Converting deeply nested JSON response from an API call to pandas dataframe - python

I am currently having trouble parsing a deeply nested JSON response from a HTTP API call.
My JSON Response is like
{'took': 476,
'_revision': 'r08badf3',
'response': {'accounts': {'hits': [{'name': '4002238760',
'display_name': 'Googleglass-4002238760',
'selected_fields': ['Googleglass',
'DDMonkey',
'Papu New Guinea',
'Jonathan Vardharajan',
'4002238760',
'DDMadarchod-INSTE',
None,
'Googleglass',
'0001012556',
'CC',
'Setu Non Standard',
'40022387',
320142,
4651321321333,
1324650651651]},
{'name': '4003893720',
'display_name': 'Swift-4003893720',
'selected_fields': ['Swift',
'DDMonkey',
'Papu New Guinea',
'Jonathan Vardharajan',
'4003893720',
'DDMadarchod-UPTM-RemotexNBD',
None,
'S.W.I.F.T. SCRL',
'0001000110',
'SE',
'Setu Non Standard',
'40038937',
189508,
1464739200000,
1559260800000]},
After I receive the response I am storing it in data object using json normalize
data = response.json()
data = data['response']['accounts']['hits']
data = json_normalize(data)
However after I normalize my dataframe looks like this
My Curl Statement looks like this
curl --data 'query= {"terms":[{"type":"string_attribute","attribute":"Account Type","query_term_id":"account_type","in_list":["Contract"]},{"type":"string","term":"status_group","in_list":["paying"]},{"type":"string_attribute","attribute":"Region","in_list":["DDEU"]},{"type":"string_attribute","attribute":"Country","in_list":["Belgium"]},{"type":"string_attribute","attribute":"CSM Tag","in_list":["EU CSM"]},{"type":"date_attribute","attribute":"Contract Renewal Date","gte":1554057000000,"lte":1561833000000}],"count":1000,"offset":0,"fields":[{"type":"string_attribute","attribute":"DomainName","field_display_name":"Client Name"},{"type":"string_attribute","attribute":"Region","field_display_name":"Region"},{"type":"string_attribute","attribute":"Country","field_display_name":"Country"},{"type":"string_attribute","attribute":"Success Manager","field_display_name":"Client Success Manager"},{"type":"string","term":"identifier","field_display_name":"Account id"},{"type":"string_attribute","attribute":"DeviceSLA","field_display_name":"[FIN] Material Part Number"},{"type":"string_attribute","attribute":"SFDCAccountId","field_display_name":"SFDCAccountId"},{"type":"string_attribute","attribute":"Client","field_display_name":"[FIN] Client Sold-To Name"},{"type":"string_attribute","attribute":"Sold To Code","field_display_name":"[FIN] Client Sold To Code"},{"type":"string_attribute","attribute":"BU","field_display_name":"[FIN] Active BUs"},{"type":"string_attribute","attribute":"Service Type","field_display_name":"[FIN] Service Type"},{"type":"string_attribute","attribute":"Contract Header ID","field_display_name":"[FIN] SAP Contract Header ID"},{"type":"number_attribute","attribute":"Contract Value","field_display_name":"[FIN] ACV - Annual Contract Value","desc":true},{"type":"date_attribute","attribute":"Contract Start Date","field_display_name":"[FIN] Contract Start Date"},{"type":"date_attribute","attribute":"Contract Renewal Date","field_display_name":"[FIN] Contract Renewal Date"}],"scope":"all"}' --header 'app-token:YOUR-TOKEN-HERE' 'https://app.totango.com/api/v1/search/accounts'
So ultimately I want to store the Response in a dataframe along with the field names.

I've had to do this sort of thing a few times in the past (flatten out a nested json) I'll explain my process, and you can see if it works, or at least can then work the code a bit to fit your needs.
1) Took the data response, and completely flattened it out using a function. This blog was very helpful when I first had to do this.
2) Then it iterates through the flat dictionary created to find where each rows and columns are needed to be created by the numbering of the new key names within the nested parts. There are also keys that are unique/distinct, so they don't have a number to identify as a "new" row, so I account for those in what I called special_cols.
3) As it iterates through those, pulls the specified row number (embedded in those flat keys), and then constructs the dataframe in that way.
It sounds complicated, but if you debug and run line by line, you could see how it works. None-the-less, I believe it should get you what you need.
data = {'took': 476,
'_revision': 'r08badf3',
'response': {'accounts': {'hits': [{'name': '4002238760',
'display_name': 'Googleglass-4002238760',
'selected_fields': ['Googleglass',
'DDMonkey',
'Papu New Guinea',
'Jonathan Vardharajan',
'4002238760',
'DDMadarchod-INSTE',
None,
'Googleglass',
'0001012556',
'CC',
'Setu Non Standard',
'40022387',
320142,
4651321321333,
1324650651651]},
{'name': '4003893720',
'display_name': 'Swift-4003893720',
'selected_fields': ['Swift',
'DDMonkey',
'Papu New Guinea',
'Jonathan Vardharajan',
'4003893720',
'DDMadarchod-UPTM-RemotexNBD',
None,
'S.W.I.F.T. SCRL',
'0001000110',
'SE',
'Setu Non Standard',
'40038937',
189508,
1464739200000,
1559260800000]}]}}}
import pandas as pd
import re
def flatten_json(y):
out = {}
def flatten(x, name=''):
if type(x) is dict:
for a in x:
flatten(x[a], name + a + '_')
elif type(x) is list:
i = 0
for a in x:
flatten(a, name + str(i) + '_')
i += 1
else:
out[name[:-1]] = x
flatten(y)
return out
flat = flatten_json(data)
results = pd.DataFrame()
special_cols = []
columns_list = list(flat.keys())
for item in columns_list:
try:
row_idx = re.findall(r'\_(\d+)\_', item )[0]
except:
special_cols.append(item)
continue
column = re.findall(r'\_\d+\_(.*)', item )[0]
column = column.replace('_', '')
row_idx = int(row_idx)
value = flat[item]
results.loc[row_idx, column] = value
for item in special_cols:
results[item] = flat[item]
Output:
print (results.to_string())
name displayname selectedfields0 selectedfields1 selectedfields2 selectedfields3 selectedfields4 selectedfields5 selectedfields6 selectedfields7 selectedfields8 selectedfields9 selectedfields10 selectedfields11 selectedfields12 selectedfields13 selectedfields14 took _revision
0 4002238760 Googleglass-4002238760 Googleglass DDMonkey Papu New Guinea Jonathan Vardharajan 4002238760 DDMadarchod-INSTE NaN Googleglass 0001012556 CC Setu Non Standard 40022387 320142.0 4.651321e+12 1.324651e+12 476 r08badf3
1 4003893720 Swift-4003893720 Swift DDMonkey Papu New Guinea Jonathan Vardharajan 4003893720 DDMadarchod-UPTM-RemotexNBD NaN S.W.I.F.T. SCRL 0001000110 SE Setu Non Standard 40038937 189508.0 1.464739e+12 1.559261e+12 476 r08badf3

Related

How can I refactor my code to return a collection of dictionaries?

def read_data(service_client):
data = list_data(domain, realm) # This returns a data frame
building_data = []
building_names = {}
all_buildings = {}
for elem in data.iterrows():
building = elem[1]['building_name']
region_id = elem[1]['region_id']
bandwith = elem[1]['bandwith']
building_id = elem[1]['building_id']
return {
'Building': building,
'Region Id': region_id,
'Bandwith': bandwith,
'Building Id': building_id,
}
Basically I am able to return a single dictionary value upon a iteration here in this example. I have tried printing it as well and others.
I am trying to find a way to store multiple dictionary values on each iteration and return it, instead of just returning one.. Does anyone know any ways to achieve this?
You may replace your for-loop with the following to get all dictionaries in a list.
naming = {
'building_name': 'Building',
'region_id': 'Region Id',
'bandwith': 'Bandwith',
'building_id': 'Building Id',
}
return [
row[list(naming.values())].to_dict()
for idx, row in data.rename(naming, axis=1).iterrows()
]

Looping through a function

I am struggling with figuring out the best way to loop through a function. The output of this API is a Graph Connection and I am a-little out of my element. I really need to obtain ID's from an api output and have them in a dict or some sort of form that I can pass to another API call.
**** It is important to note that the original output is a graph connection.... print(type(api_response) does show it as a list however, if I do a print(type(api_response[0])) it returns a
This is the original output from the api call:
[{'_from': None, 'to': {'id': '5c9941fcdd2eeb6a6787916e', 'type': 'user'}}, {'_from': None, 'to': {'id': '5cc9055fcc5781152ca6eeb8', 'type': 'user'}}, {'_from': None, 'to': {'id': '5d1cf102c94c052cf1bfb3cc', 'type': 'user'}}]
This is the code that I have up to this point.....
api_response = api_instance.graph_user_group_members_list(group_id, content_type, accept,limit=limit, skip=skip, x_org_id=x_org_id)
def extract_id(result):
result = str(result).split(' ')
for i, r in enumerate(result):
if 'id' in r:
id = (result[i+1].translate(str.maketrans('', '', string.punctuation)))
print( id )
return id
extract_id(api_response)
def extract_id(result):
result = str(result).split(' ')
for i, r in enumerate(result):
if 'id' in r:
id = (result[i+8].translate(str.maketrans('', '', string.punctuation)))
print( id )
return id
extract_id(api_response)
def extract_id(result):
result = str(result).split(' ')
for i, r in enumerate(result):
if 'id' in r:
id = (result[i+15].translate(str.maketrans('', '', string.punctuation)))
print( id )
return id
extract_id(api_response)
I have been able to use a function to extract the ID's but I am doing so through a string. I am in need of a scalable solution that I can use to pass these ID's along to another API call.
I have tried to use a for loop but because it is 1 string and i+1 defines the id's position, it is redundant and just outputs 1 of the id's multiple times.
I am receiving the correct output using each of these functions however, it is not scalable..... and just is not a solution. Please help guide me......
So to solve the response as a string issue I would suggest using python's builtin json module. Specifically, the method .loads() can convert a string to a dict or list of dicts. From there you can iterate over the list or dict and check if the key is equal to 'id'. Here's an example based on what you said the response would look like.
import json
s = "[{'_from': None, 'to': {'id': '5c9941fcdd2eeb6a6787916e', 'type': 'user'}}, {'_from': None, 'to': {'id': '5cc9055fcc5781152ca6eeb8', 'type': 'user'}}, {'_from': None, 'to': {'id': '5d1cf102c94c052cf1bfb3cc', 'type': 'user'}}]"
# json uses double quotes and null; there is probably a better way to do this though
s = s.replace("\'", '\"').replace('None', 'null')
response = json.loads(s) # list of dicts
for d in response:
for key, value in d['to'].items():
if key == 'id':
print(value) # or whatever else you want to do
# 5c9941fcdd2eeb6a6787916e
# 5cc9055fcc5781152ca6eeb8
# 5d1cf102c94c052cf1bfb3cc

Using regex to search for text that follows a specific word

I am searching a string of text which contains dictionaries that look like so:
soup_string = """{"loadType":"","shiftId":"ROVR-DUMMY-SHIFTID","carbonFriendly":"no","cost":"£2.00","initialSlotPrice":"","timeSlotISO":"2019-06-13T12:00+01:00/13:00+01:00","isSameDayPremium":"false","stopId":"10446315588190612134701380","availability":"full","slotDiscountedByDP":"false","slotId":"1hr-12-13-20190613","time":"12:00pm - 1:00pm","rawSlotPrice":"","slotDiscounted":"false"},
{"loadType":"","shiftId":"ROVR-DUMMY-SHIFTID","carbonFriendly":"no","cost":"£2.00","initialSlotPrice":"","timeSlotISO":"2019-06-13T12:30+01:00/13:30+01:00","isSameDayPremium":"false","stopId":"10446315588190612134701380","availability":"available","slotDiscountedByDP":"false","slotId":"1hr-12:30-13:30-20190613","time":"12:30pm - 1:30pm","rawSlotPrice":"","slotDiscounted":"false"}"""
I am looking to return the string which follows each key in the 'dictionaries'.
I have decided an appropriate method is to use Regex expressions. I can return each times and costs using
Costs = re.findall(r"\£[0-9]\.[0-9][0-9]", soup_string)
times = re.findall(r'\"(time)\"\:\"(.{14,16})\"\,', soup_string)
Essentially I would like to be able to look for each key in the dictionary, and search for a specific string then return the value.
The end goal is to create a dictionary with the 'Cost', 'Availability' and 'time'.
Full code:
import requests
from bs4 import BeautifulSoup
import json
postcode = "L4 0TH"
ASDA_url = "https://groceries.asda.com/api/user/checkpostcode?postcode="+ postcode + "&requestorigin=gi"
ASDA_url2 = "https://groceries.asda.com/api/slot/view?startdate=12%2F06%2F2019&deliveryoption=homedelivery&requestorigin=gi&_="
client = requests.Session()
r = client.get(ASDA_url)
r2 = client.get(ASDA_url2)
soup = BeautifulSoup(r2.text, 'html.parser')
soup_string = str(soup)
soup_dicts = json.loads('[' + soup_string + ']')
keep_keys = ('cost', 'availability', 'time')
filtered = [{k:soup_dict[k] for k in keep_keys} for soup_dict in soup_dicts]```
Given that you have multiple dictionaries, I'm not exactly sure what you're trying to obtain, but from my understanding this should help:
import json
soup_string = ''' ... ''' # As it is in the question
soup_dicts = json.loads('[' + soup_string + ']')
keep_keys = ('cost', 'availability', 'time')
filtered = [{k:soup_dict[k] for k in keep_keys} for soup_dict in soup_dicts]
It treats your string of dictionaries as a list of JSON dictionaries, and uses the json module to parse it. Then it filters out everything except the key/value pairs you need. The result is a list of the filtered dictionaries.
Output (i.e. value of filtered):
[
{'cost': '£2.00', 'availability': 'full', 'time': '12:00pm - 1:00pm'},
{'cost': '£2.00', 'availability': 'available', 'time': '12:30pm - 1:30pm'}
]
EDIT:
In response to you providing your code, I can see that you're calling str on the results from BeautifulSoup. Rather than doing that, you can just process the client.get() results directly:
import json
import requests
postcode = "L4 0TH"
ASDA_url = "https://groceries.asda.com/api/user/checkpostcode?postcode="+ postcode + "&requestorigin=gi"
ASDA_url2 = "https://groceries.asda.com/api/slot/view?startdate=12%2F06%2F2019&deliveryoption=homedelivery&requestorigin=gi&_="
client = requests.Session()
r = client.get(ASDA_url)
r2 = client.get(ASDA_url2)
dicts = r2.json()['slotHeader'][0]['slots']
keep_keys = ('cost', 'availability', 'time')
filtered = [{k:d[k] for k in keep_keys} for d in dicts]
First you need to put your data into a list and create a dictionary with key: data. (see my example below). Then use json to convert it as a dictionary of dictionaries. Then extract cost, availability and time per dictionary on a loop.
import json
soup_string = """{"data": [{"loadType":"","shiftId":"ROVR-DUMMY-SHIFTID","carbonFriendly":"no","cost":"£2.00","initialSlotPrice":"","timeSlotISO":"2019-06-13T12:00+01:00/13:00+01:00","isSameDayPremium":"false","stopId":"10446315588190612134701380","availability":"full","slotDiscountedByDP":"false","slotId":"1hr-12-13-20190613","time":"12:00pm - 1:00pm","rawSlotPrice":"","slotDiscounted":"false"}, {"loadType":"","shiftId":"ROVR-DUMMY-SHIFTID","carbonFriendly":"no","cost":"£2.00","initialSlotPrice":"","timeSlotISO":"2019-06-13T12:30+01:00/13:30+01:00","isSameDayPremium":"false","stopId":"10446315588190612134701380","availability":"available","slotDiscountedByDP":"false","slotId":"1hr-12:30-13:30-20190613","time":"12:30pm - 1:30pm","rawSlotPrice":"","slotDiscounted":"false"}]}"""
d = json.loads(soup_string)
result = []
cost, avail, time = [], [], []
for data in d['data']:
tmp = {}
tmp['Cost'] = data['cost']
tmp['Availability'] = data['availability']
tmp['Time'] = data['time']
result.append(tmp)
result
Output:
[{'Cost': '£2.00', 'Availability': 'full', 'Time': '12:00pm - 1:00pm'},
{'Cost': '£2.00', 'Availability': 'available', 'Time': '12:30pm - 1:30pm'}]

API call checking if certain data is retrieved

I am performing 100 API calls on 100 different cities and when it is called it usually comes in the form :
{'data': {'aqi': 13,
'attributions': [{'name': 'Air Quality Ontario - the Ontario '
'Ministry of the Environment and Climate '
'Change',
'url': 'http://www.airqualityontario.com/'},
{'name': 'World Air Quality Index Project',
'url': 'https://waqi.info/'}],
'city': {'geo': [43.653226, -79.3831843],
'name': 'Toronto',
'url': 'https://aqicn.org/city/toronto'},
'debug': {'sync': '2019-06-04T15:37:48+09:00'},
'dominentpol': 'pm25',
'iaqi': {'co': {'v': 1.7},
'no2': {'v': 15.2},
'o3': {'v': 8.8},
'p': {'v': 1018.3},
'pm25': {'v': 13},
'so2': {'v': 0.2},
't': {'v': 11.6},
'w': {'v': 0.2}},
'idx': 5914,
'status': 'ok'}
However in ['data']['iaqi'] sometime it lacks one of co, no2, o3,etc... while looping through 100 cities and performing api calls I want to check if each of them are present and append "na" if it is not present.
I am doing try and except like this:
cities = []
aqi = []
# 5 pollutants used to calculate AQI
CO = []
NO2 = []
SO2 = []
pm25 = []
for city in canadian_cities:
city_name = city
url = f'https://api.waqi.info/feed/{city}/?token={api_key}'
response = requests.get(url).json()
if (response["status"] == "ok"):
# sometime aqi might not be a number, exclude them
print("yes")
if (isinstance(response["data"]["aqi"], int)):
# append aqi and city name to appropriate list
aqi.append(response["data"]["aqi"])
cities.append(city)
# append pollutants individually
try:
CO.append(response["data"]["iaqi"]["co"]["v"])
except:
CO.append("na")
try:
NO2.append(response["data"]["iaqi"]["no2"]["v"])
except:
NO2.append("na")
try:
SO2.append(response["data"]["iaqi"]["o3"]["v"])
except:
SO2.append("na")
pm25.append(response["data"]["iaqi"]["pm25"]["v"])
This works perfectly fine however does not seem efficient, I am wondering if there is a cleaner way to do this. Thanks!
Instead of keeping your polutants as separate lists, keep a dictionary like this:
polutants = {"co":[],"no2":[],"so2":[],"pm25":[]}
If you make sure your keys match what you would expect from the API you can now do this:
for item in polutants.keys():
if item in response["data"]["iaqi"].keys():
polutants[item].append(response["data"]["iaqi"][item])
else:
polutants[item].append('na')
but your way is perfectly fine too to be honest.
you can use get method instead
eg:
<your_variable>.append(data["iaqi"].get("co",data["iaqi"]).get("v","na"))
choosing better data structures can make it way better
from collections import defaultdict
cities = defaultdict(dict)
data_points = ["co", "no2", "o3", "pm25"]
for city in canadian_cities:
url = f'https://api.waqi.info/feed/{city}/?token={api_key}'
response = requests.get(url).json()
if (response["status"] == "ok"):
# sometime aqi might not be a number, exclude them
print("yes")
if (isinstance(response["data"]["aqi"], int)):
# append aqi and city name to appropriate list
cities[city]['aqi'] = response["data"]["aqi"]
for data_point in data_points:
cities[city][data_point] = response["data"]["iaqi"].get(data_point, dict()).get("v", "na")
print(cities)
I would even go bit further and refactor it like this:
from collections import defaultdict, namedtuple
cities = defaultdict(dict)
data_points = ['aqi', "co", "no2", "o3", "pm25"]
defaults = ['na', 'na', 'na', 'na', 'na']
AQI = namedtuple('AQI', field_names=data_points, defaults=defaults)
def get_data(city):
url = f'https://api.waqi.info/feed/{city}/?token={api_key}'
response = requests.get(url).json()
if response["status"] == "ok":
return response
def parse_json(data):
raw_data = {key:value['v'] for key, value in data["iaqi"].items() if key in data_points[1:]}
raw_data['aqi'] = data["aqi"]
return AQI(**raw_data)
for city in canadian_cities:
data = get_data(city)
if data and isinstance(data["data"]["aqi"], int):
cities[city] = parse_json(data=data["data"])
print(cities)

combine dictionaries and pass as output to another function

I am learning python and coding. I am trying one web scraping example. I download the currency exchange data from a website and I want to compute average exchange rate for each currency over a 50 days period. The problem is that I am unable to do the following.
I get results from first function which should be in form of a dictionary and then pass these dictionaries to another function as argument and to perform averaging of those values. I am unable to pass correctly dict values to another function.
my code is as follow
import os
import webbrowser
import requests as rq
import sys
from bs4 import BeautifulSoup
from xml.etree import ElementTree as ET
def saveData(path, date):
session = rq.session()
url = 'https://www.bnm.md/en/official_exchange_rates?get_xml=1&date=' + date
datastore = session.get(url)
with open(path, 'wb') as f:
f.write(datastore.content)
data = ET.fromstring(datastore.content)
'''
elements = {}
for element in data.iter():
if element.tag in ('Name', 'Value'):
elements[element.tag] = element.text
print 'elements:', elements
# Here I want to combine those all dictionaries in variable so that i can pass it as argument to another function
return elements
'''
# i replace the above triple quote code with the following below code
elements = {}
for tag, text in data.items():
if tag in ('Name', 'Value'):
elements.setdefault(tag, [])
elements[tag].append(text)
return elements
def computeAverage(elements): # I want to pass function saveData() results who are in dictioanry form to this function but I am unable to solve this issue.
print elements
def main():
dates = ['20.04.2016', '21.04.2016', '22.04.2016']
paths = []
for date in dates:
path = '/home/robbin/Desktop/webscrape/{}.xml'.format(date)
paths.append(path)
data3 = {}
for path, date in zip(paths, dates):
data2 = saveData(path, date)
print 'data2: ', data2
for k, v in data2.items():
data3.setdefault(k, [])
data3[k].append(v)
print 'data3: ', data3
computeAverage(data3)
if __name__ == '__main__':
main()
Also I am getting the results from saveData() function as dictionaries like this and it repeat every dictionary for the next item too which is wrong.
elements: {'Name': 'Euro'}
elements: {'Name': 'Euro', 'Value': '22.4023'}
elements: {'Name': 'US Dollar', 'Value': '22.4023'}
elements: {'Name': 'US Dollar', 'Value': '19.7707'}
elements: {'Name': 'Russian Ruble', 'Value': '19.7707'}
elements: {'Name': 'Russian Ruble', 'Value': '0.3014'}
elements: {'Name': 'Romanian Leu', 'Value': '0.3014'}
elements: {'Name': 'Romanian Leu', 'Value': '4.9988'}
Also what I tried to get results like this but failed
elements: {'Name': 'Euro', 'Value': '22.4023'}
elements: {'Name': 'US Dollar', 'Value': '19.7707'}
elements: {'Name': 'Russian Ruble', 'Value': '0.3014'}
elements: {'Name': 'Romanian Leu', 'Value': '4.9988'}
Updates:-------------
elements = []
for element in data.iter():
if element.tag in ('Name', 'Value'):
elements.append(element.text)
# print 'elements: ', elements
return elements
and in the main function() i make
for path, date in zip(paths, dates):
data = saveData(path, date)
# print 'data from main: ', data
computeAverage(data)
and the output of "print 'data from main: ', data" looks like this
['Euro', '22.4023', 'US Dollar', '19.7707', 'Russian Ruble', '0.3014', 'Romanian Leu', '4.9988',.........'Special Drawing Rights', '27.8688']
['Euro', '22.4408', 'US Dollar', '19.7421', 'Russian Ruble', '0.3007', 'Romanian Leu', '5.0012',.....'Special Drawing Rights', '27.8606']
I am newbie to coding and if someone help me regarding these two problems. I would be really thankful.
First of all, I agree with #Prakhar Verma.
Second, you didn't mention clearly what you want. But I can assume that you want to merge the data that you got from the 'saveData' function and then calculate average. So, here is the missing code.
data3 = {}
for path, date in zip(paths, dates):
data2 = saveData(path, date)
for k, v in data2.items():
# you can move this line after declaring the data3 dict if keys returned by saveData are fixed i.e. name, value
data3.setdefault(k, [])
data3[k].append(v)
computeAverage(data3)
Update to saveData function:
elements = {}
for tag, text in data.items():
if tag in ('Name', 'Value'):
elements.setdefault(tag, [])
elements[tag].append(text)
===================================================
Update 2:
def saveData(path, date):
#session = rq.session()
url = 'https://www.bnm.md/en/official_exchange_rates?get_xml=1&date=' + date
datastore = rq.get(url)
with open(path, 'wb') as f:
f.write(datastore.content)
data = ET.fromstring(datastore.content)
# i replace the above triple quote code with the following below code
elements = {}
for element in data.iter():
tag = element.tag
text = element.text
if tag in ('Name', 'Value'):
elements.setdefault(tag, [])
elements[tag].append(text)
return elements
def main():
dates = ['20.03.2016', '21.03.2016', '22.03.2016']
paths = []
for date in dates:
#please edit this
path = '{}.xml'.format(date)
paths.append(path)
data3 = {}
for path, date in zip(paths, dates):
data2 = saveData(path, date)
for k, v in data2.items():
data3.setdefault(k, [])
data3[k].append(v)
computeAverage(data3)
The 'saveData' function is returning data but you are not saving it in any variable. So what you need to do is save the data when it's returned from 'saveData' function and then send it as a parameter to 'computeAverage' function.
Please go through the basics of coding and follow any programming tutorial. :)

Categories

Resources