I am trying to animate the graph, but jupyter is giving error:
MovieWriter imagemagick unavailable.
And just animating the 1st image(which is obvious as MovieWriter is not working). How to fix it?
Python version: 3
Here is the code
import numpy as np
import matplotlib.pyplot as plt
import networkx as nx
from matplotlib.animation import FuncAnimation
# number of nodes
size = 10
# generate graph
G=nx.complete_graph(size)
frame = np.random.randint(0, 5, (size, size)) # random ndarray between 0 and 5, length and number of frames = number of nodes in the graph
pos = nx.spring_layout(G)
nodes = nx.draw_networkx_nodes(G,pos)
edges = nx.draw_networkx_edges(G,pos)
plt.axis('off')
def update(i):
nc = frame[i] # np.random.randint(2, size=200)
nodes.set_array(nc)
return nodes,
# output animation; its important I save it
fig = plt.gcf()
ani = FuncAnimation(fig, update, interval=50, frames=range(size), blit=True)
ani.save('crap.gif', writer='imagemagick', savefig_kwargs={'facecolor':'white'}, fps=1)
Expectation: Animation should be working and will be able to show the updated color
It is working after installing the networkx package and adding pillowwritter as shown below.
import numpy as np
import matplotlib.pyplot as plt
import networkx as nx
from matplotlib.animation import FuncAnimation, PillowWriter
networkx
Related
The following code display the image and audio in the top-bottom style:
Here is the test code:
import librosa
import matplotlib.pyplot as plt
import IPython.display as ipd
def plot_it(name, audio, sample_rate):
plt.figure(figsize=(8, 1))
plt.plot(audio)
plt.gca().set_title(name)
plt.show()
ipd.display(ipd.Audio(data=audio, rate=sample_rate))
Is it possible for changing the "top-bottom" style to "left-right" style for displaying the audio at the right side of the plt figure?
You can use a GridspecLayout which is similar to matplotlib's GridSpec. In order to direct to output into the needed grid cells, you can capture it using the Output widget:
import librosa
import matplotlib.pyplot as plt
import IPython.display as ipd
from ipywidgets import Output, GridspecLayout
def plot_it(name, audio, sample_rate):
grid = GridspecLayout(1, 2, align_items='center')
out = Output()
with out:
fig, ax = plt.subplots(figsize=(8, 1))
ax.plot(audio)
ax.set_title(name)
plt.close(fig)
ipd.display(ax.figure)
grid[0, 0] = out
out = Output()
with out:
ipd.display(ipd.Audio(data=audio, rate=sample_rate))
grid[0, 1] = out
ipd.display(grid)
name = 'nutcracker'
filename = librosa.example(name)
y, sr = librosa.load(filename)
plot_it(name, y, sr)
(It is essential to close the figure, otherwise you'll have double output of the figure. This is easier to do this using the OOP than the pyplot interface, that's why I changed your matplotlib code a bit)
I am trying to save plots (DSR graphs) I make using matplotlib; however, the images are saving blank. The DSR graph is created from r.draw().
Here is my code:
import tellurium as te
import pygraphviz as pgv
import numpy as np
#import matplotlib.pylab as r
import matplotlib.pylab as r
# Load a model and carry out a simulation generating 100 points
r = te.loada ('S1 -> S2; k1*S1; k1 = 0.1; S1 = 10')
fig = r.draw()
import matplotlib.pylab as fig
fig.gcf()
fig.savefig('DSRgrafic.png', dpi=100)
fig.show()
And DSRgrafic.png is blank (also tried with .jpg)
I modified the code a little bit, now I use "pyplot" instead of "pylab", but what I get is the same blank image!
import tellurium as te
import pygraphviz as pgv
import numpy as np
# Load a model and carry out a simulation generating 100 points
r = te.loada ('S1 -> S2; k1*S1; k1 = 0.1; S1 = 10')
fig = r.draw()
import matplotlib.pyplot as fig
fig.gcf()
fig.savefig('DSRgrafic.png', dpi=100)
fig.show()
I am trying to create a plotting object that produces an animated matplotlib pcolor plot with a polar projection. Currently the object can either create a set of polar plots or try to create an animation of those plots.
When creating the set of polar plots (but not the animation) the object works as planned.
The animation portion of the object is based on this example, which works on my system. Unfortunately the animation as implemented in my object is not working. There is a figure and an MP4 file produced for the animation but both the figure and the too-short animation both show just some mis-shaped axes.
Does anyone have a suggestion of how to capture this figure series in an animation when embedded in an object?
I am using python 3.7, matplotlib 3.03 on a windows 10 machine
The code for the object and the code to run its instantiation are given below.
class Polar_smudge(object):
# object for creating polar contour plots
def __init__(self, azimuth_grid, range_grid):
import numpy as np
self.azimuth_grid = np.deg2rad(azimuth_grid)
self.range_grid = range_grid
self.fig = None
self.ax = None
self.images = []
#------------------------------------------------------------------
def add_data(self, value_grid):
import numpy as np
self.value_grid = value_grid
self.value_grid[self.value_grid<=0] = np.nan
#------------------------------------------------------------------
def add_figure(self, value_grid):
import matplotlib.pyplot as plt
# make and set-up figure
fig, ax = plt.subplots(subplot_kw=dict(projection='polar'))
ax.set_theta_zero_location("N")
ax.set_theta_direction(-1)
ax.set_rlim([0,10])
# make plot
cax = ax.pcolor(self.azimuth_grid, self.range_grid, value_grid, cmap=plt.cm.viridis_r)
ax.grid()
plt.show()
#------------------------------------------------------------------
def start_figure(self):
import matplotlib.pyplot as plt
# make and set-up figure
if self.fig is None :
self.fig, self.ax = plt.subplots(111, subplot_kw=dict(projection='polar'))
self.ax[0].set_theta_zero_location("N")
self.ax[0].set_theta_direction(-1)
def update_figure(self, value_grid):
import matplotlib.pyplot as plt
# make figure and add to image list
self.images.append((self.ax[0].pcolor(self.azimuth_grid, self.range_grid, value_grid, cmap=plt.cm.viridis_r),))
def end_figure(self):
import matplotlib.animation as animation
# animate the figure list
im_ani = animation.ArtistAnimation(self.fig, self.images, interval=50, repeat_delay=3000,blit=True)
im_ani.save('smudge.mp4')
#============This runs the object ====================================
import numpy as np
azimuth_bins = np.linspace(0, 360, 360)
range_bins = np.linspace(0, 10, 30)
# make plotting azim range grids
range_grid, azimuth_grid = np.meshgrid(range_bins, azimuth_bins)
# this works but isnt what I want
good_smudge = Polar_smudge(azimuth_grid,range_grid)
for ix in range(3):
val_grid = np.random.randn(360,30)
good_smudge.add_figure(val_grid)
# this doesnt work
bad_smudge = Polar_smudge(azimuth_grid,range_grid)
bad_smudge.start_figure()
for ix in range(3):
val_grid = np.random.randn(360,30)
bad_smudge.update_figure(val_grid)
bad_smudge.end_figure()
In response to the comment from Earnest, I did some further refinement and it appears that the problem is not linked to being embedded in an object, and also that increasing the number of frames (to eg. 30) does not solve the problem. The code snippet below provides a more concise demonstration of the problem (but lacks the correctly produced figure output option).
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.animation as animation
azimuth_bins = np.linspace(0, 360, 60)
range_bins = np.linspace(0, 10, 30)
images = []
# make plotting azim range grids
range_grid, azimuth_grid = np.meshgrid(range_bins, azimuth_bins)
fig,ax = plt.subplots(111, subplot_kw=dict(projection='polar'))
ax[0].set_theta_zero_location("N")
ax[0].set_theta_direction(-1)
for ix in range(30):
val_grid = np.random.randn(60,30)
images.append((ax[0].pcolor(azimuth_grid, range_grid, val_grid, cmap=plt.cm.viridis_r),))
# animate the figure list
im_ani = animation.ArtistAnimation(fig, images, interval=50, repeat_delay=3000,blit=False)
im_ani.save('smudge2.mp4')
I have a python animation script (using matplotlib's funcAnimation), which runs in Spyder but not in Jupyter. I have tried following various suggestions such as adding "%matplotlib inline" and changing the matplotlib backend to "Qt4agg", all without success. I have also tried running several example animations (from Jupyter tutorials), none of which have worked. Sometimes I get an error message and sometimes the plot appears, but does not animate. Incidentally, I have gotten pyplot.plot() to work using "%matplotlib inline".
Does anyone know of a working Jupyter notebook with a simple inline animation example that uses funcAnimation.
[Note: I am on Windows 7]
notebook backend
'Inline' means that the plots are shown as png graphics. Those png images cannot be animated. While in principle one could build an animation by successively replacing the png images, this is probably undesired.
A solution is to use the notebook backend, which is fully compatible with FuncAnimation as it renders the matplotlib figure itself:
%matplotlib notebook
jsanimation
From matplotlib 2.1 on, we can create an animation using JavaScript. This is similar to the ani.to_html5() solution, except that it does not require any video codecs.
from IPython.display import HTML
HTML(ani.to_jshtml())
Some complete example:
import matplotlib.pyplot as plt
import matplotlib.animation
import numpy as np
t = np.linspace(0,2*np.pi)
x = np.sin(t)
fig, ax = plt.subplots()
ax.axis([0,2*np.pi,-1,1])
l, = ax.plot([],[])
def animate(i):
l.set_data(t[:i], x[:i])
ani = matplotlib.animation.FuncAnimation(fig, animate, frames=len(t))
from IPython.display import HTML
HTML(ani.to_jshtml())
Alternatively, make the jsanimation the default for showing animations,
plt.rcParams["animation.html"] = "jshtml"
Then at the end simply state ani to obtain the animation.
Also see this answer for a complete overview.
There is a simple example within this tutorial here: http://louistiao.me/posts/notebooks/embedding-matplotlib-animations-in-jupyter-notebooks/
To summarise the tutorial above, you basically need something like this:
from matplotlib import animation
from IPython.display import HTML
# <insert animation setup code here>
anim = animation.FuncAnimation() # With arguments of course!
HTML(anim.to_html5_video())
However...
I had a lot of trouble getting that to work. Essentially, the problem was that the above uses (by default) ffmpeg and the x264 codec in the background but these were not configured correctly on my machine. The solution was to uninstall them and rebuild them from source with the correct configuration. For more details, see the question I asked about it with a working answer from Andrew Heusser: Animations in ipython (jupyter) notebook - ValueError: I/O operation on closed file
So, try the to_html5_video solution above first, and if it doesn't work then also try the uninstall / rebuild of ffmpeg and x264.
Another option:
import matplotlib.animation
import matplotlib.pyplot as plt
import numpy as np
plt.rcParams["animation.html"] = "jshtml"
plt.rcParams['figure.dpi'] = 150
plt.ioff()
fig, ax = plt.subplots()
x= np.linspace(0,10,100)
def animate(t):
plt.cla()
plt.plot(x-t,x)
plt.xlim(0,10)
matplotlib.animation.FuncAnimation(fig, animate, frames=10)
Here is the answer that I put together from multiple sources including the official examples. I tested with the latest versions of Jupyter and Python.
Download FFmpeg ( http://ffmpeg.zeranoe.com/builds/ )
Install FFmpeg making sure that you update the environmental variable ( http://www.wikihow.com/Install-FFmpeg-on-Windows ).
Run this script in Jupyter below. The variable imageList is the only thing that you need to modify. It is an list of images (your input).
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.animation as animation
from IPython.display import HTML
#=========================================
# Create Fake Images using Numpy
# You don't need this in your code as you have your own imageList.
# This is used as an example.
imageList = []
x = np.linspace(0, 2 * np.pi, 120)
y = np.linspace(0, 2 * np.pi, 100).reshape(-1, 1)
for i in range(60):
x += np.pi / 15.
y += np.pi / 20.
imageList.append(np.sin(x) + np.cos(y))
#=========================================
# Animate Fake Images (in Jupyter)
def getImageFromList(x):
return imageList[x]
fig = plt.figure(figsize=(10, 10))
ims = []
for i in range(len(imageList)):
im = plt.imshow(getImageFromList(i), animated=True)
ims.append([im])
ani = animation.ArtistAnimation(fig, ims, interval=50, blit=True, repeat_delay=1000)
plt.close()
# Show the animation
HTML(ani.to_html5_video())
#=========================================
# Save animation as video (if required)
# ani.save('dynamic_images.mp4')
If you have a list of images and want to animate through them, you can use something like this:
from keras.preprocessing.image import load_img, img_to_array
from matplotlib import animation
from IPython.display import HTML
import glob
%matplotlib inline
def plot_images(img_list):
def init():
img.set_data(img_list[0])
return (img,)
def animate(i):
img.set_data(img_list[i])
return (img,)
fig = figure()
ax = fig.gca()
img = ax.imshow(img_list[0])
anim = animation.FuncAnimation(fig, animate, init_func=init,
frames=len(img_list), interval=20, blit=True)
return anim
imgs = [img_to_array(load_img(i)) for i in glob.glob('*.jpg')]
HTML(plot_images(imgs).to_html5_video())
Thank to Kolibril. I finally can run animation on Jupyter and Google Colab.
I modify some code which will generate animation of drawing random line instead.
import matplotlib.animation
import matplotlib.pyplot as plt
from itertools import count
import random
plt.rcParams["animation.html"] = "jshtml"
plt.rcParams['figure.dpi'] = 150
fig, ax = plt.subplots()
x_value = []
y_value = []
index = count();
def animate(t):
x_value.append(next(index))
y_value.append(random.randint(0,10))
ax.cla()
ax.plot(x_value,y_value)
ax.set_xlim(0,10)
matplotlib.animation.FuncAnimation(fig, animate, frames=10, interval = 500)
enter image description here
How does matplotlib ensure that a dataset can be within plot with specified size.
How do i from a plot stored as numpy, How do i read the color of the pixels illustration a datapoint (0,4) - in the plot.
example:
import numpy as np
import matplotlib.pyplot as plt
import matplotlib
from PIL import Image
import librosa
import librosa.display
from matplotlib import cm
fig = plt.figure(figsize=(12,4))
min = -1.828067
max = 22.70058
data = np.random.uniform(low=min, high=max, size=(474,40))
librosa.display.specshow(data.T,sr=16000,x_axis='frames',y_axis='mel',hop_length=160,cmap=cm.jet)
plt.show()
raw_input("sadas")
convert = plt.get_cmap(cm.jet)
numpy_output_static = convert(data.T)
plt.imshow(numpy_output_static, aspect = 'auto')
plt.show()
raw_input("asds")
First plot being :
Second plot being:
so the first has been resized to plot size 12,4 where the last basically plots the same data but just using the data shape as size... how do i change that?
Librosa just performs pcolormesh according to the GitHub source code
You need to define another figure with its own size for the second figure.
import numpy as np
import matplotlib.pyplot as plt
import matplotlib
from PIL import Image
import librosa
import librosa.display
from matplotlib import cm
fig = plt.figure(figsize=(12,4))
min = -1.828067
max = 22.70058
data = np.random.uniform(low=min, high=max, size=(474,40))
librosa.display.specshow(data.T,sr=16000,x_axis='frames',y_axis='mel',hop_length=160,cmap=cm.jet)
plt.show()
raw_input("sadas")
convert = plt.get_cmap(cm.jet)
numpy_output_static = convert(data.T)
fig = plt.figure(figsize=(12,4))
plt.imshow(numpy_output_static, aspect = 'auto')
plt.show()
raw_input("asds")