Here is the problem; I have an immutable dictionary with huge set of items. The key type and the value types contained within this dict are themselves immutable. I would like to be able to mutate this dict (adding/removing/replacing key-value pairs) without having to do a full copy of the dict.
I am imagining some wrapper class for the immutable dict which adheres to the dict contract, and defaults to the immutable dict for values that have not been updated. I see the post How to “perfectly” override a dict? which I plan to leverage to make this wrapper.
Before I embark on implementing this design I just wanted to ask- is this construct already provided by the language? Or how else can I achieve the desired effect? I am on the latest version of Python (3.7) so I can use all language features available. Thanks!
Take a look at collections.ChainMap. It's a wrapper around multiple dictionaries: all writes go to the first dictionary, and lookups are searched in order of the maps. So I think you could just do something like:
modified_map = {}
mutable_map = collections.ChainMap(modified_map, huge_immutable_map)
Let's say you used a frozendict implementation like this one:
class frozendict(collections.Mapping):
"""
An immutable wrapper around dictionaries that implements the complete :py:class:`collections.Mapping`
interface. It can be used as a drop-in replacement for dictionaries where immutability is desired.
"""
dict_cls = dict
def __init__(self, *args, **kwargs):
self._dict = self.dict_cls(*args, **kwargs)
self._hash = None
def __getitem__(self, key):
return self._dict[key]
def __contains__(self, key):
return key in self._dict
def copy(self, **add_or_replace):
return self.__class__(self, **add_or_replace)
def __iter__(self):
return iter(self._dict)
def __len__(self):
return len(self._dict)
def __repr__(self):
return '<%s %r>' % (self.__class__.__name__, self._dict)
def __hash__(self):
if self._hash is None:
h = 0
for key, value in self._dict.items():
h ^= hash((key, value))
self._hash = h
return self._hash
If you wanted to mutate it, you could just reach in and mutate self._dict:
d = frozendict({'a': 1, 'b': 2})
d['a'] = 3 # This fails
mutable_dict = d._dict
mutable_dict['a'] = 3 # This works
print(d['a'])
It's a little yucky reaching into a class's protected members, but I'd say that's okay because what you're trying to do is a little yucky. If you want a mutable dictionary (just a dict) then use one. If you never want to mutate it, use a frozendict implementation like the one above. A hyrid of mutable and immutable makes no sense. All frozendict does is it doesn't implement the mutation dunder methods (__setitem__, __delitem__, etc.). Under the hood a frozendict is represented by a regular, mutable dict.
The above approach is superior in my view to the one you linked. Composability (having frozendict have a _dict property) is much easier to reason about than inheritance (subclassing dict) in many cases.
Related
I'd like to use a SimpleNameSpace which can also act as a mapping so to be able to be used with ** unpacking.
Here is what I've done:
class MySimpleNameSpace(object):
# my initial attempt subclassed SimpleNameSpace and Mapping, with
# possibility to use MySimpleNameSpace as a dict as well as a normal SimpleNameSpace.
def __init__(self, **kw):
self.__dict__.update(kw)
def __getitem__(self, item):
return getattr(self, item)
def keys(self):
return self.__dict__.keys()
So far so good:
def f(**kw):
print(kw)
ns = MySimpleNameSpace(a=42)
f(**ns)
Gives: {'a': 42}
More tricky:
ns.__getitem__ = "what"
ns.__iter__ = "da"
f(**ns)
Now gives:
{'a': 42, '__getitem__': "what", '__iter__', "da" }
But:
ns.keys = "douh"
f(**ns)
Obviously gives:
TypeError: attribute of type 'str' is not callable
Any idea if this would be feasible to have such a custom mapping class but able to use keys as a normal attribute?
I realize that subclassing (Mutable)Mapping makes this actually harder, if at all possible, but I think it's all because the functionality apparently requires the given object to have a keys method, which is unfortunate if we can't find a workaround for that.
As far as I know: iterating (__iter__) a dict gives its keys, then __getitem__ gives the value associated to a given key. As far as I know this would be all enough to implement the functionality?
I'm imitating the behavior of the ConfigParser module to write a highly specialized parser that exploits some well-defined structure in the configuration files for a particular application I work with. Several sections of the config file contain hundreds of variable and routine mappings prefixed with either Variable_ or Routine_, like this:
[Map.PRD]
Variable_FOO=LOC1
Variable_BAR=LOC2
Routine_FOO=LOC3
Routine_BAR=LOC4
...
[Map.SHD]
Variable_FOO=LOC1
Variable_BAR=LOC2
Routine_FOO=LOC3
Routine_BAR=LOC4
...
I'd like to maintain the basic structure of ConfigParser where each section is stored as a single dictionary, so users would still have access to the classic syntax:
config.content['Mappings']['Variable_FOO'] = 'LOC1'
but also be able to use a simplified API that drills down to this section:
config.vmapping('PRD')['FOO'] = 'LOC1'
config.vmapping('PRD')['BAR'] = 'LOC2'
config.rmapping('PRD')['FOO'] = 'LOC3'
config.rmapping('PRD')['BAR'] = 'LOC4'
Currently I'm implementing this by storing the section in a special subclass of dict to which I've added a prefix attribute. The variable and routine properties of the parser set the prefix attribute of the dict-like object to 'Variable_' or 'Routine_' and then modified __getitem__ and __setitem__ attributes of the dict handle gluing the prefix together with the key to access the appropriate item. It's working, but involves a lot of boilerplate to implement all the associated niceties like supporting iteration.
I suppose my ideal solution would be do dispense with the subclassed dict and have have the variable and routine properties somehow present a "view" of the plain dict object underneath without the prefixes.
Update
Here's the solution I implemented, largely based on #abarnet's answer:
class MappingDict(object):
def __init__(self, prefix, d):
self.prefix, self.d = prefix, d
def prefixify(self, name):
return '{}_{}'.format(self.prefix, name)
def __getitem__(self, name):
name = self.prefixify(name)
return self.d.__getitem__(name)
def __setitem__(self, name, value):
name = self.prefixify(name)
return self.d.__setitem__(name, value)
def __delitem__(self, name):
name = self.prefixify(name)
return self.d.__delitem__(name)
def __iter__(self):
return (key.partition('_')[-1] for key in self.d
if key.startswith(self.prefix))
def __repr__(self):
return 'MappingDict({})'.format(dict.__repr__(self))
class MyParser(object):
SECTCRE = re.compile(r'\[(?P<header>[^]]+)\]')
def __init__(self, filename):
self.filename = filename
self.content = {}
lines = [x.strip() for x in open(filename).read().splitlines()
if x.strip()]
for line in lines:
match = re.match(self.SECTCRE, line)
if match:
section = match.group('header')
self.content[section] = {}
else:
key, sep, value = line.partition('=')
self.content[section][key] = value
def write(self, filename):
fp = open(filename, 'w')
for section in sorted(self.content, key=sectionsort):
fp.write("[%s]\n" % section)
for key in sorted(self.content[section], key=cpfsort):
value = str(self.content[section][key])
fp.write("%s\n" % '='.join([key,value]))
fp.write("\n")
fp.close()
def vmapping(self, nsp):
section = 'Map.{}'.format(nsp)
return MappingDict('Variable', self.content[section])
def rmapping(self, nsp):
section = 'Map.{}'.format(nsp)
return MappingDict('Routine', self.content[section])
It's used like this:
config = MyParser('myfile.cfg')
vmap = config.vmapping('PRD')
vmap['FOO'] = 'LOC5'
vmap['BAR'] = 'LOC6'
config.write('newfile.cfg')
The resulting newfile.cfg reflects the LOC5 and LOC6 changes.
I don't think you want inheritance here. You end up with two separate dict objects which you have to create on load and then paste back together on save…
If that's acceptable, you don't even need to bother with the prefixing during normal operations; just do the prefixing while saving, like this:
class Config(object):
def save(self):
merged = {'variable_{}'.format(key): value for key, value
in self.variable_dict.items()}
merged.update({'routine_{}'.format(key): value for key, value
in self.routine_dict.items()}
# now save merged
If you want that merged object to be visible at all times, but don't expect to be called on that very often, make it a #property.
If you want to access the merged dictionary regularly, at the same time you're accessing the two sub-dictionaries, then yes, you want a view:
I suppose my ideal solution would be do dispense with the subclassed dict and have have the global and routine properties somehow present a "view" of the plain dict object underneath without the prefixes.
This is going to be very hard to do with inheritance. Certainly not with inheritance from dict; inheritance from builtins.dict_items might work if you're using Python 3, but it still seems like a stretch.
But with delegation, it's easy. Each sub-dictionary just holds a reference to the parent dict:
class PrefixedDict(object):
def __init__(self, prefix, d):
self.prefix, self.d = prefix, d
def prefixify(self, key):
return '{}_{}'.format(self.prefix, key)
def __getitem__(self, key):
return self.d.__getitem__(self.prefixify(key))
def __setitem__(self, key, value):
return self.d.__setitem__(self.prefixify(key), value)
def __delitem__(self, key):
return self.d.__delitem__(self.prefixify(key))
def __iter__(self):
return (key[len(self.prefix):] for key in self.d
if key.startswith(self.prefix)])
You don't get any of the dict methods for free that way—but that's a good thing, because they were mostly incorrect anyway, right? Explicitly delegate the ones you want. (If you do have some you want to pass through as-is, use __getattr__ for that.)
Besides being conceptually simpler and harder to screw up through accidentally forgetting to override something, this also means that PrefixDict can work with any type of mapping, not just a dict.
So, no matter which way you go, where and how do these objects get created?
The easy answer is that they're attributes that you create when you construct a Config:
def __init__(self):
self.d = {}
self.variable = PrefixedDict('Variable', self.d)
self.routine = PrefixedDict('Routine', self.d)
If this needs to be dynamic (e.g., there can be an arbitrary set of prefixes), create them at load time:
def load(self):
# load up self.d
prefixes = set(key.split('_')[0] for key in self.d)
for prefix in prefixes:
setattr(self, prefix, PrefixedDict(prefix, self.d)
If you want to be able to create them on the fly (so config.newprefix['foo'] = 3 adds 'Newprefix_foo'), you can do this instead:
def __getattr__(self, name):
return PrefixedDict(name.title(), self.d)
But once you're using dynamic attributes, you really have to question whether it isn't cleaner to use dictionary (item) syntax instead, like config['newprefix']['foo']. For one thing, that would actually let you call one of the sub-dictionaries 'global', as in your original question…
Or you can first build the dictionary syntax, use what's usually referred to as an attrdict (search ActiveState recipes and PyPI for 3000 implementations…), which lets you automatically make config.newprefix mean config['newprefix'], so you can use attribute syntax when you have valid identifiers, but fall back to dictionary syntax when you don't.
There are a couple of options for how to proceed.
The simplest might be to use nested dictionaries, so Variable_FOO becomes config["variable"]["FOO"]. You might want to use a defaultdict(dict) for the outer dictionary so you don't need to worry about initializing the inner ones when you add the first value to them.
Another option would be to use tuple keys in a single dictionary. That is, Variable_FOO would become config[("variable", "FOO")]. This is easy to do with code, since you can simply assign to config[tuple(some_string.split("_"))]. Though, I suppose you could also just use the unsplit string as your key in this case.
A final approach allows you to use the syntax you want (where Variable_FOO is accessed as config.Variable["FOO"]), by using __getattr__ and a defaultdict behind the scenes:
from collections import defaultdict
class Config(object):
def __init__(self):
self._attrdicts = defaultdict(dict)
def __getattr__(self, name):
return self._attrdicts[name]
You could extend this with behavior for __setattr__ and __delattr__ but it's probably not necessary. The only serious limitation to this approach (given the original version of the question), is that the attributes names (like Variable) must be legal Python identifiers. You can't use strings with leading numbers, Python keywords (like global) or strings containing whitespace characters.
A downside to this approach is that it's a bit more difficult to use programatically (by, for instance, your config-file parser). To read a value of Variable_FOO and save it to config.Variable["FOO"] you'll probably need to use the global getattr function, like this:
name, value = line.split("=")
prefix, suffix = name.split("_")
getattr(config, prefix)[suffix] = value
I am looking for a way to create a basic python "object" which I can externally assign attributes to.
Currently I am doing it the following way:
I define an empty class with
class C(object):
pass
and then I instantiate an object and assign attributes like this:
c = C()
c.attr = 2
Coming to my question
Is there a way to instantiate an empty class object, which I can then assign attributes like shown above without defining a class C?
Is there maybe an other better way to accomplish what I am after?
It looks like you are looking for a flexible container that has no methods and can take attributes with arbitrary names. That's a dict.
d = dict()
d['myattr'] = 42
If you prefer the attribute syntax that you get with a class (c.myattr = 42), then use a class just as per the code in your question.
Is there a way to instantiate an empty class object, which I can then assign attributes like shown above without defining a class C?
Yes:
>>> C = type("C", (object,), {})
>>> c = C()
>>> c.attr = 2
But as you can see, it's not much of an improvement, and the end result is the same -- it's just another way of creating the same class C.
Addendum:
You can make it prettier by "hiding" it in a function:
def attr_holder(cls=type("C", (object,), {})):
return cls()
c = attr_holder()
c.attr = 2
Though this is just reinventing the wheel -- replace the two line function with
class attr_holder(object):
pass
and it'll work exactly the same, and we've come full circle. So: go with what David or Reorx suggests.
I had come to the same question long ago, and then create this class to use in many of my projects:
class DotDict(dict):
"""
retrieve value of dict in dot style
"""
def __getattr__(self, key):
try:
return self[key]
except KeyError:
raise AttributeError('has no attribute %s' % key)
def __setattr__(self, key, value):
self[key] = value
def __delattr__(self, key):
try:
del self[key]
except KeyError:
raise AttributeError(key)
def __str__(self):
return '<DotDict %s >' % self.__to_dict()
def __to_dict(self):
return dict(self)
When I want a object to store data or want to retrieve value easily from a dict, I always use this class.
Additionally, it can help me serialize the attributes that I set in the object, and reversely get the original dict when needed.
So I think this may be a good solution in many situations, though other tricks look simple,
they are not very helpful further.
In Python, how is it possible to reuse existing equal immutable objects (like is done for str)? Can this be done just by defining a __hash__ method, or does it require more complicated measures?
If you want to create via the class constructor and have it return a previously created object then you will need to provide a __new__ method (because by the time you get to __init__ the object has already been created).
Here is a simple example - if the value used to initialise has been seen before then a previously created object is returned rather than a new one created:
class Cached(object):
"""Simple example of immutable object reuse."""
def __init__(self, i):
self.i = i
def __new__(cls, i, _cache={}):
try:
return _cache[i]
except KeyError:
# you must call __new__ on the base class
x = super(Cached, cls).__new__(cls)
x.__init__(i)
_cache[i] = x
return x
Note that for this example you can use anything to initialise as long as it's hashable. And just to show that objects really are being reused:
>>> a = Cached(100)
>>> b = Cached(200)
>>> c = Cached(100)
>>> a is b
False
>>> a is c
True
There are two 'software engineering' solutions to this that don't require any low-level knowledge of Python. They apply in the following scenarios:
First Scenario: Objects of your class are 'equal' if they are constructed with the same constructor parameters, and equality won't change over time after construction. Solution: Use a factory that hashses the constructor parameters:
class MyClass:
def __init__(self, someint, someotherint):
self.a = someint
self.b = someotherint
cachedict = { }
def construct_myobject(someint, someotherint):
if (someint, someotherint) not in cachedict:
cachedict[(someint, someotherint)] = MyClass(someint, someotherint)
return cachedict[(someint, someotherint)]
This approach essentially limits the instances of your class to one unique object per distinct input pair. There are obvious drawbacks as well: not all types are easily hashable and so on.
Second Scenario: Objects of your class are mutable and their 'equality' may change over time. Solution: define a class-level registry of equal instances:
class MyClass:
registry = { }
def __init__(self, someint, someotherint, third):
MyClass.registry[id(self)] = (someint, someotherint)
self.someint = someint
self.someotherint = someotherint
self.third = third
def __eq__(self, other):
return MyClass.registry[id(self)] == MyClass.registry[id(other)]
def update(self, someint, someotherint):
MyClass.registry[id(self)] = (someint, someotherint)
In this example, objects with the same someint, someotherint pair are equal, while the third parameter does not factor in. The trick is to keep the parameters in registry in sync. As an alternative to update, you could override getattr and setattr for your class instead; this would ensure that any assignment foo.someint = y would be kept synced with your class-level dictionary. See an example here.
I believe you would have to keep a dict {args: object} of instances already created, then override the class' __new__ method to check in that dictionary, and return the relevant object if it already existed. Note that I haven't implemented or tested this idea. Of course, strings are handled at the C level.
I'm new to Python, and am sort of surprised I cannot do this.
dictionary = {
'a' : '123',
'b' : dictionary['a'] + '456'
}
I'm wondering what the Pythonic way to correctly do this in my script, because I feel like I'm not the only one that has tried to do this.
EDIT: Enough people were wondering what I'm doing with this, so here are more details for my use cases. Lets say I want to keep dictionary objects to hold file system paths. The paths are relative to other values in the dictionary. For example, this is what one of my dictionaries may look like.
dictionary = {
'user': 'sholsapp',
'home': '/home/' + dictionary['user']
}
It is important that at any point in time I may change dictionary['user'] and have all of the dictionaries values reflect the change. Again, this is an example of what I'm using it for, so I hope that it conveys my goal.
From my own research I think I will need to implement a class to do this.
No fear of creating new classes -
You can take advantage of Python's string formating capabilities
and simply do:
class MyDict(dict):
def __getitem__(self, item):
return dict.__getitem__(self, item) % self
dictionary = MyDict({
'user' : 'gnucom',
'home' : '/home/%(user)s',
'bin' : '%(home)s/bin'
})
print dictionary["home"]
print dictionary["bin"]
Nearest I came up without doing object:
dictionary = {
'user' : 'gnucom',
'home' : lambda:'/home/'+dictionary['user']
}
print dictionary['home']()
dictionary['user']='tony'
print dictionary['home']()
>>> dictionary = {
... 'a':'123'
... }
>>> dictionary['b'] = dictionary['a'] + '456'
>>> dictionary
{'a': '123', 'b': '123456'}
It works fine but when you're trying to use dictionary it hasn't been defined yet (because it has to evaluate that literal dictionary first).
But be careful because this assigns to the key of 'b' the value referenced by the key of 'a' at the time of assignment and is not going to do the lookup every time. If that is what you are looking for, it's possible but with more work.
What you're describing in your edit is how an INI config file works. Python does have a built in library called ConfigParser which should work for what you're describing.
This is an interesting problem. It seems like Greg has a good solution. But that's no fun ;)
jsbueno as a very elegant solution but that only applies to strings (as you requested).
The trick to a 'general' self referential dictionary is to use a surrogate object. It takes a few (understatement) lines of code to pull off, but the usage is about what you want:
S = SurrogateDict(AdditionSurrogateDictEntry)
d = S.resolve({'user': 'gnucom',
'home': '/home/' + S['user'],
'config': [S['home'] + '/.emacs', S['home'] + '/.bashrc']})
The code to make that happen is not nearly so short. It lives in three classes:
import abc
class SurrogateDictEntry(object):
__metaclass__ = abc.ABCMeta
def __init__(self, key):
"""record the key on the real dictionary that this will resolve to a
value for
"""
self.key = key
def resolve(self, d):
""" return the actual value"""
if hasattr(self, 'op'):
# any operation done on self will store it's name in self.op.
# if this is set, resolve it by calling the appropriate method
# now that we can get self.value out of d
self.value = d[self.key]
return getattr(self, self.op + 'resolve__')()
else:
return d[self.key]
#staticmethod
def make_op(opname):
"""A convience class. This will be the form of all op hooks for subclasses
The actual logic for the op is in __op__resolve__ (e.g. __add__resolve__)
"""
def op(self, other):
self.stored_value = other
self.op = opname
return self
op.__name__ = opname
return op
Next, comes the concrete class. simple enough.
class AdditionSurrogateDictEntry(SurrogateDictEntry):
__add__ = SurrogateDictEntry.make_op('__add__')
__radd__ = SurrogateDictEntry.make_op('__radd__')
def __add__resolve__(self):
return self.value + self.stored_value
def __radd__resolve__(self):
return self.stored_value + self.value
Here's the final class
class SurrogateDict(object):
def __init__(self, EntryClass):
self.EntryClass = EntryClass
def __getitem__(self, key):
"""record the key and return"""
return self.EntryClass(key)
#staticmethod
def resolve(d):
"""I eat generators resolve self references"""
stack = [d]
while stack:
cur = stack.pop()
# This just tries to set it to an appropriate iterable
it = xrange(len(cur)) if not hasattr(cur, 'keys') else cur.keys()
for key in it:
# sorry for being a duche. Just register your class with
# SurrogateDictEntry and you can pass whatever.
while isinstance(cur[key], SurrogateDictEntry):
cur[key] = cur[key].resolve(d)
# I'm just going to check for iter but you can add other
# checks here for items that we should loop over.
if hasattr(cur[key], '__iter__'):
stack.append(cur[key])
return d
In response to gnucoms's question about why I named the classes the way that I did.
The word surrogate is generally associated with standing in for something else so it seemed appropriate because that's what the SurrogateDict class does: an instance replaces the 'self' references in a dictionary literal. That being said, (other than just being straight up stupid sometimes) naming is probably one of the hardest things for me about coding. If you (or anyone else) can suggest a better name, I'm all ears.
I'll provide a brief explanation. Throughout S refers to an instance of SurrogateDict and d is the real dictionary.
A reference S[key] triggers S.__getitem__ and SurrogateDictEntry(key) to be placed in the d.
When S[key] = SurrogateDictEntry(key) is constructed, it stores key. This will be the key into d for the value that this entry of SurrogateDictEntry is acting as a surrogate for.
After S[key] is returned, it is either entered into the d, or has some operation(s) performed on it. If an operation is performed on it, it triggers the relative __op__ method which simple stores the value that the operation is performed on and the name of the operation and then returns itself. We can't actually resolve the operation because d hasn't been constructed yet.
After d is constructed, it is passed to S.resolve. This method loops through d finding any instances of SurrogateDictEntry and replacing them with the result of calling the resolve method on the instance.
The SurrogateDictEntry.resolve method receives the now constructed d as an argument and can use the value of key that it stored at construction time to get the value that it is acting as a surrogate for. If an operation was performed on it after creation, the op attribute will have been set with the name of the operation that was performed. If the class has a __op__ method, then it has a __op__resolve__ method with the actual logic that would normally be in the __op__ method. So now we have the logic (self.op__resolve) and all necessary values (self.value, self.stored_value) to finally get the real value of d[key]. So we return that which step 4 places in the dictionary.
finally the SurrogateDict.resolve method returns d with all references resolved.
That'a a rough sketch. If you have any more questions, feel free to ask.
If you, just like me wandering how to make #jsbueno snippet work with {} style substitutions, below is the example code (which is probably not much efficient though):
import string
class MyDict(dict):
def __init__(self, *args, **kw):
super(MyDict,self).__init__(*args, **kw)
self.itemlist = super(MyDict,self).keys()
self.fmt = string.Formatter()
def __getitem__(self, item):
return self.fmt.vformat(dict.__getitem__(self, item), {}, self)
xs = MyDict({
'user' : 'gnucom',
'home' : '/home/{user}',
'bin' : '{home}/bin'
})
>>> xs["home"]
'/home/gnucom'
>>> xs["bin"]
'/home/gnucom/bin'
I tried to make it work with the simple replacement of % self with .format(**self) but it turns out it wouldn't work for nested expressions (like 'bin' in above listing, which references 'home', which has it's own reference to 'user') because of the evaluation order (** expansion is done before actual format call and it's not delayed like in original % version).
Write a class, maybe something with properties:
class PathInfo(object):
def __init__(self, user):
self.user = user
#property
def home(self):
return '/home/' + self.user
p = PathInfo('thc')
print p.home # /home/thc
As sort of an extended version of #Tony's answer, you could build a dictionary subclass that calls its values if they are callables:
class CallingDict(dict):
"""Returns the result rather than the value of referenced callables.
>>> cd = CallingDict({1: "One", 2: "Two", 'fsh': "Fish",
... "rhyme": lambda d: ' '.join((d[1], d['fsh'],
... d[2], d['fsh']))})
>>> cd["rhyme"]
'One Fish Two Fish'
>>> cd[1] = 'Red'
>>> cd[2] = 'Blue'
>>> cd["rhyme"]
'Red Fish Blue Fish'
"""
def __getitem__(self, item):
it = super(CallingDict, self).__getitem__(item)
if callable(it):
return it(self)
else:
return it
Of course this would only be usable if you're not actually going to store callables as values. If you need to be able to do that, you could wrap the lambda declaration in a function that adds some attribute to the resulting lambda, and check for it in CallingDict.__getitem__, but at that point it's getting complex, and long-winded, enough that it might just be easier to use a class for your data in the first place.
This is very easy in a lazily evaluated language (haskell).
Since Python is strictly evaluated, we can do a little trick to turn things lazy:
Y = lambda f: (lambda x: x(x))(lambda y: f(lambda *args: y(y)(*args)))
d1 = lambda self: lambda: {
'a': lambda: 3,
'b': lambda: self()['a']()
}
# fix the d1, and evaluate it
d2 = Y(d1)()
# to get a
d2['a']() # 3
# to get b
d2['b']() # 3
Syntax wise this is not very nice. That's because of us needing to explicitly construct lazy expressions with lambda: ... and explicitly evaluate lazy expression with ...(). It's the opposite problem in lazy languages needing strictness annotations, here in Python we end up needing lazy annotations.
I think with some more meta-programmming and some more tricks, the above could be made more easy to use.
Note that this is basically how let-rec works in some functional languages.
The jsbueno answer in Python 3 :
class MyDict(dict):
def __getitem__(self, item):
return dict.__getitem__(self, item).format(self)
dictionary = MyDict({
'user' : 'gnucom',
'home' : '/home/{0[user]}',
'bin' : '{0[home]}/bin'
})
print(dictionary["home"])
print(dictionary["bin"])
Her ewe use the python 3 string formatting with curly braces {} and the .format() method.
Documentation : https://docs.python.org/3/library/string.html