Related
I know that most decimals don't have an exact floating point representation (Is floating point math broken?).
But I don't see why 4*0.1 is printed nicely as 0.4, but 3*0.1 isn't, when
both values actually have ugly decimal representations:
>>> 3*0.1
0.30000000000000004
>>> 4*0.1
0.4
>>> from decimal import Decimal
>>> Decimal(3*0.1)
Decimal('0.3000000000000000444089209850062616169452667236328125')
>>> Decimal(4*0.1)
Decimal('0.40000000000000002220446049250313080847263336181640625')
The simple answer is because 3*0.1 != 0.3 due to quantization (roundoff) error (whereas 4*0.1 == 0.4 because multiplying by a power of two is usually an "exact" operation). Python tries to find the shortest string that would round to the desired value, so it can display 4*0.1 as 0.4 as these are equal, but it cannot display 3*0.1 as 0.3 because these are not equal.
You can use the .hex method in Python to view the internal representation of a number (basically, the exact binary floating point value, rather than the base-10 approximation). This can help to explain what's going on under the hood.
>>> (0.1).hex()
'0x1.999999999999ap-4'
>>> (0.3).hex()
'0x1.3333333333333p-2'
>>> (0.1*3).hex()
'0x1.3333333333334p-2'
>>> (0.4).hex()
'0x1.999999999999ap-2'
>>> (0.1*4).hex()
'0x1.999999999999ap-2'
0.1 is 0x1.999999999999a times 2^-4. The "a" at the end means the digit 10 - in other words, 0.1 in binary floating point is very slightly larger than the "exact" value of 0.1 (because the final 0x0.99 is rounded up to 0x0.a). When you multiply this by 4, a power of two, the exponent shifts up (from 2^-4 to 2^-2) but the number is otherwise unchanged, so 4*0.1 == 0.4.
However, when you multiply by 3, the tiny little difference between 0x0.99 and 0x0.a0 (0x0.07) magnifies into a 0x0.15 error, which shows up as a one-digit error in the last position. This causes 0.1*3 to be very slightly larger than the rounded value of 0.3.
Python 3's float repr is designed to be round-trippable, that is, the value shown should be exactly convertible into the original value (float(repr(f)) == f for all floats f). Therefore, it cannot display 0.3 and 0.1*3 exactly the same way, or the two different numbers would end up the same after round-tripping. Consequently, Python 3's repr engine chooses to display one with a slight apparent error.
repr (and str in Python 3) will put out as many digits as required to make the value unambiguous. In this case the result of the multiplication 3*0.1 isn't the closest value to 0.3 (0x1.3333333333333p-2 in hex), it's actually one LSB higher (0x1.3333333333334p-2) so it needs more digits to distinguish it from 0.3.
On the other hand, the multiplication 4*0.1 does get the closest value to 0.4 (0x1.999999999999ap-2 in hex), so it doesn't need any additional digits.
You can verify this quite easily:
>>> 3*0.1 == 0.3
False
>>> 4*0.1 == 0.4
True
I used hex notation above because it's nice and compact and shows the bit difference between the two values. You can do this yourself using e.g. (3*0.1).hex(). If you'd rather see them in all their decimal glory, here you go:
>>> Decimal(3*0.1)
Decimal('0.3000000000000000444089209850062616169452667236328125')
>>> Decimal(0.3)
Decimal('0.299999999999999988897769753748434595763683319091796875')
>>> Decimal(4*0.1)
Decimal('0.40000000000000002220446049250313080847263336181640625')
>>> Decimal(0.4)
Decimal('0.40000000000000002220446049250313080847263336181640625')
Here's a simplified conclusion from other answers.
If you check a float on Python's command line or print it, it goes through function repr which creates its string representation.
Starting with version 3.2, Python's str and repr use a complex rounding scheme, which prefers
nice-looking decimals if possible, but uses more digits where
necessary to guarantee bijective (one-to-one) mapping between floats
and their string representations.
This scheme guarantees that value of repr(float(s)) looks nice for simple
decimals, even if they can't be
represented precisely as floats (eg. when s = "0.1").
At the same time it guarantees that float(repr(x)) == x holds for every float x
Not really specific to Python's implementation but should apply to any float to decimal string functions.
A floating point number is essentially a binary number, but in scientific notation with a fixed limit of significant figures.
The inverse of any number that has a prime number factor that is not shared with the base will always result in a recurring dot point representation. For example 1/7 has a prime factor, 7, that is not shared with 10, and therefore has a recurring decimal representation, and the same is true for 1/10 with prime factors 2 and 5, the latter not being shared with 2; this means that 0.1 cannot be exactly represented by a finite number of bits after the dot point.
Since 0.1 has no exact representation, a function that converts the approximation to a decimal point string will usually try to approximate certain values so that they don't get unintuitive results like 0.1000000000004121.
Since the floating point is in scientific notation, any multiplication by a power of the base only affects the exponent part of the number. For example 1.231e+2 * 100 = 1.231e+4 for decimal notation, and likewise, 1.00101010e11 * 100 = 1.00101010e101 in binary notation. If I multiply by a non-power of the base, the significant digits will also be affected. For example 1.2e1 * 3 = 3.6e1
Depending on the algorithm used, it may try to guess common decimals based on the significant figures only. Both 0.1 and 0.4 have the same significant figures in binary, because their floats are essentially truncations of (8/5)(2^-4) and (8/5)(2^-6) respectively. If the algorithm identifies the 8/5 sigfig pattern as the decimal 1.6, then it will work on 0.1, 0.2, 0.4, 0.8, etc. It may also have magic sigfig patterns for other combinations, such as the float 3 divided by float 10 and other magic patterns statistically likely to be formed by division by 10.
In the case of 3*0.1, the last few significant figures will likely be different from dividing a float 3 by float 10, causing the algorithm to fail to recognize the magic number for the 0.3 constant depending on its tolerance for precision loss.
Edit:
https://docs.python.org/3.1/tutorial/floatingpoint.html
Interestingly, there are many different decimal numbers that share the same nearest approximate binary fraction. For example, the numbers 0.1 and 0.10000000000000001 and 0.1000000000000000055511151231257827021181583404541015625 are all approximated by 3602879701896397 / 2 ** 55. Since all of these decimal values share the same approximation, any one of them could be displayed while still preserving the invariant eval(repr(x)) == x.
There is no tolerance for precision loss, if float x (0.3) is not exactly equal to float y (0.1*3), then repr(x) is not exactly equal to repr(y).
Why are in some float multiplications in python those weird residuum?
e.g.
>>> 50*1.1
55.00000000000001
but
>>> 30*1.1
33.0
The reason should be somewhere in the binary representation of floats, but where is the difference in particular of both examples?
(This answer assumes your Python implementation uses IEEE-754 binary64, which is common.)
When 1.1 is converted to floating-point, the result is exactly 1.100000000000000088817841970012523233890533447265625, because this is the nearest representable value. (This number is 4953959590107546 • 2−52 — an integer with at most 53 bits multiplied by a power of two.)
When that is multiplied by 50, the exact mathematical result is 55.00000000000000444089209850062616169452667236328125. That cannot be exactly represented in binary64. To fit it into the binary64 format, it is rounded to the nearest representable value, which is 55.00000000000000710542735760100185871124267578125 (which is 7740561859543041 • 2−47).
When it is multiplied by 30, the exact result is 33.00000000000000266453525910037569701671600341796875. it also cannot be represented exactly in binary64. It is rounded to the nearest representable value, which is 33. (The next higher representable value is 33.00000000000000710542735760100185871124267578125, and we can see …026 is closer to …000 than to …071.)
That explains what the internal results are. Next there is an issue of how your Python implementation formats the output. I do not believe the Python implementation is strict about this, but it is likely one of two methods is used:
In effect, the number is converted to a certain number of decimal digits, and then trailing insignificant zeros are removed. Converting 55.00000000000000710542735760100185871124267578125 to a numeral with 16 digits after the decimal point yields 55.00000000000001, which has no trailing zeros to remove. Converting 33 to a numeral with 16 digits after the decimal point yields 33.00000000000000, which has 15 trailing zeros to remove. (Presumably your Python implementation always leaves at least one trailing zero after a decimal point to clearly distinguish that it is a floating-point number rather than an integer.)
Just enough decimal digits are used to uniquely distinguish the number from adjacent representable values. This method is required in Java and JavaScript but is not yet common in other programming languages. In the case of 55.00000000000000710542735760100185871124267578125, printing “55.00000000000001” distinguishes it from the neighboring values 55 (which would be formatted as “55.0”) and 55.0000000000000142108547152020037174224853515625 (which would be “55.000000000000014”).
This is more of a numerical analysis rather than programming question, but I suppose some of you will be able to answer it.
In the sum two floats, is there any precision lost? Why?
In the sum of a float and a integer, is there any precision lost? Why?
Thanks.
In the sum two floats, is there any precision lost?
If both floats have differing magnitude and both are using the complete precision range (of about 7 decimal digits) then yes, you will see some loss in the last places.
Why?
This is because floats are stored in the form of (sign) (mantissa) × 2(exponent). If two values have differing exponents and you add them, then the smaller value will get reduced to less digits in the mantissa (because it has to adapt to the larger exponent):
PS> [float]([float]0.0000001 + [float]1)
1
In the sum of a float and a integer, is there any precision lost?
Yes, a normal 32-bit integer is capable of representing values exactly which do not fit exactly into a float. A float can still store approximately the same number, but no longer exactly. Of course, this only applies to numbers that are large enough, i. e. longer than 24 bits.
Why?
Because float has 24 bits of precision and (32-bit) integers have 32. float will still be able to retain the magnitude and most of the significant digits, but the last places may likely differ:
PS> [float]2100000050 + [float]100
2100000100
The precision depends on the magnitude of the original numbers. In floating point, the computer represents the number 312 internally as scientific notation:
3.12000000000 * 10 ^ 2
The decimal places in the left hand side (mantissa) are fixed. The exponent also has an upper and lower bound. This allows it to represent very large or very small numbers.
If you try to add two numbers which are the same in magnitude, the result should remain the same in precision, because the decimal point doesn't have to move:
312.0 + 643.0 <==>
3.12000000000 * 10 ^ 2 +
6.43000000000 * 10 ^ 2
-----------------------
9.55000000000 * 10 ^ 2
If you tried to add a very big and a very small number, you would lose precision because they must be squeezed into the above format. Consider 312 + 12300000000000000000000. First you have to scale the smaller number to line up with the bigger one, then add:
1.23000000000 * 10 ^ 15 +
0.00000000003 * 10 ^ 15
-----------------------
1.23000000003 <-- precision lost here!
Floating point can handle very large, or very small numbers. But it can't represent both at the same time.
As for ints and doubles being added, the int gets turned into a double immediately, then the above applies.
When adding two floating point numbers, there is generally some error. D. Goldberg's "What Every Computer Scientist Should Know About Floating-Point Arithmetic" describes the effect and the reasons in detail, and also how to calculate an upper bound on the error, and how to reason about the precision of more complex calculations.
When adding a float to an integer, the integer is first converted to a float by C++, so two floats are being added and error is introduced for the same reasons as above.
The precision available for a float is limited, so of course there is always the risk that any given operation drops precision.
The answer for both your questions is "yes".
If you try adding a very large float to a very small one, you will for instance have problems.
Or if you try to add an integer to a float, where the integer uses more bits than the float has available for its mantissa.
The short answer: a computer represents a float with a limited number of bits, which is often done with mantissa and exponent, so only a few bytes are used for the significant digits, and the others are used to represent the position of the decimal point.
If you were to try to add (say) 10^23 and 7, then it won't be able to accurately represent that result. A similar argument applies when adding a float and integer -- the integer will be promoted to a float.
In the sum two floats, is there any precision lost?
In the sum of a float and a integer, is there any precision lost? Why?
Not always. If the sum is representable with the precision you ask, and you won't get any precision loss.
Example: 0.5 + 0.75 => no precision loss
x * 0.5 => no precision loss (except if x is too much small)
In the general case, one add floats in slightly different ranges so there is a precision loss which actually depends on the rounding mode.
ie: if you're adding numbers with totally different ranges, expect precision problems.
Denormals are here to give extra-precision in extreme cases, at the expense of CPU.
Depending on how your compiler handle floating-point computation, results can vary.
With strict IEEE semantics, adding two 32 bits floats should not give better accuracy than 32 bits.
In practice it may requires more instruction to ensure that, so you shouldn't rely on accurate and repeatable results with floating-point.
In both cases yes:
assert( 1E+36f + 1.0f == 1E+36f );
assert( 1E+36f + 1 == 1E+36f );
The case float + int is the same as float + float, because a standard conversion is applied to the int. In the case of float + float, this is implementation dependent, because an implementation may choose to do the addition at double precision. There may be some loss when you store the result, of course.
In both cases, the answer is "yes". When adding an int to a float, the integer is converted to floating point representation before the addition takes place anyway.
To understand why, I suggest you read this gem: What Every Computer Scientist Should Know About Floating-Point Arithmetic.
Why do some numbers lose accuracy when stored as floating point numbers?
For example, the decimal number 9.2 can be expressed exactly as a ratio of two decimal integers (92/10), both of which can be expressed exactly in binary (0b1011100/0b1010). However, the same ratio stored as a floating point number is never exactly equal to 9.2:
32-bit "single precision" float: 9.19999980926513671875
64-bit "double precision" float: 9.199999999999999289457264239899814128875732421875
How can such an apparently simple number be "too big" to express in 64 bits of memory?
In most programming languages, floating point numbers are represented a lot like scientific notation: with an exponent and a mantissa (also called the significand). A very simple number, say 9.2, is actually this fraction:
5179139571476070 * 2 -49
Where the exponent is -49 and the mantissa is 5179139571476070. The reason it is impossible to represent some decimal numbers this way is that both the exponent and the mantissa must be integers. In other words, all floats must be an integer multiplied by an integer power of 2.
9.2 may be simply 92/10, but 10 cannot be expressed as 2n if n is limited to integer values.
Seeing the Data
First, a few functions to see the components that make a 32- and 64-bit float. Gloss over these if you only care about the output (example in Python):
def float_to_bin_parts(number, bits=64):
if bits == 32: # single precision
int_pack = 'I'
float_pack = 'f'
exponent_bits = 8
mantissa_bits = 23
exponent_bias = 127
elif bits == 64: # double precision. all python floats are this
int_pack = 'Q'
float_pack = 'd'
exponent_bits = 11
mantissa_bits = 52
exponent_bias = 1023
else:
raise ValueError, 'bits argument must be 32 or 64'
bin_iter = iter(bin(struct.unpack(int_pack, struct.pack(float_pack, number))[0])[2:].rjust(bits, '0'))
return [''.join(islice(bin_iter, x)) for x in (1, exponent_bits, mantissa_bits)]
There's a lot of complexity behind that function, and it'd be quite the tangent to explain, but if you're interested, the important resource for our purposes is the struct module.
Python's float is a 64-bit, double-precision number. In other languages such as C, C++, Java and C#, double-precision has a separate type double, which is often implemented as 64 bits.
When we call that function with our example, 9.2, here's what we get:
>>> float_to_bin_parts(9.2)
['0', '10000000010', '0010011001100110011001100110011001100110011001100110']
Interpreting the Data
You'll see I've split the return value into three components. These components are:
Sign
Exponent
Mantissa (also called Significand, or Fraction)
Sign
The sign is stored in the first component as a single bit. It's easy to explain: 0 means the float is a positive number; 1 means it's negative. Because 9.2 is positive, our sign value is 0.
Exponent
The exponent is stored in the middle component as 11 bits. In our case, 0b10000000010. In decimal, that represents the value 1026. A quirk of this component is that you must subtract a number equal to 2(# of bits) - 1 - 1 to get the true exponent; in our case, that means subtracting 0b1111111111 (decimal number 1023) to get the true exponent, 0b00000000011 (decimal number 3).
Mantissa
The mantissa is stored in the third component as 52 bits. However, there's a quirk to this component as well. To understand this quirk, consider a number in scientific notation, like this:
6.0221413x1023
The mantissa would be the 6.0221413. Recall that the mantissa in scientific notation always begins with a single non-zero digit. The same holds true for binary, except that binary only has two digits: 0 and 1. So the binary mantissa always starts with 1! When a float is stored, the 1 at the front of the binary mantissa is omitted to save space; we have to place it back at the front of our third element to get the true mantissa:
1.0010011001100110011001100110011001100110011001100110
This involves more than just a simple addition, because the bits stored in our third component actually represent the fractional part of the mantissa, to the right of the radix point.
When dealing with decimal numbers, we "move the decimal point" by multiplying or dividing by powers of 10. In binary, we can do the same thing by multiplying or dividing by powers of 2. Since our third element has 52 bits, we divide it by 252 to move it 52 places to the right:
0.0010011001100110011001100110011001100110011001100110
In decimal notation, that's the same as dividing 675539944105574 by 4503599627370496 to get 0.1499999999999999. (This is one example of a ratio that can be expressed exactly in binary, but only approximately in decimal; for more detail, see: 675539944105574 / 4503599627370496.)
Now that we've transformed the third component into a fractional number, adding 1 gives the true mantissa.
Recapping the Components
Sign (first component): 0 for positive, 1 for negative
Exponent (middle component): Subtract 2(# of bits) - 1 - 1 to get the true exponent
Mantissa (last component): Divide by 2(# of bits) and add 1 to get the true mantissa
Calculating the Number
Putting all three parts together, we're given this binary number:
1.0010011001100110011001100110011001100110011001100110 x 1011
Which we can then convert from binary to decimal:
1.1499999999999999 x 23 (inexact!)
And multiply to reveal the final representation of the number we started with (9.2) after being stored as a floating point value:
9.1999999999999993
Representing as a Fraction
9.2
Now that we've built the number, it's possible to reconstruct it into a simple fraction:
1.0010011001100110011001100110011001100110011001100110 x 1011
Shift mantissa to a whole number:
10010011001100110011001100110011001100110011001100110 x 1011-110100
Convert to decimal:
5179139571476070 x 23-52
Subtract the exponent:
5179139571476070 x 2-49
Turn negative exponent into division:
5179139571476070 / 249
Multiply exponent:
5179139571476070 / 562949953421312
Which equals:
9.1999999999999993
9.5
>>> float_to_bin_parts(9.5)
['0', '10000000010', '0011000000000000000000000000000000000000000000000000']
Already you can see the mantissa is only 4 digits followed by a whole lot of zeroes. But let's go through the paces.
Assemble the binary scientific notation:
1.0011 x 1011
Shift the decimal point:
10011 x 1011-100
Subtract the exponent:
10011 x 10-1
Binary to decimal:
19 x 2-1
Negative exponent to division:
19 / 21
Multiply exponent:
19 / 2
Equals:
9.5
Further reading
The Floating-Point Guide: What Every Programmer Should Know About Floating-Point Arithmetic, or, Why don’t my numbers add up? (floating-point-gui.de)
What Every Computer Scientist Should Know About Floating-Point Arithmetic (Goldberg 1991)
IEEE Double-precision floating-point format (Wikipedia)
Floating Point Arithmetic: Issues and Limitations (docs.python.org)
Floating Point Binary
This isn't a full answer (mhlester already covered a lot of good ground I won't duplicate), but I would like to stress how much the representation of a number depends on the base you are working in.
Consider the fraction 2/3
In good-ol' base 10, we typically write it out as something like
0.666...
0.666
0.667
When we look at those representations, we tend to associate each of them with the fraction 2/3, even though only the first representation is mathematically equal to the fraction. The second and third representations/approximations have an error on the order of 0.001, which is actually much worse than the error between 9.2 and 9.1999999999999993. In fact, the second representation isn't even rounded correctly! Nevertheless, we don't have a problem with 0.666 as an approximation of the number 2/3, so we shouldn't really have a problem with how 9.2 is approximated in most programs. (Yes, in some programs it matters.)
Number bases
So here's where number bases are crucial. If we were trying to represent 2/3 in base 3, then
(2/3)10 = 0.23
In other words, we have an exact, finite representation for the same number by switching bases! The take-away is that even though you can convert any number to any base, all rational numbers have exact finite representations in some bases but not in others.
To drive this point home, let's look at 1/2. It might surprise you that even though this perfectly simple number has an exact representation in base 10 and 2, it requires a repeating representation in base 3.
(1/2)10 = 0.510 = 0.12 = 0.1111...3
Why are floating point numbers inaccurate?
Because often-times, they are approximating rationals that cannot be represented finitely in base 2 (the digits repeat), and in general they are approximating real (possibly irrational) numbers which may not be representable in finitely many digits in any base.
While all of the other answers are good there is still one thing missing:
It is impossible to represent irrational numbers (e.g. π, sqrt(2), log(3), etc.) precisely!
And that actually is why they are called irrational. No amount of bit storage in the world would be enough to hold even one of them. Only symbolic arithmetic is able to preserve their precision.
Although if you would limit your math needs to rational numbers only the problem of precision becomes manageable. You would need to store a pair of (possibly very big) integers a and b to hold the number represented by the fraction a/b. All your arithmetic would have to be done on fractions just like in highschool math (e.g. a/b * c/d = ac/bd).
But of course you would still run into the same kind of trouble when pi, sqrt, log, sin, etc. are involved.
TL;DR
For hardware accelerated arithmetic only a limited amount of rational numbers can be represented. Every not-representable number is approximated. Some numbers (i.e. irrational) can never be represented no matter the system.
There are infinitely many real numbers (so many that you can't enumerate them), and there are infinitely many rational numbers (it is possible to enumerate them).
The floating-point representation is a finite one (like anything in a computer) so unavoidably many many many numbers are impossible to represent. In particular, 64 bits only allow you to distinguish among only 18,446,744,073,709,551,616 different values (which is nothing compared to infinity). With the standard convention, 9.2 is not one of them. Those that can are of the form m.2^e for some integers m and e.
You might come up with a different numeration system, 10 based for instance, where 9.2 would have an exact representation. But other numbers, say 1/3, would still be impossible to represent.
Also note that double-precision floating-points numbers are extremely accurate. They can represent any number in a very wide range with as much as 15 exact digits. For daily life computations, 4 or 5 digits are more than enough. You will never really need those 15, unless you want to count every millisecond of your lifetime.
Why can we not represent 9.2 in binary floating point?
Floating point numbers are (simplifying slightly) a positional numbering system with a restricted number of digits and a movable radix point.
A fraction can only be expressed exactly using a finite number of digits in a positional numbering system if the prime factors of the denominator (when the fraction is expressed in it's lowest terms) are factors of the base.
The prime factors of 10 are 5 and 2, so in base 10 we can represent any fraction of the form a/(2b5c).
On the other hand the only prime factor of 2 is 2, so in base 2 we can only represent fractions of the form a/(2b)
Why do computers use this representation?
Because it's a simple format to work with and it is sufficiently accurate for most purposes. Basically the same reason scientists use "scientific notation" and round their results to a reasonable number of digits at each step.
It would certainly be possible to define a fraction format, with (for example) a 32-bit numerator and a 32-bit denominator. It would be able to represent numbers that IEEE double precision floating point could not, but equally there would be many numbers that can be represented in double precision floating point that could not be represented in such a fixed-size fraction format.
However the big problem is that such a format is a pain to do calculations on. For two reasons.
If you want to have exactly one representation of each number then after each calculation you need to reduce the fraction to it's lowest terms. That means that for every operation you basically need to do a greatest common divisor calculation.
If after your calculation you end up with an unrepresentable result because the numerator or denominator you need to find the closest representable result. This is non-trivil.
Some Languages do offer fraction types, but usually they do it in combination with arbitary precision, this avoids needing to worry about approximating fractions but it creates it's own problem, when a number passes through a large number of calculation steps the size of the denominator and hence the storage needed for the fraction can explode.
Some languages also offer decimal floating point types, these are mainly used in scenarios where it is imporant that the results the computer gets match pre-existing rounding rules that were written with humans in mind (chiefly financial calculations). These are slightly more difficult to work with than binary floating point, but the biggest problem is that most computers don't offer hardware support for them.
I am trying to find the cause of this result:
import numpy
result1 = numpy.rint(1.5)
result2 = numpy.rint(6.5)
print result
The output:
result1-> 2
result2-> 6
This is odd: result1 is correct but I result2 is not (It has to be 7 because rint rounds any float to the nearest integer).
Any idea? (THANKS!)
From numpy's documentation on numpy.around, equivalent to numpy.round, which supposedly also is relevant for numpy.rint:
For values exactly halfway between rounded decimal values, Numpy
rounds to the nearest even value. Thus 1.5 and 2.5 round to 2.0, -0.5
and 0.5 round to 0.0, etc. Results may also be surprising due to the
inexact representation of decimal fractions in the IEEE floating point
standard [R9] and errors introduced when scaling by powers of ten.
Also relevant: While for large numbers there might be representation errors, for small values half integers are exactly representable in binary-base floating points, in particular 1.5 and 6.5 are exactly representable in standard single-precision floats. Without the preference for either odd, even, lower, upper integers or any other scheme one would have undefined behaviour here.
As #wim points out in the comments the behaviour of Python's build-in round is different. It rounds away from zero: It prefers upper integers for positive inputs and lower integers for negative inputs. (see http://docs.python.org/2/library/functions.html#round)
I think this is the rule of the thumb - when you have a float midway between two integers, like 1.5 lies midway between 1 and 2 and since both choices are equally good, we prefer rounding to the even number(which is 2 in this case) and for 6.5, which lies midway between 6 and 7, 6 is the closest even number.