iterative function for calculating exponents without using ** - python

I need to write a program where I write an iterative function that calculates the exponential of base * exponent without using ** operator in my program.
I have tried the code I have already created but am unsure how to fix my error of "int" object is not callable.
def iterPower (base, exp):
"""Run a program in which the base multiplies itself by the exponent value"""
exp = 3
for n in base(exp):
exp *= base
return exp
base = 5
exp = 3
print(iterPower(5,3))
The expected result would be the answer of 125, but I am not getting any number due to my errors.

You need to multyply base * base exp times:
def iterPower (base, exp):
"""Run a program ion which the base multiplies itself by the exponent value"""
n = base
for _ in range(1, exp):
n *= base
return n
Results:
>>> iterPower(5, 3)
125
>>> 5**3
125

Youre passing in integers so you can't call 5(3), like base(exp) does. Try using for n in range(exp) instead, it will give you the desired number of iterations.

Here is an answer using the "While" loop:
result = 1
while exp > 0:
result *= base
exp -= 1
return result

Related

Query regarding Bit Counting (Python)

I tried to solve this Kata problem
Write a function that takes an integer as input, and returns the number of bits that are equal to one in the binary representation of that number. You can guarantee that input is non-negative.
Example: The binary representation of 1234 is 10011010010, so the function should return 5 in this case.
But the problem is my code gives the correct answers right for the first time around but when
it is run for 2nd time onward it gives wrong answers only. I think it has to do sth with how my code is recursive. Please help me figure it out.
for example when i run count_bits(24) it gives the output 2 which is correct but when i run the same function again it would give 4 and then 6 and so on . I dont know what's wrong with this
My code.
dec_num = []
def count_bits(n):
def DecimalToBinary(n):
if n >= 1:
DecimalToBinary(n // 2)
dec_num.append( n % 2)
return dec_num
dec = DecimalToBinary(n)
return dec.count(1)
There is no need to create a list of digits if all you need is their sum. When possible, avoid creating mutable state in a recursive solution:
def count_bits(n):
if n > 0:
return n % 2 + count_bits(n // 2)
else:
return 0
That's a pretty natural translation of the obvious algorithm:
The sum of the bits in a number is the last bit plus the sum of the bits in the rest of the number.
Sometimes it's convenient to accumulate a result, which is best done by adding an accumulator argument. In some languages, that can limit stack usage, although not in Python which doesn't condense tail calls. All the same, some might find this more readable:
def count_bits(n, accum = 0):
if n > 0:
return count_bits(n // 2, accum + n % 2)
else:
return accum
In Python, a generator is a more natural control structure:
def each_bit(n):
while n > 0:
yield n % 2
n //= 2
def count_bits(n):
return sum(each_bit(n))
Of course, there are lots more ways to solve this problem.
That is because dec_num is outside the method, so it's reused at every call, put it inside
def count_bits(n):
dec_num = []
def DecimalToBinary(n):
if n >= 1:
DecimalToBinary(n // 2)
dec_num.append(n % 2)
return dec_num
dec = DecimalToBinary(n)
return dec.count(1)

Power digit sum

I am trying to solve this excercise:
https://projecteuler.net/problem=16
The code is pretty self-explanatory: I calculate 2^n in power(n), and in sum(n), I cut off the last digit of the number. I do this as long as pow > 0. I receive the right solution for 2^15, but for one reason or another, the same code doesn't work for 2^1000. I receive 1889, which is apparently wrong.
def power(n):
power = 2
for x in range(1, n):
power = 2*power
return power
def sum(n):
pow = power(n)
sum = 0
while pow > 0:
modulo = pow%10
sum = sum + modulo
pow = int((pow - modulo)/10)
return sum
def main():
print(int(sum(1000)))
if __name__ == '__main__':
main()
A simple change in your code will give you the correct answer,
def power(n):
power = 2
for x in range(1, n):
power = 2*power
return power
def sum(n):
pow = power(n)
sum = 0
while pow > 0:
modulo = pow%10
sum = sum + modulo
pow = pow//10 # modified line
return sum
def main():
print(int(sum(1000)))
if __name__ == '__main__':
main()
The reason why your example doesn't work is because you are casting the result of a float operation to int. Floats are never precise and when they are very large, they loose precision. Hence if you convert them back to integer, you get a much lower value.
A better function using divmod() is,
def sum(n):
pow = power(n)
sum = 0
while pow > 0:
pow,modulo = divmod(pow,10)
sum = sum + modulo
return sum
Your original solution would have worked in Python 2 because Python 2 and Python 3 handle division differently.
For example print(1/2) gives 0 in Python2, and 0.5 in Python3. In Python3, we use // for floor division (which is what you want here).
Your code doesn't work for any number >= 57
The problem here is very easy to solve.
In python 3 and higher, / is a division that returns a float, while // is an integer division that always returns an integer. Since you are using float division, you are encountering the issues with floating point arithmetic.
More about the issues and limitations.
To solve your problem, change the line
pow = int(pow - modulo)/10
into
pow = int(pow - modulo)//10
or even better, you can just say pow//=10
Isn't python beatiful?
def Power_digit_sum(n):
number = list(str(2**n)) # pow number and convert number in string and list
result= [int(i) for i in number]# convert number in int and
return sum(result) # sum list
print(Power_digit_sum(15)) # result 26
print(Power_digit_sum(1000)) # result 1366

power arguments in Python

Undertaking a task to Write a function power that accepts two arguments, a and b and calculates a raised to the power b.
Example
power(2, 3) => 8
Note: Don't use
2 ** 3
and don't use
Math.pow(2, 3)
I have tried this
def power(a,b):
return eval(((str(a)+"*")*b)[:-1])
And it works but seems to fail one test which is to return_1_when_exp_is_0
and i also get the error
Unhandled Exception: unexpected EOF while parsing (, line 0)
Please how do i solve this issue considering that i am new to python
This worked fine
def power(a,b):
if b == 0:
return 1
else:
return eval(((str(a)+"*")*b)[:-1])
Using eval is a terrible idea, but if you really wanted to then using join() would be a better way to create the string:
def power(a, b):
return eval('*'.join([str(a)]*b))
>>> power(2, 3)
8
If you add ['1'] to the front then the 0 exponent behaves properly:
def power(a, b):
return eval('*'.join(['1']+[str(a)]*b))
>>> power(2, 0)
1
However, this is simple to implement for integer exponents with a for loop:
def power(n, e):
t = 1
for _ in range(e):
t *= n
return t
>>> power(2, 3)
8
>>> power(2, 0)
1
You could also use functools.reduce() to do the same thing:
import functools as ft
import operator as op
def power(n, e):
return ft.reduce(op.mul, [n]*e, 1)
You can use a for loop
x=1
for i in range(b):
x=x*a
print(x)
def power(theNumber, thePower):
#basically, multiply the number for power times
try:
theNumber=int(theNumber)
thePower=int(thePower)
if theNumber == 0:
return 0
elif thePower == 0:
return 1
else:
return theNumber * power(theNumber,thePower-1)
except exception as err:
return 'Only digits are allowed as input'
You should avoid eval by all costs, especially when it's very simple to implement pure algorithmic efficient solution. Classic efficient algorithm is Exponentiation_by_squaring. Instead of computing and multiplying numbers n times, you can always divide it to squares to archive logarithmic* complexity.
For example, for calculating x^15:
x^15 = (x^7)*(x^7)*x
x^7 = (x^3)*(x^3)*x
x^3 = x*x*x
Thus taking 6 multiplications instead of 14.
def pow3(x, n):
r = 1
while n:
if n % 2 == 1:
r *= x
n -= 1
x *= x
n /= 2
return r
Source: https://helloacm.com/exponentiation-by-squaring/
Note: it was not mentioned in the question, but everything above considers N to be positive integer. If your question was also covering fractional or negative exponent, suggested approach will not work "as is".
* Of course depends on length of x and complexity of multiplying, see Wikipedia for detailed complexity analysis.
Also may be interesting to check out following questions: C solution or Python implementing pow() for exponentiation by squaring for very large integers
def power(a, b):
if b == 0:
return 1
else:
return a ** b

Calculate e in Python [duplicate]

This question already has answers here:
Python basic math [closed]
(3 answers)
Closed 8 years ago.
What would the easiest way to represent the following equation be?
Just to clarify, my question is asking for some code that calculates the answer to the equation.
There are two problems with this:
The summation warrants an infinite loop which is impossible to get an answer from
I hoping for a long, detailed answer (maybe to 40 digits or so).
If you need more precision, you could try to use Fraction:
from fractions import Fraction # use rational numbers, they are more precise than floats
e = Fraction(0)
f = Fraction(1)
n = Fraction(1)
while True:
d = Fraction(1) / f # this ...
if d < Fraction(1, 10**40): # don't continue if the advancement is too small
break
e += d # ... and this are the formula you wrote for "e"
f *= n # calculate factorial incrementally, faster than calling "factorial()" all the time
n += Fraction(1) # we will use this for calculating the next factorial
print(float(e))
or Decimal:
from decimal import Decimal, getcontext
getcontext().prec = 40 # set the precision to 40 places
e = Decimal(0)
f = Decimal(1)
n = Decimal(1)
while True:
olde = e
e += Decimal(1) / f
if e == olde: # if there was no change in the 40 places, stop.
break
f *= n
n += Decimal(1)
print(float(e))
So here is e in 1000 places:
2.718281828459045235360287471352662497757247093699959574966967627724076630353547594571382178525166427427466391932003059921817413596629043572900334295260595630738132328627943490763233829880753195251019011573834187930702154089149934884167509244761460668082264800168477411853742345442437107539077744992069551702761838606261331384583000752044933826560297606737113200709328709127443747047230696977209310141692836819025515108657463772111252389784425056953696770785449969967946864454905987931636889230098793127736178215424999229576351482208269895193668033182528869398496465105820939239829488793320362509443117301238197068416140397019837679320683282376464804295311802328782509819455815301756717361332069811250996181881593041690351598888519345807273866738589422879228499892086805825749279610484198444363463244968487560233624827041978623209002160990235304369941849146314093431738143640546253152096183690888707016768396424378140592714563549061303107208510383750510115747704171898610687396965521267154688957035044
To see more clearly what it does, here is its simplified version:
e = f = 1.0
for i in range(2, 16):
e += 1.0 / f
f *= i
print(e)
The obvious solution would be
import math
def e(n=10):
return sum(1 / float(math.factorial(i)) for i in range(n))
but it loses precision around n=20 (the error as compared to math.e is around 10^-16)
40-digits precision might be a challenge, and might require arbitrary precision arithmetic
I do not really see the point to have such precise "e" value since you won't be able to perform any calculations with such precision (if you do anything to it, you will lose that precision, unless you do everything in some arbitrary precision arithmetic).
To produce a similar result to my answer from a question on approximating pi:
from functools import wraps
def memoize(f):
"""Store and retrive previous results of the decorated function f."""
cache = {}
#wraps(f)
def func(*args):
if args not in cache:
cache[args] = f(*args)
return cache[args]
return func
#memoize
def fact(n):
"""Recursively calculates n!."""
if n <= 1:
return 1
return n * fact(n - 1)
def inverse_fact_n(start_n=0):
"""Generator producing the infinite series 1/n!."""
numerator = 1.0
denominator = start_n
while True:
yield numerator / fact(denominator)
denominator += 1
def approximate_e(steps=None, tolerance=None):
"""Calculate an approximation of e from summation of 1/n!."""
if steps is None and tolerance is None:
raise ValueError("Must supply one of steps or tolerance.")
series = inverse_fact_n()
if steps is not None: # stepwise method
return sum(next(series) for _ in range(steps))
output = 0 # tolerance method
term = next(series)
while abs(term) > tolerance:
output += term
term = next(series)
return output
if __name__ == "__main__":
from math import e
print("math.e:\t\t{0:.20f}.".format(e))
stepwise = approximate_e(steps=100)
print("Stepwise:\t{0:.20f}.".format(stepwise))
tolerated = approximate_e(tolerance=0.0000000001)
print("Tolerated:\t{0:.20f}.".format(tolerated))
The function approximate_e allows you to specify either:
A number of steps ("I want it to take this long"); or
A desired tolerance ("I want it to be this accurate").
There is some relatively advanced Python around this (e.g. the memoizing decorator function and the generator function to produce the series), but you can just focus on the main function, where next(series) gives you the next term of the summation.
This gives me the output:
math.e: 2.71828182845904509080.
Stepwise: 2.71828182845904553488.
Tolerated: 2.71828182844675936281.
The most effective way is to use the properties of the exponential function.
exp(x)=(exp(x/N))^N
Thus you compute x=exp(2^(-n)) with 2n bits more precision than required in the final result, and compute e by squaring the result n times.
For small numbers x, the error of truncating the series for exp(x) at the term with power m-1 is smaller than two times the next term with power m.
To summarize, to compute e with a precision/accuracy of d bit, you select some medium large n and select m such that
2^(1-mn)/m! is smaller than 2^(-d-2n)
This determination of m can also be done dynamically (using Decimal as in the answer of user22698)
from decimal import Decimal, getcontext
def eulernumber(d):
dd=d
n=4
while dd > 1:
dd /= 8
n += 1
getcontext().prec = d+n
x = Decimal(1)/Decimal(1 << n)
eps = Decimal(1)/Decimal(1 << (1 + (10*d)/3 ))
term = x
expsum = Decimal(1) + x
m = 2
while term > eps:
term *= x / Decimal(m)
m += 1
expsum += term
for k in range(n):
expsum *= expsum
getcontext().prec = d
expsum += Decimal(0)
return expsum
if __name__ == "__main__":
for k in range(1,6):
print(k,eulernumber(4*k))
for k in range(10,13):
print(k,eulernumber(4*k))
with output
( 1, Decimal('2.718'))
( 2, Decimal('2.7182818'))
( 3, Decimal('2.71828182846'))
( 4, Decimal('2.718281828459045'))
( 5, Decimal('2.7182818284590452354'))
(10, Decimal('2.718281828459045235360287471352662497757'))
(11, Decimal('2.7182818284590452353602874713526624977572471'))
(12, Decimal('2.71828182845904523536028747135266249775724709370'))
See the (unix/posix) bc math library for a more professional implementation of this idea, also for the logarithm and trig functions. The code of the exponential function is even given as example in the man page.

Convert to different positional notation in Python 3

I'm trying to write a function that allows me to convert a number from a certain positional notation to another one of choice, from binary all the way to *hexa*trigesimal base numbers. In order to do so I first need to be able to convert my initial number (given as a string) to a decimal number to make further conversion easier.
However, my function appears to have a mistake.
What I have:
def decimal(number, base1):
number_dec = 0
val = '0123456789abcdefghijklmnopqrstuvwxyz'
if base1 != 10:
for digit in number[::-1]:
factor = val.find(digit)
for exp in range(0, len(number)):
number_dec += factor * base1 **exp
else:
number_dec = number
return number_dec
If I enter, for instance:
decimal('4d2', 16)
The function returns '5187' instead of the correct '1234'.
Where is the mistake?
You perform the entire loop for every digit:
for exp in range(0, len(number)):
number_dec += factor * base1 **exp
If you don't have to roll out your own, you could just use the built-in facility:
In [2]: int('4d2', 16)
Out[2]: 1234

Categories

Resources