Converting Decimal to Binary, how to get 8-bit binary? - python

So I need to convert decimal to binary but all of my returns need to be 8 bits long.
I've already figured out the conversion itself but I need to figure out how to add zero's to the beginning if it's less than 8 bits.
old_number = int(input("Enter whole number here: "))
number = old_number
binary_translation = 0
while number > -1:
if number > 128 or number == 128:
binary_translation = binary_translation + 10000000
number = number - 128
elif number > 64 or number == 64:
binary_translation = binary_translation + 1000000
number = number - 64
elif number > 32 or number == 32:
binary_translation = binary_translation + 100000
number = number - 32
etc all the way zero...
print("The number", old_number, "is", binary_translation, "in binary.")
Result I want if number = 39 - 00100111
Result I get if number = 39 - 100111

TLDR: Use it: '{:0>8}'.format(str(bin(a))[2:])
You make unnecessary binary transformations. Python have built-in function bin() that can do it for you:
>>> number = 39
>>> bin(number)
'0b100111'
You can crop it:
>>> str(bin(number))[2:]
'100111'
And add forward zeros:
>>> '{:0>8}'.format(str(bin(a))[2:])
'00100111'
Here is the final one-liner for you: '{:0>8}'.format(str(bin(a))[2:])
If you want to learn more about this: '{:0>8}' magic, you can read this article.

I wrote a JS function
function getBinary(input) {
if (input > 255) {
return "fu";
}
//reverse func
function reverse(s){
return s.split("").reverse().join("");
}
//variable definition
var rest;
var temp = 1;
var str="";
var zeroeslength;
//magic
while (temp > 0) {
temp = Math.floor(input / 2);
rest = input - (temp * 2);
input = temp;
str = str + rest;
}
str = reverse(str);
//check length
zeroeslength = 8 - str.length;
//if length < 8 : add zeroes
while (zeroeslength > 0) {
str = 0 + str;
zeroeslength--;
}
//output
return str;
}

Related

how can I convert binary to decimal without using bin method

whenever I run my code I get a TypeError saying "not all arguements converted during string formatting" and I tried using str() around what didn't get converted but I ran into more errors.
Here is my code:
def decimalToBinary(num):
bits = " "
while(num > 0):
bits = str(num%2) + bits
num = num//2
return bits
def binaryToDecimal(bits):
deciNum = 0
powers = 0
for i in reversed(bits):
deciNum = 2 **powers** (bits % 10)
bits /= 10
powers += 1
return deciNum
#program tester
for i in range(135, 146):
x = decimalToBinary(i)
deciNum = binaryToDecimal(x)
print(str(decimal))+ ' is '+ ' in Binary.'
I get this TypeError on the line that says "deciNum = 2 ** powers ** (bits%10)
Try this:
def binaryToDecimal(b_num: str) -> int:
d_num = 0
for i in range(len(b_num)):
digit = b_num.pop()
if digit == '1':
d_num = d_num + 2**i
return d_num
Note that b_num is a string, not an int. So you need to use this function in this way binaryToDecimal('101') (and not in this way binaryToDecimal(101)).
To answer the title of the post and to keep the types consistent with your program:
import math
def binaryToDecimal(bits):
# Initialize integer for number.
num = 0
# For each bit, multiply by power of 2 corresponding to its position.
# Then, add that power of 2 to the total counter.
for i in range(len(bits)):
num += int(bits[i]) * (2 ** (len(bits)-i-1))
# Return integer type.
return str(num)
def decimalToBinary(num):
# Determine how many bits represent the decimal number.
num_of_bits = int(math.log(num, 2)) + 1
bits = ''
# Shift the number over 1 more place to the right in each iteration.
# Then test the sign of the bit with AND.
for i in reversed(range(num_of_bits)):
bits += str(int(1&(num>>i)))
return bits
for i in range(135, 146):
x = decimalToBinary(i)
deciNum = binaryToDecimal(x)
print(str(deciNum)+ ' is '+ str(x)+' in Binary.')

Python beginner - RGB values to HEX. How bad is my code?

I recently wrote a program that calculates the hex value when given rgb values. I was just wondering if my code is terrible (i did my best to write it from scratch without much help). I'm still a beginner and trying to learn.
Any help would be greatly appreciated (guidance about how i could do things better etc.).
Thank you
# sets the HEX letters for numbers above 9
hex_table = {'0':0,'1':1,'2':2,'3':3,'4':4,'5':5,'6':6,'7':7,'8':8, '9':9,
'a':10, 'b':11, 'c':12, 'd':13, 'e':14, 'f':15}
# creates variable for the keys in dictionary
key_list = list(hex_table.keys())
# creates variable for values in dictionary
val_list = list(hex_table.values())
def test(r= int(input('red value: ')),g= int(input('green value: ')), b= int(input('blue value: '))):
# finds the index of the value
red_value = r // 16
green_value = g // 16
blue_value = b // 16
# Calcuate the remainder
red_float = float(r) / 16
red_remainder = red_float % 1
green_float = float(g) / 16
green_remainder = green_float % 1
blue_float = float(b) / 16
blue_remainder = blue_float % 1
# adds '#' in front of the result
print('#',end='')
#find the first two values in HEX code
if r >= 10:
print(key_list[val_list.index(red_value)],end='')
second_letter = (int(red_remainder * 16))
print(key_list[val_list.index(second_letter)],end='')
elif r <10:
print(red_value,end='')
print(int(red_remainder * 16),end='')
#find the next two values
if g >= 10:
print(key_list[val_list.index(green_value)],end='')
second_letter = (int(green_remainder * 16))
print(key_list[val_list.index(second_letter)],end='')
elif g <10:
print(green_value,end='')
print(int(green_remainder * 16),end='')
#find the last two values
if b >= 10:
print(key_list[val_list.index(blue_value)],end='')
second_letter = (int(blue_remainder * 16))
print(key_list[val_list.index(second_letter)],end='')
elif b <10:
print(blue_value,end='')
print(int(blue_remainder * 16),end='')
test()
You could reduce the amount of code by a lot by reducing the amount of times you repeat yourself, you are calculating the values for the digits for all three colours in the same function, therefore repeating yourself 3 times.
I've wrote my answer using JavaScript but I will explain what I am doing.
function getDigit(val) {
var alphabet = ["a", "b", "c", "d", "e", "f"]
if (val >= 10 && val < 16)
val = alphabet[val - 10];
return val.toString();
}
function helper(val) {
var first = Math.floor(val / 16)
var second = val % 16;
return getDigit(first) + getDigit(second)
}
function rgbToHex(red, green, blue) {
return helper(red) + helper(green) + helper(blue);
}
I have created two functions to help calculate the digits for each of the RGB values.
The helper() function calculates two numbers for the first and second digits. Lets use 24 and 172 as an example.
To find the first digit, you can divide the value by 16, and Floor the answer so it rounds down to a single digit.
24 / 16 = 1.5, Floor(1.5) = 1;
Therefore are first digit is 1.
And for the second digit we take the remainder of the value divided by 16.
24 % 16 = 8
So the full value for would be 18
Lets see 172 now.
172 / 16 = 10.75, Floor(10.75) = 10;
This will not work because the value should be "a" rather than "10", this is where the getDigit() function comes in, this function will take the value and check if it is between 10 and 15. We then take 10 from the value to find which letter we should use from the 'alphabet' array.
So for 10, we get 10 - 10 = 0; which means we will use the value at index 0 which gives us "a"
We can do the same for the second digit
172 % 16 = 12; Now the getDigit() function is called again.
12 - 10 = 2; so we take the item from index 2 in the array, which is "c"
so for 172 the value will be ac
Here's my slightly amended code:
hex_table = {'1':1,'2':2,'3':3,'4':4,'5':5,'6':6,'7':7,'8':8,'9':9,
'A':10, 'B':11, 'C':12, 'D':13, 'E':14, 'F':15}
key_list = list(hex_table.keys())
val_list = list(hex_table.values())
def rgb(num_val):
num = num_val // 16
num_float = float(num_val) / 16
num_remainder = num_float % 1
if num_val >= 10:
print(key_list[val_list.index(num)], end='')
second_letter = (int(num_remainder * 16))
print(key_list[val_list.index(second_letter)],end='')
elif num_val <10:
print(num_val)
print(int(num_remainder * 16))
def rgb_hex(r,g,b):
print('#',end='')
return (f'{rgb(r)} {rgb(g)} {rgb(b)}')
rgb_hex(220,20,60)
This is an old question but for information, I developed a package with some utilities related to colors and colormaps and contains the rgb2hex function you were looking to convert triplet into hexa value (which can be found in many other packages, e.g. matplotlib). It's on pypi
pip install colormap
and then
>>> from colormap import rgb2hex
>>> rgb2hex(0, 128, 64)
'##008040'
Validity of the inputs is checked (values must be between 0 and 255).

How to limit the result of binary conversion to a maximum of 8-bits (255)?

How can I limit the resuly to only 8 bits? I have to add two binary numbers and convert the result to decimal. How to limit the sum to only 8 bits or 255?
def BinaryToDecimal(binaryNum):
binaryList = []
decimalNumber = 0
while binaryNum != 0:
remainder = binaryNum%10
binaryList.append(remainder)
binaryNum = int(binaryNum/10)
for i in range(len(binaryList)-1,-1,-1):
decimalNumber = decimalNumber + binaryList[i] * (2**i)
return decimalnumber
Assuming you want the last 8 bits of your result, the simple solution is just to use modular arithmetic and use % 256 to get the remainder after dividing by 256.
def BinaryToDecimal(binaryNum):
binaryList = []
decimalNumber = 0
while binaryNum != 0:
remainder = binaryNum % 10
binaryList.append(remainder)
binaryNum = int(binaryNum / 10)
for i in range(len(binaryList) - 1, -1, -1):
decimalNumber = decimalNumber + binaryList[i] * (2 ** i)
return decimalNumber % 256 # You also had a typo in this line
For example:
BinaryToDecimal(11111100000000)
Out[1]: 0
BinaryToDecimal(11111111111111)
Out[2]: 255
Alternatively, if you want to return 255 if the answer is > 255, the code would be:
return decimalNumber if decimalNumber < 256 else 255
This returns:
BinaryToDecimal(10000000)
Out[3]: 128
BinaryToDecimal(100000000)
Out[4]: 255
BinaryToDecimal(1000000000000)
Out[5]: 255
Incidentally: I fixed a typo in the return statement and your variable names don't conform to the PEP-8 Python styles - variables should be in lower case separated by underscores like binary_num and decimal_number
I have written a function for you:
def bin_to_dec(bits,fmt = None):
if bits != 0:
bits = str(bits)
if fmt == 'big':
bits = bits[:8]
else:
bits = bits[-8:]
try:
return int(bits,2)
except ValueError:
print("Enter bits only no number other than 1 and 0!!!")
return 0
and on doing this:
>>> print(bin_to_dec(11111111110000,'big'))
255
>>> print(bin_to_dec(11111111110000,'little'))
240
Just pass your binary as int, if you have it as string than you can remove bits = str(bits) line from my code.
fmt is for data format for little or big endian depends on you.
To understand Little and Big Endian Check Here.
Default is little and on any error it will always return 0.
Example if you gave anything other than 1 or 0 in bits:
>>> print(bin_to_dec(11111112110000,'little'))
Enter bits only no number other than 1 and 0!!!
0
You will get 0 and a bonus print output

converitng ASCII values of a string to base 3 number representation in Python [duplicate]

Python allows easy creation of an integer from a string of a given base via
int(str, base).
I want to perform the inverse: creation of a string from an integer,
i.e. I want some function int2base(num, base), such that:
int(int2base(x, b), b) == x
The function name/argument order is unimportant.
For any number x and base b that int() will accept.
This is an easy function to write: in fact it's easier than describing it in this question. However, I feel like I must be missing something.
I know about the functions bin, oct, hex, but I cannot use them for a few reasons:
Those functions are not available on older versions of Python, with which I need compatibility with (2.2)
I want a general solution that can be called the same way for different bases
I want to allow bases other than 2, 8, 16
Related
Python elegant inverse function of int(string, base)
Integer to base-x system using recursion in python
Base 62 conversion in Python
How to convert an integer to the shortest url-safe string in Python?
Surprisingly, people were giving only solutions that convert to small bases (smaller than the length of the English alphabet). There was no attempt to give a solution which converts to any arbitrary base from 2 to infinity.
So here is a super simple solution:
def numberToBase(n, b):
if n == 0:
return [0]
digits = []
while n:
digits.append(int(n % b))
n //= b
return digits[::-1]
so if you need to convert some super huge number to the base 577,
numberToBase(67854 ** 15 - 102, 577), will give you a correct solution:
[4, 473, 131, 96, 431, 285, 524, 486, 28, 23, 16, 82, 292, 538, 149, 25, 41, 483, 100, 517, 131, 28, 0, 435, 197, 264, 455],
Which you can later convert to any base you want
at some point of time you will notice that sometimes there is no built-in library function to do things that you want, so you need to write your own. If you disagree, post you own solution with a built-in function which can convert a base 10 number to base 577.
this is due to lack of understanding what a number in some base means.
I encourage you to think for a little bit why base in your method works only for n <= 36. Once you are done, it will be obvious why my function returns a list and has the signature it has.
If you need compatibility with ancient versions of Python, you can either use gmpy (which does include a fast, completely general int-to-string conversion function, and can be built for such ancient versions – you may need to try older releases since the recent ones have not been tested for venerable Python and GMP releases, only somewhat recent ones), or, for less speed but more convenience, use Python code – e.g., for Python 2, most simply:
import string
digs = string.digits + string.ascii_letters
def int2base(x, base):
if x < 0:
sign = -1
elif x == 0:
return digs[0]
else:
sign = 1
x *= sign
digits = []
while x:
digits.append(digs[int(x % base)])
x = int(x / base)
if sign < 0:
digits.append('-')
digits.reverse()
return ''.join(digits)
For Python 3, int(x / base) leads to incorrect results, and must be changed to x // base:
import string
digs = string.digits + string.ascii_letters
def int2base(x, base):
if x < 0:
sign = -1
elif x == 0:
return digs[0]
else:
sign = 1
x *= sign
digits = []
while x:
digits.append(digs[x % base])
x = x // base
if sign < 0:
digits.append('-')
digits.reverse()
return ''.join(digits)
"{0:b}".format(100) # bin: 1100100
"{0:x}".format(100) # hex: 64
"{0:o}".format(100) # oct: 144
def baseN(num,b,numerals="0123456789abcdefghijklmnopqrstuvwxyz"):
return ((num == 0) and numerals[0]) or (baseN(num // b, b, numerals).lstrip(numerals[0]) + numerals[num % b])
ref:
http://code.activestate.com/recipes/65212/
Please be aware that this may lead to
RuntimeError: maximum recursion depth exceeded in cmp
for very big integers.
>>> numpy.base_repr(10, base=3)
'101'
Note that numpy.base_repr() has a limit of 36 as its base. Otherwise it throws a ValueError
Recursive
I would simplify the most voted answer to:
BS="0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"
def to_base(n, b):
return "0" if not n else to_base(n//b, b).lstrip("0") + BS[n%b]
With the same advice for RuntimeError: maximum recursion depth exceeded in cmp on very large integers and negative numbers. (You could usesys.setrecursionlimit(new_limit))
Iterative
To avoid recursion problems:
BS="0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"
def to_base(s, b):
res = ""
while s:
res+=BS[s%b]
s//= b
return res[::-1] or "0"
Great answers!
I guess the answer to my question was "no" I was not missing some obvious solution.
Here is the function I will use that condenses the good ideas expressed in the answers.
allow caller-supplied mapping of characters (allows base64 encode)
checks for negative and zero
maps complex numbers into tuples of strings
def int2base(x,b,alphabet='0123456789abcdefghijklmnopqrstuvwxyz'):
'convert an integer to its string representation in a given base'
if b<2 or b>len(alphabet):
if b==64: # assume base64 rather than raise error
alphabet = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/"
else:
raise AssertionError("int2base base out of range")
if isinstance(x,complex): # return a tuple
return ( int2base(x.real,b,alphabet) , int2base(x.imag,b,alphabet) )
if x<=0:
if x==0:
return alphabet[0]
else:
return '-' + int2base(-x,b,alphabet)
# else x is non-negative real
rets=''
while x>0:
x,idx = divmod(x,b)
rets = alphabet[idx] + rets
return rets
You could use baseconv.py from my project: https://github.com/semente/python-baseconv
Sample usage:
>>> from baseconv import BaseConverter
>>> base20 = BaseConverter('0123456789abcdefghij')
>>> base20.encode(1234)
'31e'
>>> base20.decode('31e')
'1234'
>>> base20.encode(-1234)
'-31e'
>>> base20.decode('-31e')
'-1234'
>>> base11 = BaseConverter('0123456789-', sign='$')
>>> base11.encode('$1234')
'$-22'
>>> base11.decode('$-22')
'$1234'
There is some bultin converters as for example baseconv.base2, baseconv.base16 and baseconv.base64.
def base(decimal ,base) :
list = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"
other_base = ""
while decimal != 0 :
other_base = list[decimal % base] + other_base
decimal = decimal / base
if other_base == "":
other_base = "0"
return other_base
print base(31 ,16)
output:
"1F"
def base_conversion(num, base):
digits = []
while num > 0:
num, remainder = divmod(num, base)
digits.append(remainder)
return digits[::-1]
http://code.activestate.com/recipes/65212/
def base10toN(num,n):
"""Change a to a base-n number.
Up to base-36 is supported without special notation."""
num_rep={10:'a',
11:'b',
12:'c',
13:'d',
14:'e',
15:'f',
16:'g',
17:'h',
18:'i',
19:'j',
20:'k',
21:'l',
22:'m',
23:'n',
24:'o',
25:'p',
26:'q',
27:'r',
28:'s',
29:'t',
30:'u',
31:'v',
32:'w',
33:'x',
34:'y',
35:'z'}
new_num_string=''
current=num
while current!=0:
remainder=current%n
if 36>remainder>9:
remainder_string=num_rep[remainder]
elif remainder>=36:
remainder_string='('+str(remainder)+')'
else:
remainder_string=str(remainder)
new_num_string=remainder_string+new_num_string
current=current/n
return new_num_string
Here's another one from the same link
def baseconvert(n, base):
"""convert positive decimal integer n to equivalent in another base (2-36)"""
digits = "0123456789abcdefghijklmnopqrstuvwxyz"
try:
n = int(n)
base = int(base)
except:
return ""
if n < 0 or base < 2 or base > 36:
return ""
s = ""
while 1:
r = n % base
s = digits[r] + s
n = n / base
if n == 0:
break
return s
I made a pip package for this.
I recommend you use my bases.py https://github.com/kamijoutouma/bases.py which was inspired by bases.js
from bases import Bases
bases = Bases()
bases.toBase16(200) // => 'c8'
bases.toBase(200, 16) // => 'c8'
bases.toBase62(99999) // => 'q0T'
bases.toBase(200, 62) // => 'q0T'
bases.toAlphabet(300, 'aAbBcC') // => 'Abba'
bases.fromBase16('c8') // => 200
bases.fromBase('c8', 16) // => 200
bases.fromBase62('q0T') // => 99999
bases.fromBase('q0T', 62) // => 99999
bases.fromAlphabet('Abba', 'aAbBcC') // => 300
refer to https://github.com/kamijoutouma/bases.py#known-basesalphabets
for what bases are usable
EDIT:
pip link https://pypi.python.org/pypi/bases.py/0.2.2
def int2base(a, base, numerals="0123456789abcdefghijklmnopqrstuvwxyz"):
baseit = lambda a=a, b=base: (not a) and numerals[0] or baseit(a-a%b,b*base)+numerals[a%b%(base-1) or (a%b) and (base-1)]
return baseit()
explanation
In any base every number is equal to a1+a2*base**2+a3*base**3... The "mission" is to find all a 's.
For everyN=1,2,3... the code is isolating the aN*base**N by "mouduling" by b for b=base**(N+1) which slice all a 's bigger than N, and slicing all the a 's that their serial is smaller than N by decreasing a everytime the func is called by the current aN*base**N .
Base%(base-1)==1 therefor base**p%(base-1)==1 and therefor q*base^p%(base-1)==q with only one exception when q=base-1 which returns 0.
To fix that in case it returns 0 the func is checking is it 0 from the beggining.
advantages
in this sample theres only one multiplications (instead of division) and some moudulueses which relatively takes small amounts of time.
While the currently top answer is definitely an awesome solution, there remains more customization users might like.
Basencode adds some of these features, including conversions of floating point numbers, modifying digits (in the linked answer, only numbers can be used).
Here's a possible use case:
>>> from basencode import *
>>> n1 = Number(12345)
>> n1.repr_in_base(64) # convert to base 64
'30V'
>>> Number('30V', 64) # construct Integer from base 64
Integer(12345)
>>> n1.repr_in_base(8)
'30071'
>>> n1.repr_in_octal() # shortcuts
'30071'
>>> n1.repr_in_bin() # equivelant to `n1.repr_in_base(2)`
'11000000111001'
>>> n1.repr_in_base(2, digits=list('-+')) # override default digits: use `-` and `+` in place of `0` and `1`
'++------+++--+'
>>> n1.repr_in_base(33) # yet another base - all bases from 2 to 64 are supported from the start
'bb3'
How would you add any bases you want? Let me replicate the example of the currently most upvoted answer: the digits parameter allows you to override the default digits from base 2 to 64, and provide digits for any base higher than that. The mode parameter determines how the value of the representation will determine how (list or string) the answer will be returned.
>>> n2 = Number(67854 ** 15 - 102)
>>> n2.repr_in_base(577, digits=[str(i) for i in range(577)], mode="l")
['4', '473', '131', '96', '431', '285', '524', '486', '28', '23', '16', '82', '292', '538', '149', '25', '41', '483', '100', '517', '131', '28', '0', '435', '197', '264', '455']
>>> n2.repr_in_base(577, mode="l") # the program remembers the digits for base 577 now
['4', '473', '131', '96', '431', '285', '524', '486', '28', '23', '16', '82', '292', '538', '149', '25', '41', '483', '100', '517', '131', '28', '0', '435', '197', '264', '455']
Operations can be done: the Number class returns an instance of basencode.Integer if the provided number is an Integer, else it returns a basencode.Float
>>> n3 = Number(54321) # the Number class returns an instance of `basencode.Integer` if the provided number is an Integer, otherwise it returns a `basencode.Float`.
>>> n1 + n3
Integer(66666)
>>> n3 - n1
Integer(41976)
>>> n1 * n3
Integer(670592745)
>>> n3 // n1
Integer(4)
>>> n3 / n1 # a basencode.Float class allows conversion of floating point numbers
Float(4.400243013365735)
>>> (n3 / n1).repr_in_base(32)
'4.cpr56v6rnc4oitoblha2r11sus0dheqd4pgechfcjklo74b2bgom7j8ih86mipdvss0068sehi9f3791mdo4uotfujq66cf0jkgo'
>>> n4 = Number(0.5) # returns a basencode.Float
>>> n4.repr_in_bin() # binary version of 0.5
'0.1'
Disclaimer: this project is under active maintenance, and I'm a contributor.
>>> import string
>>> def int2base(integer, base):
if not integer: return '0'
sign = 1 if integer > 0 else -1
alphanum = string.digits + string.ascii_lowercase
nums = alphanum[:base]
res = ''
integer *= sign
while integer:
integer, mod = divmod(integer, base)
res += nums[mod]
return ('' if sign == 1 else '-') + res[::-1]
>>> int2base(-15645, 23)
'-16d5'
>>> int2base(213, 21)
'a3'
A recursive solution for those interested. Of course, this will not work with negative binary values. You would need to implement Two's Complement.
def generateBase36Alphabet():
return ''.join([str(i) for i in range(10)]+[chr(i+65) for i in range(26)])
def generateAlphabet(base):
return generateBase36Alphabet()[:base]
def intToStr(n, base, alphabet):
def toStr(n, base, alphabet):
return alphabet[n] if n < base else toStr(n//base,base,alphabet) + alphabet[n%base]
return ('-' if n < 0 else '') + toStr(abs(n), base, alphabet)
print('{} -> {}'.format(-31, intToStr(-31, 16, generateAlphabet(16)))) # -31 -> -1F
def base_changer(number,base):
buff=97+abs(base-10)
dic={};buff2='';buff3=10
for i in range(97,buff+1):
dic[buff3]=chr(i)
buff3+=1
while(number>=base):
mod=int(number%base)
number=int(number//base)
if (mod) in dic.keys():
buff2+=dic[mod]
continue
buff2+=str(mod)
if (number) in dic.keys():
buff2+=dic[number]
else:
buff2+=str(number)
return buff2[::-1]
Here is an example of how to convert a number of any base to another base.
from collections import namedtuple
Test = namedtuple("Test", ["n", "from_base", "to_base", "expected"])
def convert(n: int, from_base: int, to_base: int) -> int:
digits = []
while n:
(n, r) = divmod(n, to_base)
digits.append(r)
return sum(from_base ** i * v for i, v in enumerate(digits))
if __name__ == "__main__":
tests = [
Test(32, 16, 10, 50),
Test(32, 20, 10, 62),
Test(1010, 2, 10, 10),
Test(8, 10, 8, 10),
Test(150, 100, 1000, 150),
Test(1500, 100, 10, 1050000),
]
for test in tests:
result = convert(*test[:-1])
assert result == test.expected, f"{test=}, {result=}"
print("PASSED!!!")
Say we want to convert 14 to base 2. We repeatedly apply the division algorithm until the quotient is 0:
14 = 2 x 7
7 = 2 x 3 + 1
3 = 2 x 1 + 1
1 = 2 x 0 + 1
The binary representation is just the remainder read from bottom to top. This can be proved by expanding
14 = 2 x 7 = 2 x (2 x 3 + 1) = 2 x (2 x (2 x 1 + 1) + 1) = 2 x (2 x (2 x (2 x 0 + 1) + 1) + 1) = 2^3 + 2^2 + 2
The code is the implementation of the above algorithm.
def toBaseX(n, X):
strbin = ""
while n != 0:
strbin += str(n % X)
n = n // X
return strbin[::-1]
This is my approach. At first converting the number then casting it to string.
def to_base(n, base):
if base == 10:
return n
result = 0
counter = 0
while n:
r = n % base
n //= base
result += r * 10**counter
counter+=1
return str(result)
I have written this function which I use to encode in different bases. I also provided the way to shift the result by a value 'offset'. This is useful if you'd like to encode to bases above 64, but keeping displayable chars (like a base 95).
I also tried to avoid reversing the output 'list' and tried to minimize computing operations. The array of pow(base) is computed on demand and kept for additional calls to the function.
The output is a binary string
pows = {}
######################################################
def encode_base(value,
base = 10,
offset = 0) :
"""
Encode value into a binary string, according to the desired base.
Input :
value : Any positive integer value
offset : Shift the encoding (eg : Starting at chr(32))
base : The base in which we'd like to encode the value
Return : Binary string
Example : with : offset = 32, base = 64
100 -> !D
200 -> #(
"""
# Determine the number of loops
try :
pb = pows[base]
except KeyError :
pb = pows[base] = {n : base ** n for n in range(0, 8) if n < 2 ** 48 -1}
for n in pb :
if value < pb[n] :
n -= 1
break
out = []
while n + 1 :
b = pb[n]
out.append(chr(offset + value // b))
n -= 1
value %= b
return ''.join(out).encode()
This function converts any integer from any base to any base
def baseconvert(number, srcbase, destbase):
if srcbase != 10:
sum = 0
for _ in range(len(str(number))):
sum += int(str(number)[_]) * pow(srcbase, len(str(number)) - _ - 1)
b10 = sum
return baseconvert(b10, 10, destbase)
end = ''
q = number
while(True):
r = q % destbase
q = q // destbase
end = str(r) + end
if(q<destbase):
end = str(q) + end
return int(end)
The below provided Python code converts a Python integer to a string in arbitrary base ( from 2 up to infinity ) and works in both directions. So all the created strings can be converted back to Python integers by providing a string for N instead of an integer.
The code works only on positive numbers by intention (there is in my eyes some hassle about negative values and their bit representations I don't want to dig into). Just pick from this code what you need, want or like, or just have fun learning about available options. Much is there only for the purpose of documenting all the various available approaches ( e.g. the Oneliner seems not to be fast, even if promised to be ).
I like the by Salvador Dali proposed format for infinite large bases. A nice proposal which works optically well even for simple binary bit representations. Notice that the width=x padding parameter in case of infiniteBase=True formatted string applies to the digits and not to the whole number. It seems, that code handling infiniteBase digits format runs even a bit faster than the other options - another reason for using it?
I don't like the idea of using Unicode for extending the number of symbols available for digits, so don't look in the code below for it, because it's not there. Use the proposed infiniteBase format instead or store integers as bytes for compression purposes.
def inumToStr( N, base=2, width=1, infiniteBase=False,\
useNumpy=False, useRecursion=False, useOneliner=False, \
useGmpy=False, verbose=True):
''' Positive numbers only, but works in BOTH directions.
For strings in infiniteBase notation set for bases <= 62
infiniteBase=True . Examples of use:
inumToStr( 17, 2, 1, 1) # [1,0,0,0,1]
inumToStr( 17, 3, 5) # 00122
inumToStr(245, 16, 4) # 00F5
inumToStr(245, 36, 4,0,1) # 006T
inumToStr(245245245245,36,10,0,1) # 0034NWOQBH
inumToStr(245245245245,62) # 4JhA3Th
245245245245 == int(gmpy2.mpz('4JhA3Th',62))
inumToStr(245245245245,99,2) # [25,78, 5,23,70,44]
----------------------------------------------------
inumToStr( '[1,0,0,0,1]',2, infiniteBase=True ) # 17
inumToStr( '[25,78, 5,23,70,44]', 99) # 245245245245
inumToStr( '0034NWOQBH', 36 ) # 245245245245
inumToStr( '4JhA3Th' , 62 ) # 245245245245
----------------------------------------------------
--- Timings for N = 2**4096, base=36:
standard: 0.0023
infinite: 0.0017
numpy : 0.1277
recursio; 0.0022
oneliner: 0.0146
For N = 2**8192:
standard: 0.0075
infinite: 0.0053
numpy : 0.1369
max. recursion depth exceeded: recursio/oneliner
'''
show = print
if type(N) is str and ( infiniteBase is True or base > 62 ):
lstN = eval(N)
if verbose: show(' converting a non-standard infiniteBase bits string to Python integer')
return sum( [ item*base**pow for pow, item in enumerate(lstN[::-1]) ] )
if type(N) is str and base <= 36:
if verbose: show('base <= 36. Returning Python int(N, base)')
return int(N, base)
if type(N) is str and base <= 62:
if useGmpy:
if verbose: show(' base <= 62, useGmpy=True, returning int(gmpy2.mpz(N,base))')
return int(gmpy2.mpz(N,base))
else:
if verbose: show(' base <= 62, useGmpy=False, self-calculating return value)')
lstStrOfDigits="0123456789"+ \
"abcdefghijklmnopqrstuvwxyz".upper() + \
"abcdefghijklmnopqrstuvwxyz"
dictCharToPow = {}
for index, char in enumerate(lstStrOfDigits):
dictCharToPow.update({char : index})
return sum( dictCharToPow[item]*base**pow for pow, item in enumerate(N[::-1]) )
#:if
#:if
if useOneliner and base <= 36:
if verbose: show(' base <= 36, useOneliner=True, running the Oneliner code')
d="0123456789abcdefghijklmnopqrstuvwxyz"
baseit = lambda a=N, b=base: (not a) and d[0] or \
baseit(a-a%b,b*base)+d[a%b%(base-1) or (a%b) and (base-1)]
return baseit().rjust(width, d[0])[1:]
if useRecursion and base <= 36:
if verbose: show(' base <= 36, useRecursion=True, running recursion algorythm')
BS="0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"
def to_base(n, b):
return "0" if not n else to_base(n//b, b).lstrip("0") + BS[n%b]
return to_base(N, base).rjust(width,BS[0])
if base > 62 or infiniteBase:
if verbose: show(' base > 62 or infiniteBase=True, returning a non-standard digits string')
# Allows arbitrary large base with 'width=...'
# applied to each digit (useful also for bits )
N, digit = divmod(N, base)
strN = str(digit).rjust(width, ' ')+']'
while N:
N, digit = divmod(N, base)
strN = str(digit).rjust(width, ' ') + ',' + strN
return '[' + strN
#:if
if base == 2:
if verbose: show(" base = 2, returning Python str(f'{N:0{width}b}')")
return str(f'{N:0{width}b}')
if base == 8:
if verbose: show(" base = 8, returning Python str(f'{N:0{width}o}')")
return str(f'{N:0{width}o}')
if base == 16:
if verbose: show(" base = 16, returning Python str(f'{N:0{width}X}')")
return str(f'{N:0{width}X}')
if base <= 36:
if useNumpy:
if verbose: show(" base <= 36, useNumpy=True, returning np.base_repr(N, base)")
import numpy as np
strN = np.base_repr(N, base)
return strN.rjust(width, '0')
else:
if verbose: show(' base <= 36, useNumpy=False, self-calculating return value)')
lstStrOfDigits="0123456789"+"abcdefghijklmnopqrstuvwxyz".upper()
strN = lstStrOfDigits[N % base] # rightmost digit
while N >= base:
N //= base # consume already converted digit
strN = lstStrOfDigits[N % base] + strN # add digits to the left
#:while
return strN.rjust(width, lstStrOfDigits[0])
#:if
#:if
if base <= 62:
if useGmpy:
if verbose: show(" base <= 62, useGmpy=True, returning gmpy2.digits(N, base)")
import gmpy2
strN = gmpy2.digits(N, base)
return strN.rjust(width, '0')
# back to Python int from gmpy2.mpz with
# int(gmpy2.mpz('4JhA3Th',62))
else:
if verbose: show(' base <= 62, useGmpy=False, self-calculating return value)')
lstStrOfDigits= "0123456789" + \
"abcdefghijklmnopqrstuvwxyz".upper() + \
"abcdefghijklmnopqrstuvwxyz"
strN = lstStrOfDigits[N % base] # rightmost digit
while N >= base:
N //= base # consume already converted digit
strN = lstStrOfDigits[N % base] + strN # add digits to the left
#:while
return strN.rjust(width, lstStrOfDigits[0])
#:if
#:if
#:def
I'm presenting a "unoptimized" solution for bases between 2 and 9:
def to_base(N, base=2):
N_in_base = ''
while True:
N_in_base = str(N % base) + N_in_base
N //= base
if N == 0:
break
return N_in_base
This solution does not require reversing the final result, but it's actually not optimized. Refer to this answer to see why: https://stackoverflow.com/a/37133870/7896998
Simple base transformation
def int_to_str(x, b):
s = ""
while x:
s = str(x % b) + s
x //= b
return s
Example of output with no 0 to base 9
s = ""
x = int(input())
while x:
if x % 9 == 0:
s = "9" + s
x -= x % 10
x = x // 9
else:
s = str(x % 9) + s
x = x // 9
print(s)
def dec_to_radix(input, to_radix=2, power=None):
if not isinstance(input, int):
raise TypeError('Not an integer!')
elif power is None:
power = 1
if input == 0:
return 0
else:
remainder = input % to_radix**power
digit = str(int(remainder/to_radix**(power-1)))
return int(str(dec_to_radix(input-remainder, to_radix, power+1)) + digit)
def radix_to_dec(input, from_radix):
if not isinstance(input, int):
raise TypeError('Not an integer!')
return sum(int(digit)*(from_radix**power) for power, digit in enumerate(str(input)[::-1]))
def radix_to_radix(input, from_radix=10, to_radix=2, power=None):
dec = radix_to_dec(input, from_radix)
return dec_to_radix(dec, to_radix, power)
Another short one (and easier to understand imo):
def int_to_str(n, b, symbols='0123456789abcdefghijklmnopqrstuvwxyz'):
return (int_to_str(n/b, b, symbols) if n >= b else "") + symbols[n%b]
And with proper exception handling:
def int_to_str(n, b, symbols='0123456789abcdefghijklmnopqrstuvwxyz'):
try:
return (int_to_str(n/b, b) if n >= b else "") + symbols[n%b]
except IndexError:
raise ValueError(
"The symbols provided are not enough to represent this number in "
"this base")
Here is a recursive version that handles signed integers and custom digits.
import string
def base_convert(x, base, digits=None):
"""Convert integer `x` from base 10 to base `base` using `digits` characters as digits.
If `digits` is omitted, it will use decimal digits + lowercase letters + uppercase letters.
"""
digits = digits or (string.digits + string.ascii_letters)
assert 2 <= base <= len(digits), "Unsupported base: {}".format(base)
if x == 0:
return digits[0]
sign = '-' if x < 0 else ''
x = abs(x)
first_digits = base_convert(x // base, base, digits).lstrip(digits[0])
return sign + first_digits + digits[x % base]
Strings aren't the only choice for representing numbers: you can use a list of integers to represent the order of each digit. Those can easily be converted to a string.
None of the answers reject base < 2; and most will run very slowly or crash with stack overflows for very large numbers (such as 56789 ** 43210). To avoid such failures, reduce quickly like this:
def n_to_base(n, b):
if b < 2: raise # invalid base
if abs(n) < b: return [n]
ret = [y for d in n_to_base(n, b*b) for y in divmod(d, b)]
return ret[1:] if ret[0] == 0 else ret # remove leading zeros
def base_to_n(v, b):
h = len(v) // 2
if h == 0: return v[0]
return base_to_n(v[:-h], b) * (b**h) + base_to_n(v[-h:], b)
assert ''.join(['0123456789'[x] for x in n_to_base(56789**43210,10)])==str(56789**43210)
Speedwise, n_to_base is comparable with str for large numbers (about 0.3s on my machine), but if you compare against hex you may be surprised (about 0.3ms on my machine, or 1000x faster). The reason is because the large integer is stored in memory in base 256 (bytes). Each byte can simply be converted to a two-character hex string. This alignment only happens for bases that are powers of two, which is why there are special cases for 2,8, and 16 (and base64, ascii, utf16, utf32).
Consider the last digit of a decimal string. How does it relate to the sequence of bytes that forms its integer? Let's label the bytes s[i] with s[0] being the least significant (little endian). Then the last digit is sum([s[i]*(256**i) % 10 for i in range(n)]). Well, it happens that 256**i ends with a 6 for i > 0 (6*6=36) so that last digit is (s[0]*5 + sum(s)*6)%10. From this, you can see that the last digit depends on the sum of all the bytes. This nonlocal property is what makes converting to decimal harder.
def baseConverter(x, b):
s = ""
d = string.printable.upper()
while x > 0:
s += d[x%b]
x = x / b
return s[::-1]

Most efficent Way to get lowest 10 bits of a hash as an int in Python

I am trying to get the first 10bits of sha256 hash as an integer, at the moment, I convert to a string and then trim that to 10 bits and convert back to an int.
This seems quite convoluted, is there a better way?
Code I borrowed from another post on here
def inttobin(i):
if i == 0:
return "0"
s = ''
while i:
if i & 1 == 1:
s = "1" + s
else:
s = "0" + s
i >>= 1
return s
Then Code I am using to convert to int is:
bin = inttobin(struct.unpack('H', hash[:2])[0])
idx = int(bin[-10:], 2)
Any suggestions?
To extract certain bits as an integer, you can use Python's "bitwise and", &.
For integer i, the first ten bits are i & 1023 (1023 == (2**10) - 1). All bits higher than the tenth aren't in 1023, so will be zero.
A simple 4-bit example ((2**4) - 1 == 15):
a = 22 # 10110
b = 15 # 1111
a & b == 6 # 0110

Categories

Resources