,n)
… we want to submit the two functions as tasks to the pool, then wait for both to be done, then get the results of both.
The concurrent.futures module (which requires a third-party backport in Python 2.x) makes it easier to do things like "wait for both to be done" than the multiprocessing module (which is in the stdlib in 2.6+), but in this case, we don't need anything fancy; if one of them finishes early, we don't have anything to do until the other finishes anyway. So, let's stick with multiprocessing.apply_async:
pool = multiprocessing.Pool(2) # we never have more than 2 tasks to run
while i < 1000:
# parallelly start both tasks
inner_result = pool.apply_async(setinner, (Q, G, n))
outer_result = pool.apply_async(setouter, (Q, G, n))
# sequentially wait for both tasks to finish and get their results
inneropt,partition,x = inner_result.get()
outeropt = outer_result.get()
# the rest of your loop is unchanged
You may want to move the pool outside the function so it lives forever and can be used by other parts of your code. And if not, you almost certainly want to shut the pool down at the end of the function. (Later versions of multiprocessing let you just use the pool in a with statement, but I think that requires Python 3.2+, so you have to do it explicitly.)
What if you want to do more work in parallel? Well, there's nothing else obvious to do here without restructuring the loop. You can't do updateGraph until you get the results back from setinner and setouter, and nothing else is slow here.
But if you could reorganize things so that each loop's setinner were independent of everything that came before (which may or may not be possible with your algorithm—without knowing what you're doing, I can't guess), you could push 2000 tasks onto the queue up front, then loop by just grabbing results as needed. For example:
pool = multiprocessing.Pool() # let it default to the number of cores
inner_results = []
outer_results = []
for _ in range(1000):
inner_results.append(pool.apply_async(setinner, (Q,G,n,i))
outer_results.append(pool.apply_async(setouter, (Q,G,n,i))
while i < 1000:
inneropt,partition,x = inner_results.pop(0).get()
outeropt = outer_results.pop(0).get()
# result of your loop is the same as before
Of course you can make this fancier.
For example, let's say you rarely need more than a couple hundred iterations, so it's wasteful to always compute 1000 of them. You can just push the first N at startup, and push one more every time through the loop (or N more every N times) so you never do more than N wasted iterations—you can't get an ideal tradeoff between perfect parallelism and minimal waste, but you can usually tune it pretty nicely.
Also, if the tasks don't actually take that long, but you have a lot of them, you may want to batch them up. One really easy way to do this is to use one of the map variants instead of apply_async; this can make your fetching code a tiny bit more complicated, but it makes the queuing and batching code completely trivial (e.g., to map each func over a list of 100 parameters with a chunksize of 10 is just two simple lines of code).
Here's the program:
#!/usr/bin/python
import multiprocessing
def dummy_func(r):
pass
def worker():
pass
if __name__ == '__main__':
pool = multiprocessing.Pool(processes=16)
for index in range(0,100000):
pool.apply_async(worker, callback=dummy_func)
# clean up
pool.close()
pool.join()
I found memory usage (both VIRT and RES) kept growing up till close()/join(), is there any solution to get rid of this? I tried maxtasksperchild with 2.7 but it didn't help either.
I have a more complicated program that calles apply_async() ~6M times, and at ~1.5M point I've already got 6G+ RES, to avoid all other factors, I simplified the program to above version.
EDIT:
Turned out this version works better, thanks for everyone's input:
#!/usr/bin/python
import multiprocessing
ready_list = []
def dummy_func(index):
global ready_list
ready_list.append(index)
def worker(index):
return index
if __name__ == '__main__':
pool = multiprocessing.Pool(processes=16)
result = {}
for index in range(0,1000000):
result[index] = (pool.apply_async(worker, (index,), callback=dummy_func))
for ready in ready_list:
result[ready].wait()
del result[ready]
ready_list = []
# clean up
pool.close()
pool.join()
I didn't put any lock there as I believe main process is single threaded (callback is more or less like a event-driven thing per docs I read).
I changed v1's index range to 1,000,000, same as v2 and did some tests - it's weird to me v2 is even ~10% faster than v1 (33s vs 37s), maybe v1 was doing too many internal list maintenance jobs. v2 is definitely a winner on memory usage, it never went over 300M (VIRT) and 50M (RES), while v1 used to be 370M/120M, the best was 330M/85M. All numbers were just 3~4 times testing, reference only.
I had memory issues recently, since I was using multiple times the multiprocessing function, so it keep spawning processes, and leaving them in memory.
Here's the solution I'm using now:
def myParallelProcess(ahugearray):
from multiprocessing import Pool
from contextlib import closing
with closing(Pool(15)) as p:
res = p.imap_unordered(simple_matching, ahugearray, 100)
return res
Simply create the pool within your loop and close it at the end of the loop with
pool.close().
Use map_async instead of apply_async to avoid excessive memory usage.
For your first example, change the following two lines:
for index in range(0,100000):
pool.apply_async(worker, callback=dummy_func)
to
pool.map_async(worker, range(100000), callback=dummy_func)
It will finish in a blink before you can see its memory usage in top. Change the list to a bigger one to see the difference. But note map_async will first convert the iterable you pass to it to a list to calculate its length if it doesn't have __len__ method. If you have an iterator of a huge number of elements, you can use itertools.islice to process them in smaller chunks.
I had a memory problem in a real-life program with much more data and finally found the culprit was apply_async.
P.S., in respect of memory usage, your two examples have no obvious difference.
I have a very large 3d point cloud data set I'm processing. I tried using the multiprocessing module to speed up the processing, but I started getting out of memory errors. After some research and testing I determined that I was filling the queue of tasks to be processed much quicker than the subprocesses could empty it. I'm sure by chunking, or using map_async or something I could have adjusted the load, but I didn't want to make major changes to the surrounding logic.
The dumb solution I hit on is to check the pool._cache length intermittently, and if the cache is too large then wait for the queue to empty.
In my mainloop I already had a counter and a status ticker:
# Update status
count += 1
if count%10000 == 0:
sys.stdout.write('.')
if len(pool._cache) > 1e6:
print "waiting for cache to clear..."
last.wait() # Where last is assigned the latest ApplyResult
So every 10k insertion into the pool I check if there are more than 1 million operations queued (about 1G of memory used in the main process). When the queue is full I just wait for the last inserted job to finish.
Now my program can run for hours without running out of memory. The main process just pauses occasionally while the workers continue processing the data.
BTW the _cache member is documented the the multiprocessing module pool example:
#
# Check there are no outstanding tasks
#
assert not pool._cache, 'cache = %r' % pool._cache
You can limit the number of task per child process
multiprocessing.Pool(maxtasksperchild=1)
maxtasksperchild is the number of tasks a worker process can complete before it will exit and be replaced with a fresh worker process, to enable unused resources to be freed. The default maxtasksperchild is None, which means worker processes will live as long as the pool. link
I think this is similar to the question I posted, but I'm not sure you have the same delay. My problem was that I was producing results from the multiprocessing pool faster than I was consuming them, so they built up in memory. To avoid that, I used a semaphore to throttle the inputs into the pool so they didn't get too far ahead of the outputs I was consuming.