extract xml to pandas dataframe with unknown number of nodes - python

The below code sample works if there is only one node.
However, our use case we dont know how many nodes we will receive
Convert a xml to pandas data frame python
Sample as below.
How we can parse this into dataframe
In particular, we dont know how manby
we will received in the feed file
<?xml version = '1.0' encoding = 'UTF-8'?>
<EVENT spec="IDL:com/RfcCallEvents:1.0#Z_BAPI_UPDT_SERV_NOTIFICATION">
<eventHeader>
<objectName/>
<objectKey/>
<eventName/>
<eventId/>
</eventHeader>
<TAB_DETAIL_DATA>
<ZNEWFLAG>X</ZNEWFLAG>
<FENUM>2</FENUM>
<BAUTL>661-01727</BAUTL>
<OTEIL/>
<FECOD>KBB</FECOD>
<URCOD>B08</URCOD>
<ZCOMPMDF>A</ZCOMPMDF>
<ZOPREPL/>
<ZWRNCOV>LP</ZWRNCOV>
<ZWRNREF/>
<ZNEWPS>C07XMAAEJCLD</ZNEWPS>
<ZOLDPN/>
<ZOLDPD/>
<ZOLDPS>C07XMAACJCLD</ZOLDPS>
<MAILINFECOD/>
<ZUNITPR/>
<ZNEWPD/>
<ZNEWPN/>
<ZABUSE/>
<ZRPS>S</ZRPS>
<ZEXKGB/>
<ZKGBMM/>
<ZINSTS>000</ZINSTS>
<ZACKBB/>
<ZCHKOVR/>
<ZSNDB/>
<ZNOTAFISCAL/>
<ZCONSGMT/>
<ZPRTCONS/>
<ZZRTNTRNO/>
<ZZRTNCAR/>
<ZZINSPECT/>
<ZZPR_OPT/>
</TAB_DETAIL_DATA>
<TAB_DETAIL_DATA>
<ZNEWFLAG>X</ZNEWFLAG>
<FENUM>1</FENUM>
<BAUTL>661-01727</BAUTL>
<OTEIL/>
<FECOD>KBB</FECOD>
<URCOD>B08</URCOD>
<ZCOMPMDF>A</ZCOMPMDF>
<ZOPREPL/>
<ZWRNCOV>LP</ZWRNCOV>
<ZWRNREF/>
<ZNEWPS>C07XMAAEJCLD</ZNEWPS>
<ZOLDPN/>
<ZOLDPD/>
<ZOLDPS>C07XMAACJCLD</ZOLDPS>
<MAILINFECOD/>
<ZUNITPR/>
<ZNEWPD/>
<ZNEWPN/>
<ZABUSE/>
<ZRPS>S</ZRPS>
<ZEXKGB/>
<ZKGBMM/>
<ZINSTS>000</ZINSTS>
<ZACKBB/>
<ZCHKOVR/>
<ZSNDB/>
<ZNOTAFISCAL/>
<ZCONSGMT/>
<ZPRTCONS/>
<ZZRTNTRNO/>
<ZZRTNCAR/>
<ZZINSPECT/>
<ZZPR_OPT/>
</TAB_DETAIL_DATA>
<TAB_HEADER_DATA>
<QMNUM>030334920069</QMNUM>
<ZGSXREF>CONSUMER</ZGSXREF>
<ZVANTREF>G338005317</ZVANTREF>
<ZSHIPER/>
<ZSHPRNO/>
<ZRVREF/>
<ZTECHID>4HQ2OD6C19</ZTECHID>
<ZADREPAIR/>
<ZZKATR7/>
</TAB_HEADER_DATA>
</EVENT>

I suspect you need to parse xml-data to several dataframes, e.g. as follows:
import xmltodict # install this module first
data = """<?xml version = '1.0' encoding = 'UTF-8'?>
<EVENT spec="IDL:com/RfcCallEvents:1.0#Z_BAPI_UPDT_SERV_NOTIFICATION">
<eventHeader>
<objectName/>
<objectKey/>
<eventName/>
<eventId/>
</eventHeader>
<TAB_DETAIL_DATA>
<ZNEWFLAG>X</ZNEWFLAG>
<FENUM>2</FENUM>
<BAUTL>661-01727</BAUTL>
<OTEIL/>
<FECOD>KBB</FECOD>
<URCOD>B08</URCOD>
<ZCOMPMDF>A</ZCOMPMDF>
<ZOPREPL/>
<ZWRNCOV>LP</ZWRNCOV>
<ZWRNREF/>
<ZNEWPS>C07XMAAEJCLD</ZNEWPS>
<ZOLDPN/>
<ZOLDPD/>
<ZOLDPS>C07XMAACJCLD</ZOLDPS>
<MAILINFECOD/>
<ZUNITPR/>
<ZNEWPD/>
<ZNEWPN/>
<ZABUSE/>
<ZRPS>S</ZRPS>
<ZEXKGB/>
<ZKGBMM/>
<ZINSTS>000</ZINSTS>
<ZACKBB/>
<ZCHKOVR/>
<ZSNDB/>
<ZNOTAFISCAL/>
<ZCONSGMT/>
<ZPRTCONS/>
<ZZRTNTRNO/>
<ZZRTNCAR/>
<ZZINSPECT/>
<ZZPR_OPT/>
</TAB_DETAIL_DATA>
<TAB_DETAIL_DATA>
<ZNEWFLAG>X</ZNEWFLAG>
<FENUM>1</FENUM>
<BAUTL>661-01727</BAUTL>
<OTEIL/>
<FECOD>KBB</FECOD>
<URCOD>B08</URCOD>
<ZCOMPMDF>A</ZCOMPMDF>
<ZOPREPL/>
<ZWRNCOV>LP</ZWRNCOV>
<ZWRNREF/>
<ZNEWPS>C07XMAAEJCLD</ZNEWPS>
<ZOLDPN/>
<ZOLDPD/>
<ZOLDPS>C07XMAACJCLD</ZOLDPS>
<MAILINFECOD/>
<ZUNITPR/>
<ZNEWPD/>
<ZNEWPN/>
<ZABUSE/>
<ZRPS>S</ZRPS>
<ZEXKGB/>
<ZKGBMM/>
<ZINSTS>000</ZINSTS>
<ZACKBB/>
<ZCHKOVR/>
<ZSNDB/>
<ZNOTAFISCAL/>
<ZCONSGMT/>
<ZPRTCONS/>
<ZZRTNTRNO/>
<ZZRTNCAR/>
<ZZINSPECT/>
<ZZPR_OPT/>
</TAB_DETAIL_DATA>
<TAB_HEADER_DATA>
<QMNUM>030334920069</QMNUM>
<ZGSXREF>CONSUMER</ZGSXREF>
<ZVANTREF>G338005317</ZVANTREF>
<ZSHIPER/>
<ZSHPRNO/>
<ZRVREF/>
<ZTECHID>4HQ2OD6C19</ZTECHID>
<ZADREPAIR/>
<ZZKATR7/>
</TAB_HEADER_DATA>
</EVENT>"""
dct = xmltodict.parse(data)
def make_df(name="TAB_DETAIL_DATA", dct=dct):
df = pd.DataFrame()
if isinstance(dct['EVENT'][name], list):
for j in dct['EVENT'][name]:
_ = pd.DataFrame({'value': [y for x, y in j.items()]}, index=j.keys())
df = pd.concat([df, _])
else:
df = pd.DataFrame({'value': [y for x, y in dct['EVENT'][name].items()]}, index=dct['EVENT'][name].keys())
return df
Now, you can experiment with the parser:
make_df(name="TAB_HEADER_DATA") # produces single df
make_df(name="TAB_DETAIL_DATA") # concatenates all content occurred in TAB_DETAIL_DATA sections, returns single df

Related

XML into Pandas dataframe

I have an XML file and I would like to parse it into a table. (Pandas dataframe)
Below is just a sample of the XML file. Those are only two of the records.
<?xml version="1.0" encoding="UTF-8"?>
<file>
<C13_335010X321A1_837Y6>
<BHT_BeginningOfHierarchicalTransaction>
<BHT01__HierarchicalStructureCode>0011</BHT01__HierarchicalStructureCode>
<BHT02__TransactionSetPurposeCode>00</BHT02__TransactionSetPurposeCode>
<BHT03__OriginatorApplicationTransactionIdentifier>513513TR</BHT03__OriginatorApplicationTransactionIdentifier>
<BHT04__TransactionSetCreationDate>20200212</BHT04__TransactionSetCreationDate>
<BHT05__TransactionSetCreationTime>1287</BHT05__TransactionSetCreationTime>
<BHT06__ClaimOrEncounterIdentifier>DD</BHT06__ClaimOrEncounterIdentifier>
</BHT_BeginningOfHierarchicalTransaction>
<Loop_1000A>
<NM1_SubmitterName_1000A>
<NM101__EntityIdentifierCode>27</NM101__EntityIdentifierCode>
<NM102__EntityTypeQualifier>9</NM102__EntityTypeQualifier>
<NM103__SubmitterLastOrOrganizationName>AAA</NM103__SubmitterLastOrOrganizationName>
<NM108__IdentificationCodeQualifier>22</NM108__IdentificationCodeQualifier>
<NM109__SubmitterIdentifier>55555500</NM109__SubmitterIdentifier>
</NM1_SubmitterName_1000A>
<PER_SubmitterEDIContactInformation_1000A>
<PER01__ContactFunctionCode>LK</PER01__ContactFunctionCode>
<PER02__SubmitterContactName>John Smith</PER02__SubmitterContactName>
<PER03__CommunicationNumberQualifier>WW</PER03__CommunicationNumberQualifier>
<PER04__CommunicationNumber>2132220011</PER04__CommunicationNumber>
<PER05__CommunicationNumberQualifier>DD</PER05__CommunicationNumberQualifier>
<PER06__CommunicationNumber>DD_2#GMAIL.COM</PER06__CommunicationNumber>
</PER_SubmitterEDIContactInformation_1000A>
</Loop_1000A>
<Loop_1000B>
<NM1_ReceiverName_1000B>
<NM101__EntityIdentifierCode>21</NM101__EntityIdentifierCode>
<NM102__EntityTypeQualifier>0</NM102__EntityTypeQualifier>
<NM103__ReceiverName>AAA</NM103__ReceiverName>
<NM108__IdentificationCodeQualifier>32</NM108__IdentificationCodeQualifier>
<NM109__ReceiverPrimaryIdentifier>2514521</NM109__ReceiverPrimaryIdentifier>
</NM1_ReceiverName_1000B>
</Loop_1000B>
<Loop_2000A>
<HL_BillingProviderHierarchicalLevel_2000A>
<HL01__HierarchicalIDNumber>32</HL01__HierarchicalIDNumber>
<HL03__HierarchicalLevelCode>54</HL03__HierarchicalLevelCode>
<HL04__HierarchicalChildCode>32</HL04__HierarchicalChildCode>
</HL_BillingProviderHierarchicalLevel_2000A>
<Loop_2010AA>
<NM1_BillingProviderName_2010AA>
<NM101__EntityIdentifierCode>54</NM101__EntityIdentifierCode>
<NM102__EntityTypeQualifier>21</NM102__EntityTypeQualifier>
<NM103__BillingProviderLastOrOrganizationalName>AAA</NM103__BillingProviderLastOrOrganizationalName>
<NM108__IdentificationCodeQualifier>XX</NM108__IdentificationCodeQualifier>
<NM109__BillingProviderIdentifier>515151325</NM109__BillingProviderIdentifier>
</NM1_BillingProviderName_2010AA>
<N3_BillingProviderAddress_2010AA>
<N301__BillingProviderAddressLine>214 SS STREET</N301__BillingProviderAddressLine>
</N3_BillingProviderAddress_2010AA>
<N4_BillingProviderCityStateZIPCode_2010AA>
<N401__BillingProviderCityName>LA</N401__BillingProviderCityName>
<N402__BillingProviderStateOrProvinceCode>CA</N402__BillingProviderStateOrProvinceCode>
<N403__BillingProviderPostalZoneOrZIPCode>93500</N403__BillingProviderPostalZoneOrZIPCode>
</N4_BillingProviderCityStateZIPCode_2010AA>
<REF_BillingProviderTaxIdentification_2010AA>
<REF01__ReferenceIdentificationQualifier>OI</REF01__ReferenceIdentificationQualifier>
<REF02__BillingProviderTaxIdentificationNumber>5135151315</REF02__BillingProviderTaxIdentificationNumber>
</REF_BillingProviderTaxIdentification_2010AA>
</Loop_2010AA>
<Loop_2000B>
<HL_SubscriberHierarchicalLevel_2000B>
<HL01__HierarchicalIDNumber>5</HL01__HierarchicalIDNumber>
<HL02__HierarchicalParentIDNumber>5</HL02__HierarchicalParentIDNumber>
<HL03__HierarchicalLevelCode>55</HL03__HierarchicalLevelCode>
<HL04__HierarchicalChildCode>5</HL04__HierarchicalChildCode>
</HL_SubscriberHierarchicalLevel_2000B>
<SBR_SubscriberInformation_2000B>
<SBR01__PayerResponsibilitySequenceNumberCode>L</SBR01__PayerResponsibilitySequenceNumberCode>
<SBR02__IndividualRelationshipCode>32</SBR02__IndividualRelationshipCode>
<SBR03__SubscriberGroupOrPolicyNumber>252525Z125</SBR03__SubscriberGroupOrPolicyNumber>
<SBR09__ClaimFilingIndicatorCode>NM</SBR09__ClaimFilingIndicatorCode>
</SBR_SubscriberInformation_2000B>
<Loop_2010BA>
<NM1_SubscriberName_2010BA>
<NM101__EntityIdentifierCode>DCX</NM101__EntityIdentifierCode>
<NM102__EntityTypeQualifier>5</NM102__EntityTypeQualifier>
<NM103__SubscriberLastName>SMITH</NM103__SubscriberLastName>
<NM104__SubscriberFirstName>JOHN</NM104__SubscriberFirstName>
<NM108__IdentificationCodeQualifier>CA</NM108__IdentificationCodeQualifier>
<NM109__SubscriberPrimaryIdentifier>3656361.</NM109__SubscriberPrimaryIdentifier>
</NM1_SubscriberName_2010BA>
<N3_SubscriberAddress_2010BA>
<N301__SubscriberAddressLine>111 STREET</N301__SubscriberAddressLine>
</N3_SubscriberAddress_2010BA>
<N4_SubscriberCityStateZIPCode_2010BA>
<N401__SubscriberCityName>LA</N401__SubscriberCityName>
<N402__SubscriberStateCode>CA</N402__SubscriberStateCode>
<N403__SubscriberPostalZoneOrZIPCode>93000</N403__SubscriberPostalZoneOrZIPCode>
</N4_SubscriberCityStateZIPCode_2010BA>
<DMG_SubscriberDemographicInformation_2010BA>
<DMG01__DateTimePeriodFormatQualifier>K5</DMG01__DateTimePeriodFormatQualifier>
<DMG02__SubscriberBirthDate>19851010</DMG02__SubscriberBirthDate>
<DMG03__SubscriberGenderCode>U</DMG03__SubscriberGenderCode>
</DMG_SubscriberDemographicInformation_2010BA>
</Loop_2010BA>
<Loop_2010BB>
<NM1_PayerName_2010BB>
<NM101__EntityIdentifierCode>FF</NM101__EntityIdentifierCode>
<NM102__EntityTypeQualifier>3</NM102__EntityTypeQualifier>
<NM103__PayerName>AAA</NM103__PayerName>
<NM108__IdentificationCodeQualifier>GF</NM108__IdentificationCodeQualifier>
<NM109__PayerIdentifier>32514</NM109__PayerIdentifier>
</NM1_PayerName_2010BB>
</Loop_2010BB>
<Loop_2300>
<CLM_ClaimInformation_2300>
<CLM01__PatientControlNumber>5413</CLM01__PatientControlNumber>
<CLM02__TotalClaimChargeAmount>651</CLM02__TotalClaimChargeAmount>
<CLM05_HealthCareServiceLocationInformation_2300>
<CLM05_01_PlaceOfServiceCode>13</CLM05_01_PlaceOfServiceCode>
<CLM05_02_FacilityCodeQualifier>D</CLM05_02_FacilityCodeQualifier>
<CLM05_03_ClaimFrequencyCode>3</CLM05_03_ClaimFrequencyCode>
</CLM05_HealthCareServiceLocationInformation_2300>
<CLM06__ProviderOrSupplierSignatureIndicator>N</CLM06__ProviderOrSupplierSignatureIndicator>
<CLM07__AssignmentOrPlanParticipationCode>R</CLM07__AssignmentOrPlanParticipationCode>
<CLM08__BenefitsAssignmentCertificationIndicator>N</CLM08__BenefitsAssignmentCertificationIndicator>
<CLM09__ReleaseOfInformationCode>N</CLM09__ReleaseOfInformationCode>
<CLM10__PatientSignatureSourceCode>X</CLM10__PatientSignatureSourceCode>
</CLM_ClaimInformation_2300>
<REF_ClaimIdentifierForTransmissionIntermediaries_2300>
<REF01__ReferenceIdentificationQualifier>J1</REF01__ReferenceIdentificationQualifier>
<REF02__ValueAddedNetworkTraceNumber>FVC2514543254</REF02__ValueAddedNetworkTraceNumber>
</REF_ClaimIdentifierForTransmissionIntermediaries_2300>
<HI_HealthCareDiagnosisCode_2300>
<HI01_HealthCareCodeInformation_2300>
<HI01_01_DiagnosisTypeCode>CCC</HI01_01_DiagnosisTypeCode>
<HI01_02_DiagnosisCode>N111</HI01_02_DiagnosisCode>
</HI01_HealthCareCodeInformation_2300>
</HI_HealthCareDiagnosisCode_2300>
<Loop_2310B>
<NM1_RenderingProviderName_2310B>
<NM101__EntityIdentifierCode>32</NM101__EntityIdentifierCode>
<NM102__EntityTypeQualifier>2</NM102__EntityTypeQualifier>
<NM103__RenderingProviderLastOrOrganizationName>JOHN</NM103__RenderingProviderLastOrOrganizationName>
<NM104__RenderingProviderFirstName>SMITH</NM104__RenderingProviderFirstName>
<NM108__IdentificationCodeQualifier>TT</NM108__IdentificationCodeQualifier>
<NM109__RenderingProviderIdentifier>25431251</NM109__RenderingProviderIdentifier>
</NM1_RenderingProviderName_2310B>
<PRV_RenderingProviderSpecialtyInformation_2310B>
<PRV01__ProviderCode>TR</PRV01__ProviderCode>
<PRV02__ReferenceIdentificationQualifier>VFD</PRV02__ReferenceIdentificationQualifier>
<PRV03__ProviderTaxonomyCode>135454353L</PRV03__ProviderTaxonomyCode>
</PRV_RenderingProviderSpecialtyInformation_2310B>
</Loop_2310B>
<Loop_2400>
<LX_ServiceLineNumber_2400>
<LX01__AssignedNumber>2</LX01__AssignedNumber>
</LX_ServiceLineNumber_2400>
<SV1_ProfessionalService_2400>
<SV101_CompositeMedicalProcedureIdentifier_2400>
<SV101_01_ProductOrServiceIDQualifier>EE</SV101_01_ProductOrServiceIDQualifier>
<SV101_02_ProcedureCode>99999</SV101_02_ProcedureCode>
<SV101_07_Description>BLOOD</SV101_07_Description>
</SV101_CompositeMedicalProcedureIdentifier_2400>
<SV102__LineItemChargeAmount>200</SV102__LineItemChargeAmount>
<SV103__UnitOrBasisForMeasurementCode>PP</SV103__UnitOrBasisForMeasurementCode>
<SV104__ServiceUnitCount>3.5</SV104__ServiceUnitCount>
<SV107_CompositeDiagnosisCodePointer_2400>
<SV107_01_DiagnosisCodePointer>2</SV107_01_DiagnosisCodePointer>
</SV107_CompositeDiagnosisCodePointer_2400>
</SV1_ProfessionalService_2400>
<DTP_DateServiceDate_2400>
<DTP01__DateTimeQualifier>654</DTP01__DateTimeQualifier>
<DTP02__DateTimePeriodFormatQualifier>U8</DTP02__DateTimePeriodFormatQualifier>
<DTP03__ServiceDate>20191010</DTP03__ServiceDate>
</DTP_DateServiceDate_2400>
<REF_LineItemControlNumber_2400>
<REF01__ReferenceIdentificationQualifier>5F</REF01__ReferenceIdentificationQualifier>
<REF02__LineItemControlNumber>DDD.32.123</REF02__LineItemControlNumber>
</REF_LineItemControlNumber_2400>
</Loop_2400>
</Loop_2300>
</Loop_2000B>
</Loop_2000A>
</C13_335010X321A1_837Y6>
<C13_335010X321A1_837Y6>
<BHT_BeginningOfHierarchicalTransaction>
<BHT01__HierarchicalStructureCode>0011</BHT01__HierarchicalStructureCode>
<BHT02__TransactionSetPurposeCode>00</BHT02__TransactionSetPurposeCode>
<BHT03__OriginatorApplicationTransactionIdentifier>513513TR</BHT03__OriginatorApplicationTransactionIdentifier>
<BHT04__TransactionSetCreationDate>20200212</BHT04__TransactionSetCreationDate>
<BHT05__TransactionSetCreationTime>1287</BHT05__TransactionSetCreationTime>
<BHT06__ClaimOrEncounterIdentifier>DD</BHT06__ClaimOrEncounterIdentifier>
</BHT_BeginningOfHierarchicalTransaction>
<Loop_1000A>
<NM1_SubmitterName_1000A>
<NM101__EntityIdentifierCode>27</NM101__EntityIdentifierCode>
<NM102__EntityTypeQualifier>9</NM102__EntityTypeQualifier>
<NM103__SubmitterLastOrOrganizationName>AAA</NM103__SubmitterLastOrOrganizationName>
<NM108__IdentificationCodeQualifier>22</NM108__IdentificationCodeQualifier>
<NM109__SubmitterIdentifier>55555500</NM109__SubmitterIdentifier>
</NM1_SubmitterName_1000A>
<PER_SubmitterEDIContactInformation_1000A>
<PER01__ContactFunctionCode>LK</PER01__ContactFunctionCode>
<PER02__SubmitterContactName>John Smith</PER02__SubmitterContactName>
<PER03__CommunicationNumberQualifier>WW</PER03__CommunicationNumberQualifier>
<PER04__CommunicationNumber>2132220011</PER04__CommunicationNumber>
<PER05__CommunicationNumberQualifier>DD</PER05__CommunicationNumberQualifier>
<PER06__CommunicationNumber>DD_2#GMAIL.COM</PER06__CommunicationNumber>
</PER_SubmitterEDIContactInformation_1000A>
</Loop_1000A>
<Loop_1000B>
<NM1_ReceiverName_1000B>
<NM101__EntityIdentifierCode>21</NM101__EntityIdentifierCode>
<NM102__EntityTypeQualifier>0</NM102__EntityTypeQualifier>
<NM103__ReceiverName>AAA</NM103__ReceiverName>
<NM108__IdentificationCodeQualifier>32</NM108__IdentificationCodeQualifier>
<NM109__ReceiverPrimaryIdentifier>2514521</NM109__ReceiverPrimaryIdentifier>
</NM1_ReceiverName_1000B>
</Loop_1000B>
<Loop_2000A>
<HL_BillingProviderHierarchicalLevel_2000A>
<HL01__HierarchicalIDNumber>32</HL01__HierarchicalIDNumber>
<HL03__HierarchicalLevelCode>54</HL03__HierarchicalLevelCode>
<HL04__HierarchicalChildCode>32</HL04__HierarchicalChildCode>
</HL_BillingProviderHierarchicalLevel_2000A>
<Loop_2010AA>
<NM1_BillingProviderName_2010AA>
<NM101__EntityIdentifierCode>54</NM101__EntityIdentifierCode>
<NM102__EntityTypeQualifier>21</NM102__EntityTypeQualifier>
<NM103__BillingProviderLastOrOrganizationalName>AAA</NM103__BillingProviderLastOrOrganizationalName>
<NM108__IdentificationCodeQualifier>XX</NM108__IdentificationCodeQualifier>
<NM109__BillingProviderIdentifier>515151325</NM109__BillingProviderIdentifier>
</NM1_BillingProviderName_2010AA>
<N3_BillingProviderAddress_2010AA>
<N301__BillingProviderAddressLine>214 SS STREET</N301__BillingProviderAddressLine>
</N3_BillingProviderAddress_2010AA>
<N4_BillingProviderCityStateZIPCode_2010AA>
<N401__BillingProviderCityName>LA</N401__BillingProviderCityName>
<N402__BillingProviderStateOrProvinceCode>CA</N402__BillingProviderStateOrProvinceCode>
<N403__BillingProviderPostalZoneOrZIPCode>93500</N403__BillingProviderPostalZoneOrZIPCode>
</N4_BillingProviderCityStateZIPCode_2010AA>
<REF_BillingProviderTaxIdentification_2010AA>
<REF01__ReferenceIdentificationQualifier>OI</REF01__ReferenceIdentificationQualifier>
<REF02__BillingProviderTaxIdentificationNumber>5135151315</REF02__BillingProviderTaxIdentificationNumber>
</REF_BillingProviderTaxIdentification_2010AA>
</Loop_2010AA>
<Loop_2000B>
<HL_SubscriberHierarchicalLevel_2000B>
<HL01__HierarchicalIDNumber>5</HL01__HierarchicalIDNumber>
<HL02__HierarchicalParentIDNumber>5</HL02__HierarchicalParentIDNumber>
<HL03__HierarchicalLevelCode>55</HL03__HierarchicalLevelCode>
<HL04__HierarchicalChildCode>5</HL04__HierarchicalChildCode>
</HL_SubscriberHierarchicalLevel_2000B>
<SBR_SubscriberInformation_2000B>
<SBR01__PayerResponsibilitySequenceNumberCode>L</SBR01__PayerResponsibilitySequenceNumberCode>
<SBR02__IndividualRelationshipCode>32</SBR02__IndividualRelationshipCode>
<SBR03__SubscriberGroupOrPolicyNumber>252525Z125</SBR03__SubscriberGroupOrPolicyNumber>
<SBR09__ClaimFilingIndicatorCode>NM</SBR09__ClaimFilingIndicatorCode>
</SBR_SubscriberInformation_2000B>
<Loop_2010BA>
<NM1_SubscriberName_2010BA>
<NM101__EntityIdentifierCode>DCX</NM101__EntityIdentifierCode>
<NM102__EntityTypeQualifier>5</NM102__EntityTypeQualifier>
<NM103__SubscriberLastName>SMITH</NM103__SubscriberLastName>
<NM104__SubscriberFirstName>JOHN</NM104__SubscriberFirstName>
<NM108__IdentificationCodeQualifier>CA</NM108__IdentificationCodeQualifier>
<NM109__SubscriberPrimaryIdentifier>3656361.</NM109__SubscriberPrimaryIdentifier>
</NM1_SubscriberName_2010BA>
<N3_SubscriberAddress_2010BA>
<N301__SubscriberAddressLine>111 STREET</N301__SubscriberAddressLine>
</N3_SubscriberAddress_2010BA>
<N4_SubscriberCityStateZIPCode_2010BA>
<N401__SubscriberCityName>LA</N401__SubscriberCityName>
<N402__SubscriberStateCode>CA</N402__SubscriberStateCode>
<N403__SubscriberPostalZoneOrZIPCode>93000</N403__SubscriberPostalZoneOrZIPCode>
</N4_SubscriberCityStateZIPCode_2010BA>
<DMG_SubscriberDemographicInformation_2010BA>
<DMG01__DateTimePeriodFormatQualifier>K5</DMG01__DateTimePeriodFormatQualifier>
<DMG02__SubscriberBirthDate>19851010</DMG02__SubscriberBirthDate>
<DMG03__SubscriberGenderCode>U</DMG03__SubscriberGenderCode>
</DMG_SubscriberDemographicInformation_2010BA>
</Loop_2010BA>
<Loop_2010BB>
<NM1_PayerName_2010BB>
<NM101__EntityIdentifierCode>FF</NM101__EntityIdentifierCode>
<NM102__EntityTypeQualifier>3</NM102__EntityTypeQualifier>
<NM103__PayerName>AAA</NM103__PayerName>
<NM108__IdentificationCodeQualifier>GF</NM108__IdentificationCodeQualifier>
<NM109__PayerIdentifier>32514</NM109__PayerIdentifier>
</NM1_PayerName_2010BB>
</Loop_2010BB>
<Loop_2300>
<CLM_ClaimInformation_2300>
<CLM01__PatientControlNumber>5413</CLM01__PatientControlNumber>
<CLM02__TotalClaimChargeAmount>651</CLM02__TotalClaimChargeAmount>
<CLM05_HealthCareServiceLocationInformation_2300>
<CLM05_01_PlaceOfServiceCode>13</CLM05_01_PlaceOfServiceCode>
<CLM05_02_FacilityCodeQualifier>D</CLM05_02_FacilityCodeQualifier>
<CLM05_03_ClaimFrequencyCode>3</CLM05_03_ClaimFrequencyCode>
</CLM05_HealthCareServiceLocationInformation_2300>
<CLM06__ProviderOrSupplierSignatureIndicator>N</CLM06__ProviderOrSupplierSignatureIndicator>
<CLM07__AssignmentOrPlanParticipationCode>R</CLM07__AssignmentOrPlanParticipationCode>
<CLM08__BenefitsAssignmentCertificationIndicator>N</CLM08__BenefitsAssignmentCertificationIndicator>
<CLM09__ReleaseOfInformationCode>N</CLM09__ReleaseOfInformationCode>
<CLM10__PatientSignatureSourceCode>X</CLM10__PatientSignatureSourceCode>
</CLM_ClaimInformation_2300>
<REF_ClaimIdentifierForTransmissionIntermediaries_2300>
<REF01__ReferenceIdentificationQualifier>J1</REF01__ReferenceIdentificationQualifier>
<REF02__ValueAddedNetworkTraceNumber>FVC2514543254</REF02__ValueAddedNetworkTraceNumber>
</REF_ClaimIdentifierForTransmissionIntermediaries_2300>
<HI_HealthCareDiagnosisCode_2300>
<HI01_HealthCareCodeInformation_2300>
<HI01_01_DiagnosisTypeCode>CCC</HI01_01_DiagnosisTypeCode>
<HI01_02_DiagnosisCode>N111</HI01_02_DiagnosisCode>
</HI01_HealthCareCodeInformation_2300>
</HI_HealthCareDiagnosisCode_2300>
<Loop_2310B>
<NM1_RenderingProviderName_2310B>
<NM101__EntityIdentifierCode>32</NM101__EntityIdentifierCode>
<NM102__EntityTypeQualifier>2</NM102__EntityTypeQualifier>
<NM103__RenderingProviderLastOrOrganizationName>JOHN</NM103__RenderingProviderLastOrOrganizationName>
<NM104__RenderingProviderFirstName>SMITH</NM104__RenderingProviderFirstName>
<NM108__IdentificationCodeQualifier>TT</NM108__IdentificationCodeQualifier>
<NM109__RenderingProviderIdentifier>25431251</NM109__RenderingProviderIdentifier>
</NM1_RenderingProviderName_2310B>
<PRV_RenderingProviderSpecialtyInformation_2310B>
<PRV01__ProviderCode>TR</PRV01__ProviderCode>
<PRV02__ReferenceIdentificationQualifier>VFD</PRV02__ReferenceIdentificationQualifier>
<PRV03__ProviderTaxonomyCode>135454353L</PRV03__ProviderTaxonomyCode>
</PRV_RenderingProviderSpecialtyInformation_2310B>
</Loop_2310B>
<Loop_2400>
<LX_ServiceLineNumber_2400>
<LX01__AssignedNumber>2</LX01__AssignedNumber>
</LX_ServiceLineNumber_2400>
<SV1_ProfessionalService_2400>
<SV101_CompositeMedicalProcedureIdentifier_2400>
<SV101_01_ProductOrServiceIDQualifier>EE</SV101_01_ProductOrServiceIDQualifier>
<SV101_02_ProcedureCode>99999</SV101_02_ProcedureCode>
<SV101_07_Description>BLOOD</SV101_07_Description>
</SV101_CompositeMedicalProcedureIdentifier_2400>
<SV102__LineItemChargeAmount>200</SV102__LineItemChargeAmount>
<SV103__UnitOrBasisForMeasurementCode>PP</SV103__UnitOrBasisForMeasurementCode>
<SV104__ServiceUnitCount>3.5</SV104__ServiceUnitCount>
<SV107_CompositeDiagnosisCodePointer_2400>
<SV107_01_DiagnosisCodePointer>2</SV107_01_DiagnosisCodePointer>
</SV107_CompositeDiagnosisCodePointer_2400>
</SV1_ProfessionalService_2400>
<DTP_DateServiceDate_2400>
<DTP01__DateTimeQualifier>654</DTP01__DateTimeQualifier>
<DTP02__DateTimePeriodFormatQualifier>U8</DTP02__DateTimePeriodFormatQualifier>
<DTP03__ServiceDate>20191010</DTP03__ServiceDate>
</DTP_DateServiceDate_2400>
<REF_LineItemControlNumber_2400>
<REF01__ReferenceIdentificationQualifier>5F</REF01__ReferenceIdentificationQualifier>
<REF02__LineItemControlNumber>DDD.32.123</REF02__LineItemControlNumber>
</REF_LineItemControlNumber_2400>
</Loop_2400>
</Loop_2300>
</Loop_2000B>
</Loop_2000A>
</C13_335010X321A1_837Y6>
</file>
These have to be in two rows, I am using the following python code to convert it into panda data frame, but I am getting empty data frame.
import pandas as pd
import xml.etree.ElementTree as et
def xml_file(file):
columns = file.attrib
for xml in file.iter('C13_335010X321A1_837Y6'):
file_dict = columns.copy()
file_dict.update(xml.attrib)
yield file_dict
tree = et.parse(r"C:\Users\Desktop\test1.xml")
root = tree.getroot()
df = pd.DataFrame(list(xml_file(root)))

How to convert independent output lists to a dataframe

Hope you are having a great weekend. My problem is as follows:
For my designed model i am getting the following predictions:
[0.3182012736797333, 0.6817986965179443, 0.5067878365516663, 0.49321213364601135, 0.4795221984386444, 0.520477831363678, 0.532780110836029, 0.46721988916397095, 0.3282901346683502, 0.6717098355293274]
[0.362120658159256, 0.6378793120384216, 0.5134761929512024, 0.4865237772464752, 0.46048662066459656, 0.539513349533081, 0.5342788100242615, 0.4657211899757385, 0.34932515025138855, 0.6506748199462891]
[0.3647380471229553, 0.6352618932723999, 0.5087167620658875, 0.49128326773643494, 0.4709164798259735, 0.5290834903717041, 0.5408024787902832, 0.4591975510120392, 0.37024226784706116, 0.6297577023506165]
[0.43765324354171753, 0.5623468160629272, 0.505147397518158, 0.49485257267951965, 0.45281311869621277, 0.5471869111061096, 0.5416161417961121, 0.45838382840156555, 0.3789178133010864, 0.6210821866989136]
[0.44772887229919434, 0.5522711277008057, 0.5119441151618958, 0.48805591464042664, 0.46322566270828247, 0.5367743372917175, 0.5402485132217407, 0.45975151658058167, 0.4145151972770691, 0.5854847431182861]
[0.35674020648002625, 0.6432597637176514, 0.48104971647262573, 0.5189502835273743, 0.4554695188999176, 0.54453045129776, 0.5409557223320007, 0.45904430747032166, 0.3258989453315735, 0.6741010546684265]
[0.3909384310245514, 0.609061598777771, 0.4915180504322052, 0.5084819793701172, 0.45033228397369385, 0.5496677160263062, 0.5267384052276611, 0.47326159477233887, 0.34493446350097656, 0.6550655364990234]
[0.32971733808517456, 0.6702827215194702, 0.5224012732505798, 0.47759872674942017, 0.4692566692829132, 0.5307433605194092, 0.5360044836997986, 0.4639955163002014, 0.41811054944992065, 0.5818894505500793]
[0.37096619606018066, 0.6290338039398193, 0.5165190100669861, 0.4834809899330139, 0.4739859998226166, 0.526013970375061, 0.5340168476104736, 0.46598318219184875, 0.3438771069049835, 0.6561229228973389]
[0.4189890921115875, 0.5810109376907349, 0.52749103307724, 0.47250890731811523, 0.44485437870025635, 0.5551456212997437, 0.5398098230361938, 0.46019014716148376, 0.3739124536514282, 0.6260875463485718]
[0.3979812562465668, 0.6020187139511108, 0.5050275325775146, 0.49497246742248535, 0.4653399884700775, 0.5346599817276001, 0.537341833114624, 0.4626581072807312, 0.33742010593414307, 0.6625799536705017]
[0.368088960647583, 0.631911039352417, 0.49925288558006287, 0.5007471442222595, 0.4547160863876343, 0.545283854007721, 0.5408452749252319, 0.45915472507476807, 0.4053747355937958, 0.5946252346038818]
As you can see they are independent lists. I want to convert these lists into a dataframe. Although they are independent, they are coming out of a for loop, so i cannot append them because they are not coming at once.
Use:
data = [[0.3182012736797333, 0.6817986965179443, 0.5067878365516663, 0.49321213364601135, 0.4795221984386444, 0.520477831363678, 0.532780110836029, 0.46721988916397095, 0.3282901346683502, 0.6717098355293274],
[0.362120658159256, 0.6378793120384216, 0.5134761929512024, 0.4865237772464752, 0.46048662066459656, 0.539513349533081, 0.5342788100242615, 0.4657211899757385, 0.34932515025138855, 0.6506748199462891],
[0.3647380471229553, 0.6352618932723999, 0.5087167620658875, 0.49128326773643494, 0.4709164798259735, 0.5290834903717041, 0.5408024787902832, 0.4591975510120392, 0.37024226784706116, 0.6297577023506165],
[0.43765324354171753, 0.5623468160629272, 0.505147397518158, 0.49485257267951965, 0.45281311869621277, 0.5471869111061096, 0.5416161417961121, 0.45838382840156555, 0.3789178133010864, 0.6210821866989136],
[0.44772887229919434, 0.5522711277008057, 0.5119441151618958, 0.48805591464042664, 0.46322566270828247, 0.5367743372917175, 0.5402485132217407, 0.45975151658058167, 0.4145151972770691, 0.5854847431182861],
[0.35674020648002625, 0.6432597637176514, 0.48104971647262573, 0.5189502835273743, 0.4554695188999176, 0.54453045129776, 0.5409557223320007, 0.45904430747032166, 0.3258989453315735, 0.6741010546684265],
[0.3909384310245514, 0.609061598777771, 0.4915180504322052, 0.5084819793701172, 0.45033228397369385, 0.5496677160263062, 0.5267384052276611, 0.47326159477233887, 0.34493446350097656, 0.6550655364990234],
[0.32971733808517456, 0.6702827215194702, 0.5224012732505798, 0.47759872674942017, 0.4692566692829132, 0.5307433605194092, 0.5360044836997986, 0.4639955163002014, 0.41811054944992065, 0.5818894505500793],
[0.37096619606018066, 0.6290338039398193, 0.5165190100669861, 0.4834809899330139, 0.4739859998226166, 0.526013970375061, 0.5340168476104736, 0.46598318219184875, 0.3438771069049835, 0.6561229228973389],
[0.4189890921115875, 0.5810109376907349, 0.52749103307724, 0.47250890731811523, 0.44485437870025635, 0.5551456212997437, 0.5398098230361938, 0.46019014716148376, 0.3739124536514282, 0.6260875463485718],
[0.3979812562465668, 0.6020187139511108, 0.5050275325775146, 0.49497246742248535, 0.4653399884700775, 0.5346599817276001, 0.537341833114624, 0.4626581072807312, 0.33742010593414307, 0.6625799536705017],
[0.368088960647583, 0.631911039352417, 0.49925288558006287, 0.5007471442222595, 0.4547160863876343, 0.545283854007721, 0.5408452749252319, 0.45915472507476807, 0.4053747355937958, 0.5946252346038818]]
# Create this before your for loop
df = pd.DataFrame(columns = range(10))
for pred_list in data:
#Add this within your for loop
df = df.append(pd.Series(pred_list), ignore_index=True)
output:

different return types for getpath() in lxml

I have folders full of XML files which I want to parse to a dataframe. The following functions iterate through an XML tree recursively and return a dataframe with three columns: path, attributes and text.
def XML2DF(filename,df1,MAX_DEPTH=20):
with open(filename) as f:
xml_str = f.read()
tree = etree.fromstring(xml_str)
df1 = recursive_parseXML2DF(tree, df1, MAX_DEPTH=MAX_DEPTH)
return
def recursive_parseXML2DF(element, df1, depth=0, MAX_DEPTH=20):
if depth > MAX_DEPTH:
return df1
df2 = pd.DataFrame([[element.getroottree().getpath(element), element.attrib, element.text]],
columns=["path", "attrib", "text"])
#print(df2)
df1 = pd.concat([df1, df2])
for child in element.getchildren():
df1 = recursive_parseXML2DF(child, df1, depth=depth + 1)
return df1
The code for the function was adapted from this post.
Most of the times the function works fine and returns the entire path but for some documents the returned path looks like this:
/*/*[1]/*[3]
/*/*[1]/*[3]/*[1]
The text tag entry remains valid and correct.
The only difference in the XML between working path and widlcard path documents I can make out is that the XML tags are written in all caps.
Working example:
<?xml version="1.0" encoding="utf-8"?>
<root>
<Header>
<ReceivingApplication>ReceivingApplication</ReceivingApplication>
<SendingApplication>SendingApplication</SendingApplication>
<MessageControlID>12345</MessageControlID>
<ReceivingApplication>ReceivingApplication</ReceivingApplication>
<FileCreationDate>2000-01-01T00:00:00</FileCreationDate>
</Header>
<Einsendung>
<Patient>
<PatientName>Name</PatientName>
<PatientVorname>FirstName</PatientVorname>
<PatientGebDat>2000-01-01T00:00:00</PatientGebDat>
<PatientSex>4</PatientSex>
<PatientPWID>123456</PatientPWID>
</Patient>
<Visit>
<VisitNumber>A2000.0001</VisitNumber>
<PatientPLZ>1234</PatientPLZ>
<PatientOrt>PatientOrt</PatientOrt>
<PatientAdr2>
</PatientAdr2>
<PatientStrasse>PatientStrasse 01</PatientStrasse>
<VisitEinsID>1234</VisitEinsID>
<VisitBefund>VisitBefund</VisitBefund>
<Befunddatum>2000-01-01T00:00:00</Befunddatum>
</Visit>
</Einsendung>
</root>
nonsensical Example:
<?xml version="1.0"?>
<KRSCHWEIZ xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="krSCHWEIZ">
<KEY_VS>abcdefg</KEY_VS>
<KEY_KLR>abcdefg</KEY_KLR>
<ABSENDER>
<ABSENDER_MELDER_ID>123456</ABSENDER_MELDER_ID>
<MELDER>
<MELDER_ID>123456</MELDER_ID>
<QUELLSYSTEM>ABCDEF</QUELLSYSTEM>
<PATIENT>
<REFERENZNR>987654</REFERENZNR>
<NACHNAME>my name</NACHNAME>
<VORNAMEN>my first name</VORNAMEN>
<GEBURTSNAME />
<GEBURTSDATUM>my dob</GEBURTSDATUM>
<GESCHLECHT>XX</GESCHLECHT>
<PLZ>9999</PLZ>
<WOHNORT>Mycity</WOHNORT>
<STRASSE>mystreet</STRASSE>
<HAUSNR>99</HAUSNR>
<VERSICHERTENNR>999999999</VERSICHERTENNR>
<DATEIEN>
<DATEI>
<DATEINAME>my_attached_document.html</DATEINAME>
<DATEIBASE64>mybase_64_encoded_document</DATEIBASE64>
</DATEI>
</DATEIEN>
</PATIENT>
</MELDER>
</ABSENDER>
</KRSCHWEIZ>
How do I get correct explicit path information also for this case?
The prescence of namespaces changes the output of .getpath() - you can use .getelementpath() instead which will include the namespace prefix instead of using wildcards.
If the prefix should be discarded completely - you can strip them out before using .getpath()
import lxml.etree
import pandas as pd
rows = []
tree = lxml.etree.parse("broken.xml")
for node in tree.iter():
try:
node.tag = lxml.etree.QName(node).localname
except ValueError:
# skip tags with no name
continue
rows.append([tree.getpath(node), node.attrib, node.text])
df = pd.DataFrame(rows, columns=["path", "attrib", "text"])
Resulting dataframe:
>>> df
path attrib text
0 /KRSCHWEIZ [] \n
1 /KRSCHWEIZ/KEY_VS [] abcdefg
2 /KRSCHWEIZ/KEY_KLR [] abcdefg
3 /KRSCHWEIZ/ABSENDER [] \n
4 /KRSCHWEIZ/ABSENDER/ABSENDER_MELDER_ID [] 123456
5 /KRSCHWEIZ/ABSENDER/MELDER [] \n
6 /KRSCHWEIZ/ABSENDER/MELDER/MELDER_ID [] 123456
7 /KRSCHWEIZ/ABSENDER/MELDER/QUELLSYSTEM [] ABCDEF
8 /KRSCHWEIZ/ABSENDER/MELDER/PATIENT [] \n
9 /KRSCHWEIZ/ABSENDER/MELDER/PATIENT/REFERENZNR [] 987654
10 /KRSCHWEIZ/ABSENDER/MELDER/PATIENT/NACHNAME [] my name
11 /KRSCHWEIZ/ABSENDER/MELDER/PATIENT/VORNAMEN [] my first name
12 /KRSCHWEIZ/ABSENDER/MELDER/PATIENT/GEBURTSNAME [] None
13 /KRSCHWEIZ/ABSENDER/MELDER/PATIENT/GEBURTSDATUM [] my dob
14 /KRSCHWEIZ/ABSENDER/MELDER/PATIENT/GESCHLECHT [] XX
15 /KRSCHWEIZ/ABSENDER/MELDER/PATIENT/PLZ [] 9999
16 /KRSCHWEIZ/ABSENDER/MELDER/PATIENT/WOHNORT [] Mycity
17 /KRSCHWEIZ/ABSENDER/MELDER/PATIENT/STRASSE [] mystreet
18 /KRSCHWEIZ/ABSENDER/MELDER/PATIENT/HAUSNR [] 99
19 /KRSCHWEIZ/ABSENDER/MELDER/PATIENT/VERSICHERTENNR [] 999999999
20 /KRSCHWEIZ/ABSENDER/MELDER/PATIENT/DATEIEN [] \n
21 /KRSCHWEIZ/ABSENDER/MELDER/PATIENT/DATEIEN/DATEI [] \n
22 /KRSCHWEIZ/ABSENDER/MELDER/PATIENT/DATEIEN/DAT... [] my_attached_document.html
23 /KRSCHWEIZ/ABSENDER/MELDER/PATIENT/DATEIEN/DAT... [] mybase_64_encoded_document

How to convert XML data as a pandas data frame?

I'm trying to analysis XML file with python. I ned to get xml data as a pandas data frame.
import pandas as pd
import xml.etree.ElementTree as et
def parse_XML(xml_file, df_cols):
xtree = et.parse(xml_file)
xroot = xtree.getroot()
rows = []
for node in xroot:
res = []
res.append(node.attrib.get(df_cols[0]))
for el in df_cols[1:]:
if node is not None and node.find(el) is not None:
res.append(node.find(el).text)
else:
res.append(None)
rows.append({df_cols[i]: res[i]
for i, _ in enumerate(df_cols)})
out_df = pd.DataFrame(rows, columns=df_cols)
return out_df
parse_XML('/Users/newuser/Desktop/TESTRATP/arrets.xml', ["Name","gml"])
But I'm getting below data frame.
Name gml
0 None None
1 None None
2 None None
My XML file is :
<?xml version="1.0" encoding="UTF-8"?>
<PublicationDelivery version="1.09:FR-NETEX_ARRET-2.1-1.0" xmlns="http://www.netex.org.uk/netex" xmlns:core="http://www.govtalk.gov.uk/core" xmlns:gml="http://www.opengis.net/gml/3.2" xmlns:ifopt="http://www.ifopt.org.uk/ifopt" xmlns:siri="http://www.siri.org.uk/siri" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.netex.org.uk/netex">
<PublicationTimestamp>2020-08-05T06:00:01+00:00</PublicationTimestamp>
<ParticipantRef>transport.data.gouv.fr</ParticipantRef>
<dataObjects>
<GeneralFrame id="FR:GeneralFrame:NETEX_ARRET:" version="any">
<members>
<Quay id="FR:Quay:zenbus_StopPoint_SP_351400003_LOC:" version="any">
<Name>ST FELICIEN - Centre</Name>
<Centroid>
<Location>
<gml:pos srsName="EPSG:2154">828054.2068251468 6444393.512041969</gml:pos>
</Location>
</Centroid>
<TransportMode>bus</TransportMode>
</Quay>
<Quay id="FR:Quay:zenbus_StopPoint_SP_361350004_LOC:" version="any">
<Name>ST FELICIEN - Chemin de Juny</Name>
<Centroid>
<Location>
<gml:pos srsName="EPSG:2154">828747.3172982805 6445226.100290826</gml:pos>
</Location>
</Centroid>
<TransportMode>bus</TransportMode>
</Quay>
<Quay id="FR:Quay:zenbus_StopPoint_SP_343500005_LOC:" version="any">
<Name>ST FELICIEN - Darone</Name>
<Centroid>
<Location>
<gml:pos srsName="EPSG:2154">829036.2709757038 6444724.878001894</gml:pos>
</Location>
</Centroid>
<TransportMode>bus</TransportMode>
</Quay>
<Quay id="FR:Quay:zenbus_StopPoint_SP_359440004_LOC:" version="any">
<Name>ST FELICIEN - Col de Fontayes</Name>
<Centroid>
<Location>
<gml:pos srsName="EPSG:2154">829504.7993360173 6445490.57188837</gml:pos>
</Location>
</Centroid>
<TransportMode>bus</TransportMode>
</Quay>
</members>
</GeneralFrame>
</dataObjects>
</PublicationDelivery>
I gave you here little part of my xml file. I can't give you full XML file as it exceeding the character limits in stackoverflow. I'm wondering why I got above output and I don't know where the my error is. As I'm new to this please some one can help me? Thank you
My approach is avoid xml parsing and switch straight into pandas by using xmlplain to generate JSON from xml.
import xmlplain
with open("so_sample.xml") as f: js = xmlplain.xml_to_obj(f, strip_space=True, fold_dict=True)
df1 = pd.json_normalize(js).explode("PublicationDelivery.dataObjects.GeneralFrame.members")
# cleanup column names...
df1 = df1.rename(columns={c:c.replace("PublicationDelivery.", "").replace("dataObjects.GeneralFrame.","").strip()
for c in df1.columns})
# drop spurious columns
df1 = df1.drop(columns=[c for c in df1.columns if c[0]=="#"])
# expand second level of dictionaries
df1 = pd.json_normalize(df1.to_dict(orient="records"))
# cleanup columns from second set of dictionaries
df1 = df1.rename(columns={c:c.replace("members.Quay.", "") for c in df1.columns})
# expand next list and dicts
df1 = pd.json_normalize(df1.explode("Centroid.Location.gml:pos").to_dict(orient="records"))
# there are some NaNs - dela with them
df1["Centroid.Location.gml:pos.#srsName"].fillna(method="ffill", inplace=True)
df1["Centroid.Location.gml:pos"].fillna(method="bfill", inplace=True)
# de-dup
df1 = df1.groupby("#id", as_index=False).first()
# more columns than requested... for SO output
print(df1.loc[:,["Name", "Centroid.Location.gml:pos.#srsName", "Centroid.Location.gml:pos"]].to_string(index=False))
output
Name Centroid.Location.gml:pos.#srsName Centroid.Location.gml:pos
ST FELICIEN - Darone EPSG:2154 829036.2709757038 6444724.878001894
ST FELICIEN - Centre EPSG:2154 828054.2068251468 6444393.512041969
ST FELICIEN - Col de Fontayes EPSG:2154 829504.7993360173 6445490.57188837
ST FELICIEN - Chemin de Juny EPSG:2154 828747.3172982805 6445226.100290826
Alternative solution using pandas-read-xml
pip install pandas-read-xml
import pandas_read_xml as pdx
from pandas_read_xml import fully_flatten
df = pdx.read_xml(xml, ['PublicationDelivery', 'dataObjects', 'GeneralFrame', 'members']).pipe(fully_flatten)
The list is just the tags that you want to navigate to as the "root".
You many need to clean the column names afterwards.

parse xml to pandas data frame in python

I am trying to read the XML file and convert it to pandas. However it returns empty data
This is the sample of xml structure:
<Instance ID="1">
<MetaInfo StudentID ="DTSU040" TaskID="LP03_PR09.bLK.sh" DataSource="DeepTutorSummer2014"/>
<ProblemDescription>A car windshield collides with a mosquito, squashing it.</ProblemDescription>
<Question>How does this work tion?</Question>
<Answer>tthis is my best </Answer>
<Annotation Label="correct(0)|correct_but_incomplete(1)|contradictory(0)|incorrect(0)">
<AdditionalAnnotation ContextRequired="0" ExtraInfoInAnswer="0"/>
<Comments Watch="1"> The student forgot to tell the opposite force. Opposite means opposite direction, which is important here. However, one can argue that the opposite is implied. See the reference answers.</Comments>
</Annotation>
<ReferenceAnswers>
1: Since the windshield exerts a force on the mosquito, which we can call action, the mosquito exerts an equal and opposite force on the windshield, called the reaction.
</ReferenceAnswers>
</Instance>
I have tried this code, however it's not working on my side. It returns empty dataframe.
import pandas as pd
import xml.etree.ElementTree as et
xtree = et.parse("grade_data.xml")
xroot = xtree.getroot()
df_cols = ["ID", "TaskID", "DataSource", "ProblemDescription", 'Question', 'Answer',
'ContextRequired', 'ExtraInfoInAnswer', 'Comments', 'Watch', 'ReferenceAnswers']
rows = []
for node in xroot:
s_name = node.attrib.get("ID")
s_student = node.find("StudentID")
s_task = node.find("TaskID")
s_source = node.find("DataSource")
s_desc = node.find("ProblemDescription")
s_question = node.find("Question")
s_ans = node.find("Answer")
s_label = node.find("Label")
s_contextrequired = node.find("ContextRequired")
s_extraInfoinAnswer = node.find("ExtraInfoInAnswer")
s_comments = node.find("Comments")
s_watch = node.find("Watch")
s_referenceAnswers = node.find("ReferenceAnswers")
rows.append({"ID": s_name,"StudentID":s_student, "TaskID": s_task,
"DataSource": s_source, "ProblemDescription": s_desc ,
"Question": s_question , "Answer": s_ans ,"Label": s_label,
"s_contextrequired": s_contextrequired , "ExtraInfoInAnswer": s_extraInfoinAnswer ,
"Comments": s_comments , "Watch": s_watch, "ReferenceAnswers": s_referenceAnswers,
})
out_df = pd.DataFrame(rows, columns = df_cols)
The problem in your solution was that the "element data extraction" was not done properly. The xml you mentioned in the question is nested in several layers. And that is why we need to recursively read and extract the data. The following solution should give you what you need in this case. Although I would encourage you to look at this article and the python documentation for more clarity.
Method: 1
import numpy as np
import pandas as pd
#import os
import xml.etree.ElementTree as ET
def xml2df(xml_source, df_cols, source_is_file = False, show_progress=True):
"""Parse the input XML source and store the result in a pandas
DataFrame with the given columns.
For xml_source = xml_file, Set: source_is_file = True
For xml_source = xml_string, Set: source_is_file = False
<element attribute_key1=attribute_value1, attribute_key2=attribute_value2>
<child1>Child 1 Text</child1>
<child2>Child 2 Text</child2>
<child3>Child 3 Text</child3>
</element>
Note that for an xml structure as shown above, the attribute information of
element tag can be accessed by list(element). Any text associated with <element> tag can be accessed
as element.text and the name of the tag itself can be accessed with
element.tag.
"""
if source_is_file:
xtree = ET.parse(xml_source) # xml_source = xml_file
xroot = xtree.getroot()
else:
xroot = ET.fromstring(xml_source) # xml_source = xml_string
consolidator_dict = dict()
default_instance_dict = {label: None for label in df_cols}
def get_children_info(children, instance_dict):
# We avoid using element.getchildren() as it is deprecated.
# Instead use list(element) to get a list of attributes.
for child in children:
#print(child)
#print(child.tag)
#print(child.items())
#print(child.getchildren()) # deprecated method
#print(list(child))
if len(list(child))>0:
instance_dict = get_children_info(list(child),
instance_dict)
if len(list(child.keys()))>0:
items = child.items()
instance_dict.update({key: value for (key, value) in items})
#print(child.keys())
instance_dict.update({child.tag: child.text})
return instance_dict
# Loop over all instances
for instance in list(xroot):
instance_dict = default_instance_dict.copy()
ikey, ivalue = instance.items()[0] # The first attribute is "ID"
instance_dict.update({ikey: ivalue})
if show_progress:
print('{}: {}={}'.format(instance.tag, ikey, ivalue))
# Loop inside every instance
instance_dict = get_children_info(list(instance),
instance_dict)
#consolidator_dict.update({ivalue: instance_dict.copy()})
consolidator_dict[ivalue] = instance_dict.copy()
df = pd.DataFrame(consolidator_dict).T
df = df[df_cols]
return df
Run the following to generate the desired output.
xml_source = r'grade_data.xml'
df_cols = ["ID", "TaskID", "DataSource", "ProblemDescription", "Question", "Answer",
"ContextRequired", "ExtraInfoInAnswer", "Comments", "Watch", 'ReferenceAnswers']
df = xml2df(xml_source, df_cols, source_is_file = True)
df
Method: 2
Given you have the xml_string, you could convert xml >> dict >> dataframe. run the following to get the desired output.
Note: You will need to install xmltodict to use Method-2. This method is inspired by the solution suggested by #martin-blech at How to convert XML to JSON in Python? [duplicate]
. Kudos to #martin-blech for making it.
pip install -U xmltodict
Solution
def read_recursively(x, instance_dict):
#print(x)
txt = ''
for key in x.keys():
k = key.replace("#","")
if k in df_cols:
if isinstance(x.get(key), dict):
instance_dict, txt = read_recursively(x.get(key), instance_dict)
#else:
instance_dict.update({k: x.get(key)})
#print('{}: {}'.format(k, x.get(key)))
else:
#print('else: {}: {}'.format(k, x.get(key)))
# dig deeper if value is another dict
if isinstance(x.get(key), dict):
instance_dict, txt = read_recursively(x.get(key), instance_dict)
# add simple text associated with element
if k=='#text':
txt = x.get(key)
# update text to corresponding parent element
if (k!='#text') and (txt!=''):
instance_dict.update({k: txt})
return (instance_dict, txt)
You will need the function read_recursively() given above. Now run the following.
import xmltodict, json
o = xmltodict.parse(xml_string) # INPUT: XML_STRING
#print(json.dumps(o)) # uncomment to see xml to json converted string
consolidated_dict = dict()
oi = o['Instances']['Instance']
for x in oi:
instance_dict = dict()
instance_dict, _ = read_recursively(x, instance_dict)
consolidated_dict.update({x.get("#ID"): instance_dict.copy()})
df = pd.DataFrame(consolidated_dict).T
df = df[df_cols]
df
Several issues:
Calling .find on the loop variable, node, expects a child node to exist: current_node.find('child_of_current_node'). However, since all the nodes are the children of root they do not maintain their own children, so no loop is required;
Not checking NoneType that can result from missing nodes with find() and prevents retrieving .tag or .text or other attributes;
Not retrieving node content with .text, otherwise the <Element... object is returned;
Consider this adjustment using the ternary condition expression a if condition else b to ensure variable has a value regardless:
rows = []
s_name = xroot.attrib.get("ID")
s_student = xroot.find("StudentID").text if xroot.find("StudentID") is not None else None
s_task = xroot.find("TaskID").text if xroot.find("TaskID") is not None else None
s_source = xroot.find("DataSource").text if xroot.find("DataSource") is not None else None
s_desc = xroot.find("ProblemDescription").text if xroot.find("ProblemDescription") is not None else None
s_question = xroot.find("Question").text if xroot.find("Question") is not None else None
s_ans = xroot.find("Answer").text if xroot.find("Answer") is not None else None
s_label = xroot.find("Label").text if xroot.find("Label") is not None else None
s_contextrequired = xroot.find("ContextRequired").text if xroot.find("ContextRequired") is not None else None
s_extraInfoinAnswer = xroot.find("ExtraInfoInAnswer").text if xroot.find("ExtraInfoInAnswer") is not None else None
s_comments = xroot.find("Comments").text if xroot.find("Comments") is not None else None
s_watch = xroot.find("Watch").text if xroot.find("Watch") is not None else None
s_referenceAnswers = xroot.find("ReferenceAnswers").text if xroot.find("ReferenceAnswers") is not None else None
rows.append({"ID": s_name,"StudentID":s_student, "TaskID": s_task,
"DataSource": s_source, "ProblemDescription": s_desc ,
"Question": s_question , "Answer": s_ans ,"Label": s_label,
"s_contextrequired": s_contextrequired , "ExtraInfoInAnswer": s_extraInfoinAnswer ,
"Comments": s_comments , "Watch": s_watch, "ReferenceAnswers": s_referenceAnswers
})
out_df = pd.DataFrame(rows, columns = df_cols)
Alternatively, run a more dynamic version assigning to an inner dictionary using the iterator variable:
rows = []
for node in xroot:
inner = {}
inner[node.tag] = node.text
rows.append(inner)
out_df = pd.DataFrame(rows, columns = df_cols)
Or list/dict comprehension:
rows = [{node.tag: node.text} for node in xroot]
out_df = pd.DataFrame(rows, columns = df_cols)

Categories

Resources