I need to transform the column values to header in python.
testdf = {'Student_id':['10001','10001','10001','20001','20001','30001','30001','30001'],
'Subject':['S1','S2','S3','S1','S2','S1','S2','S3'],
'Mark':['80','60','70','50','70','90','80','40']
}
testdf = pd.DataFrame(data=testdf)
testdf
I want to have a table like
When I tried below code
testdf.pivot(index="Student_id",columns="Subject")
I am getting like below:
Add parameter values to DataFrame.pivot and if necessary data cleaning - DataFrame.rename_axis for remove columns name and DataFrame.reset_index for column from index:
df = (testdf.pivot(index="Student_id",columns="Subject", values='Mark')
.rename_axis(None, axis=1)
.reset_index())
print (df)
Student_id S1 S2 S3
0 10001 80 60 70
1 20001 50 70 NaN
2 30001 90 80 40
Related
Hoping someone can help me here - i believe i am close to the solution.
I have a dataframe, of which i have am using .count() in order to return a series of all column names of my dataframe, and each of their respective non-NAN value counts.
Example dataframe:
feature_1
feature_2
1
1
2
NaN
3
2
4
NaN
5
3
Example result for .count() here would output a series that looks like:
feature_1 5
feature_2 3
I am now trying to get this data into a dataframe, with the column names "Feature" and "Count". To have the expected output look like this:
Feature
Count
feature_1
5
feature_2
3
I am using .to_frame() to push the series to a dataframe in order to add column names. Full code:
df = data.count()
df = df.to_frame()
df.columns = ['Feature', 'Count']
However receiving this error message - "ValueError: Length mismatch: Expected axis has 1 elements, new values have 2 elements", as if though it is not recognising the actual column names (Feature) as a column with values.
How can i get it to recognise both Feature and Count columns to be able to add column names to them?
Add Series.reset_index instead Series.to_frame for 2 columns DataFrame - first column from index, second from values of Series:
df = data.count().reset_index()
df.columns = ['Feature', 'Count']
print (df)
Feature Count
0 feature_1 5
1 feature_2 3
Another solution with name parameter and Series.rename_axis or with DataFrame.set_axis:
df = data.count().rename_axis('Feature').reset_index(name='Count')
#alternative
df = data.count().reset_index().set_axis(['Feature', 'Count'], axis=1)
print (df)
Feature Count
0 feature_1 5
1 feature_2 3
This happens because your new dataframe has only one column (the column name is taken as series index, then translated into dataframe index with the func to_frame()). In order to assign a 2 elements list to df.columns you have to reset the index first:
df = data.count()
df = df.to_frame().reset_index()
df.columns = ['Feature', 'Count']
I am using the code below to make a search on a .csv file and match a column in both files and grab a different column I want and add it as a new column. However, I am trying to make the match based on two columns instead of one. Is there a way to do this?
import pandas as pd
df1 = pd.read_csv("matchone.csv")
df2 = pd.read_csv("comingfrom.csv")
def lookup_prod(ip):
for row in df2.itertuples():
if ip in row[1]:
return row[3]
else:
return '0'
df1['want'] = df1['name'].apply(lookup_prod)
df1[df1.want != '0']
print(df1)
#df1.to_csv('file_name.csv')
The code above makes a search from the column name 'samename' in both files and gets the column I request ([3]) from the df2. I want to make the code make a match for both column 'name' and another column 'price' and only if both columns in both df1 and df2 match then the code take the value on ([3]).
df 1 :
name price value
a 10 35
b 10 21
c 10 33
d 10 20
e 10 88
df 2 :
name price want
a 10 123
b 5 222
c 10 944
d 10 104
e 5 213
When the code is run (asking for the want column from d2, based on both if df1 name = df2 name) the produced result is :
name price value want
a 10 35 123
b 10 21 222
c 10 33 944
d 10 20 104
e 10 88 213
However, what I want is if both df1 name = df2 name and df1 price = df2 price, then take the column df2 want, so the desired result is:
name price value want
a 10 35 123
b 10 21 0
c 10 33 944
d 10 20 104
e 10 88 0
You need to use pandas.DataFrame.merge() method with multiple keys:
df1.merge(df2, on=['name','price'], how='left').fillna(0)
Method represents missing values as NaNs, so that the column's dtype changes to float64 but you can change it back after filling the missed values with 0.
Also please be aware that duplicated combinations of name and price in df2 will appear several times in the result.
If you are matching the two dataframes based on the name and the price, you can use df.where and df.isin
df1['want'] = df2['want'].where(df1[['name','price']].isin(df2).all(axis=1)).fillna('0')
df1
name price value want
0 a 10 35 123.0
1 b 10 21 0
2 c 10 33 944.0
3 d 10 20 104.0
4 e 10 88 0
Expanding on https://stackoverflow.com/a/73830294/20110802:
You can add the validate option to the merge in order to avoid duplication on one side (or both):
pd.merge(df1, df2, on=['name','price'], how='left', validate='1:1').fillna(0)
Also, if the float conversion is a problem for you, one option is to do an inner join first and then pd.concat the result with the "leftover" df1 where you already added a constant valued column. Would look something like:
df_inner = pd.merge(df1, df2, on=['name', 'price'], how='inner', validate='1:1')
merged_pairs = set(zip(df_inner.name, df_inner.price))
df_anti = df1.loc[~pd.Series(zip(df1.name, df1.price)).isin(merged_pairs)]
df_anti['want'] = 0
df_result = pd.concat([df_inner, df_anti]) # perhaps ignore_index=True ?
Looks complicated, but should be quite performant because it filters by set. I think there might be a possibility to set name and price as index, merge on index and then filter by index to not having to do the zip-set-shenanigans, bit I'm no expert on multiindex-handling.
#Try this code it will give you expected results
import pandas as pd
df1 = pd.DataFrame({'name' :['a','b','c','d','e'] ,
'price' :[10,10,10,10,10],
'value' : [35,21,33,20,88]})
df2 = pd.DataFrame({'name' :['a','b','c','d','e'] ,
'price' :[10,5,10,10,5],
'want' : [123,222,944,104 ,213]})
new = pd.merge(df1,df2, how='left', left_on=['name','price'], right_on=['name','price'])
print(new.fillna(0))
For the columns with name containing a specific string Time, I would like to create a new column with the same name. I want for each item of Pax_cols (if there are more than one) to update the column with the sum with the column Temp.
data={'Run_Time':[60,20,30,45,70,100],'Temp':[10,20,30,50,60,100], 'Rest_Time':[5,5,5,5,5,5]}
df=pd.DataFrame(data)
Pax_cols = [col for col in df.columns if 'Time' in col]
df[Pax_cols[0]]= df[Pax_cols[0]] + df["Temp"]
This is what I came up with, if Pax_cols has only one values, but it does not work.
Expected output:
data={'Run_Time':[70,40,60,95,130,200],'Temp':[10,20,30,50,60,100], 'Rest_Time':[15,25,35,55,65,105]}
You can use:
# get columns with "Time" in the name
cols = list(df.filter(like='Time'))
# ['Run_Time', 'Rest_Time']
# add the value of df['Temp']
df[cols] = df[cols].add(df['Temp'], axis=0)
output:
Run_Time Temp Rest_Time
0 70 10 15
1 40 20 25
2 60 30 35
3 95 50 55
4 130 60 65
5 200 100 105
I have the dataframe df1 with the columns type, Date and amount.
My goal is to create a Dataframe df2 with a subset of dates from df1, in which each type has a column with the amounts of the type as values for the respective date.
Input Dataframe:
df1 =
,type,Date,amount
0,42,2017-02-01,4
1,42,2017-02-02,5
2,42,2017-02-03,7
3,42,2017-02-04,2
4,48,2017-02-01,6
5,48,2017-02-02,8
6,48,2017-02-03,3
7,48,2017-02-04,6
8,46,2017-02-01,3
9,46,2017-02-02,8
10,46,2017-02-03,3
11,46,2017-02-04,4
Desired Output, if the subset of Dates are 2017-02-02 and 2017-02-04:
df2 =
,Date,42,48,46
0,2017-02-02,5,8,8
1,2017-02-04,2,6,4
I tried it like this:
types = list(df1["type"].unique())
dates = ["2017-02-02","2017-02-04"]
df2 = pd.DataFrame()
df2["Date"]=dates
for t in types:
df2[t] = df1[(df1["type"]==t)&(df1[df1["type"]==t][["Date"]]==df2["Date"])][["amount"]]
but with this solution I get a lot of NaNs, it seems my comparison condition is wrong.
This is the Ouput I get:
,Date,42,48,46
0,2017-02-02,,,
1,2017-02-04,,,
You can use .pivot_table() and then filter data:
df2 = df1.pivot_table(
index="Date", columns="type", values="amount", aggfunc="sum"
)
dates = ["2017-02-02", "2017-02-04"]
print(df2.loc[dates].reset_index())
Prints:
type Date 42 46 48
0 2017-02-02 5 8 8
1 2017-02-04 2 4 6
I have dataframe like this:
id
name
emails
1
a
a#e.com,b#e.com,c#e.com,d#e.com
2
f
f#gmail.com
And I need iterate over emails if there are more than one, create additional rows in dataframe with additional emails, not corresponding to name, should be like this:
id
name
emails
1
a
a#e.com
2
f
f#gmail.com
3
NaN
b#e.com
4
NaN
c#e.com
5
NaN
d#e.com
What is the best way to do it apart of iterrows with append or concat? is it ok to modify iterated dataframe during iteration?
Thanks.
Use DataFrame.explode with splitted values by Series.str.split first, then compare values before # and if no match set missing value and last sorting like missing values are in end of DataFrame with assign range to id column:
df = df.assign(emails = df['emails'].str.split(',')).explode('emails')
mask = df['name'].eq(df['emails'].str.split('#').str[0])
df['name'] = np.where(mask, df['name'], np.nan)
df = df.sort_values('name', key=lambda x: x.isna(), ignore_index=True)
df['id'] = range(1, len(df) + 1)
print (df)
id name emails
0 1 a a#e.com
1 2 f f#gmail.com
2 3 NaN b#e.com
3 4 NaN c#e.com
4 5 NaN d#e.com