cumulative logical or within bins - python

Problem
I want to identify when I've encountered a true value and maintain that value for the rest of the array... for a particular bin. From a Numpy perspective it would be like a combination of numpy.logical_or.accumulate and numpy.logical_or.at.
Example
Consider the truth values in a, the bins in b and the expected output in c.
I've used 0 for False and 1 for True then converted to bool in order to align the array values.
a = np.array([0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0]).astype(bool)
b = np.array([0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 2, 3, 3, 0, 1, 2, 3])
# zeros ↕ ↕ ↕ ↕ ↕ ↕ ↕
# ones ↕ ↕ ↕ ↕ ↕
# twos ↕ ↕
# threes ↕ ↕ ↕
c = np.array([0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1]).astype(bool)
# ╰─────╯ ↑ ↑ ↑ ↑
# zero bin no True yet │ │ │ two never had a True
# one bin first True │ three bin first True
# zero bin first True
What I've Tried
I can loop through each value and track whether the associated bin has seen a True value yet.
tracker = np.zeros(4, bool)
result = np.zeros(len(b), bool)
for i, (truth, bin_) in enumerate(zip(a, b)):
tracker[bin_] |= truth
result[i] = tracker[bin_]
result * 1
array([0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1])
But I was hoping for a O(n) time Numpy solution. I have the option of using a JIT wrapper like Numba but I'd rather keep it just Numpy.

O(n) solution
def cumulative_linear_seen(seen, bins):
"""
Tracks whether or not a value has been observed as
True in a 1D array, and marks all future values as
True for these each individual value.
Parameters
----------
seen: ndarray
One-hot array marking an occurence of a value
bins: ndarray
Array of bins to which occurences belong
Returns
-------
One-hot array indicating if the corresponding bin has
been observed at a point in time
"""
# zero indexing won't work with logical and, need to 1-index
one_up = bins + 1
# Next step is finding where each unique value is seen
occ = np.flatnonzero(a)
v_obs = one_up[a]
# We can fill another mapping array with these occurences.
# then map by corresponding index
i_obs = np.full(one_up.max() + 1, seen.shape[0] + 1)
i_obs[v_obs] = occ
# Finally, we create the map and compare to an array of
# indices from the original seen array
seen_idx = i_obs[one_up]
return (seen_idx <= np.arange(seen_idx.shape[0])).astype(int)
array([0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1])
PiR's contribution
Based on insights above
r = np.arange(len(b))
one_hot = np.eye(b.max() + 1, dtype=bool)[b]
np.logical_or.accumulate(one_hot & a[:, None], axis=0)[r, b] * 1
array([0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1])
Older attempts
Just to get things started, here is a solution that, while vectorized, is not O(n). I believe an O(n) solution similar to this exists, I'll work on the complexity :-)
Attempt 1
q = b + 1
u = sparse.csr_matrix(
(a, q, np.arange(a.shape[0] + 1)), (a.shape[0], q.max()+1)
)
m = np.maximum.accumulate(u.A) * np.arange(u.shape[1])
r = np.where(m[:, 1:] == 0, np.nan, m[:, 1:])
(r == q[:, None]).any(1).view(np.int8)
array([0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1], dtype=int8)
Attempt 2
q = b + 1
m = np.logical_and(a, q)
r = np.flatnonzero(u)
t = q[m]
f = np.zeros((a.shape[0], q.max()))
f[r, t-1] = 1
v = np.maximum.accumulate(f) * np.arange(1, q.max()+1)
(v == q[:, None]).any(1).view(np.int8)
array([0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1], dtype=int8)

Related

Python - Replacing Values Leading Up To 1s in an Array

Pretend I have a pandas Series that consists of 0s and 1s, but this can work with numpy arrays or any iterable. I would like to create a formula that would take an array and an input n and then return a new series that contains 1s at the nth indices leading up to every time that there is at least a single 1 in the original series. Here is an example:
array = np.array([0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1])
> preceding_indices_function(array, 2)
np.array([0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1])
For each time there is a 1 in the input array, the two indices preceding it are filled in with 1 regardless of whether there is a 0 or 1 in that index in the original array.
I would really appreciate some help on this. Thanks!
Use a convolution with np.convolve:
N = 2
# craft a custom kernel
kernel = np.ones(2*N+1)
kernel[-N:] = 0
# array([1, 1, 1, 0, 0])
out = (np.convolve(array, kernel, mode='same') != 0).astype(int)
Output:
array([0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1])
Unless you don't want to use numpy, mozway's transpose is the best solution.
But since several iterations have been given, I add my itertools based solution
[a or b or c for a,b,c in itertools.zip_longest(array, array[1:], array[2:], fillvalue=0)]
zip_longest is the same as classical zip, but if the iterators have different "lengths", the number of iteration is the one of the longest, and finished iterators will return None. Unless you add a fillvalue parameter to zip_longest.
So, here itertools.zip_longest(array, array[1:], array[2:], fillvalue=0) gives a sequence of triplets (a,b,c), of 3 subsequent elements (a being the current element, b the next, c the one after, b and c being 0 if there isn't any next element or element after the next).
So from there, a simple comprehension build a list of [a or b or c] that is 1 if a, or b or c is 1, 0 else.
import numpy as np
array = np.array([0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1])
array = np.array([a or array[idx+1] or array[idx+2] for idx, a in enumerate(array[:-2])] + [array[-2] or array[-1]] + [array[-1]])
this function works if a is a list, should work with other iterables as well:
def preceding_indices_function(array, n):
for i in range(len(a)):
if array[i] == 1:
for j in range(n):
if i-j-1 >= 0:
array[i-j-1] = 1
return array
I got a solution that is similar to the other one but slightly simpler in my opinion:
>>> [1 if (array[i+1] == 1 or array[i+2] == 1) else x for i,x in enumerate(array) if i < len(array) - 2]
[0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1]

Python: distance from index to 1s in binary mask

I have a binary mask like this:
X = [[0, 0, 0, 0, 0, 1],
[0, 0, 0, 0, 1, 1],
[0, 0, 0, 1, 1, 1],
[0, 0, 1, 1, 1, 1],
[0, 0, 1, 1, 1, 1],
[0, 0, 0, 1, 1, 1]]
I have a certain index in this array and want to compute the distance from that index to the closest 1 in the mask. If there's already a 1 at that index, the distance should be zero.
Examples (assuming Manhattan distance):
distance(X, idx=(0, 5)) == 0 # already is a 1 -> distance is zero
distance(X, idx=(1, 2)) == 2 # second row, third column
distance(X, idx=(0, 0)) == 5 # upper left corner
Is there already existing functionality like this in Python/NumPy/SciPy? Both Euclidian and Manhattan distance would be fine.
I'd prefer to avoid computing distances for the entire matrix (as that is pretty big in my case), and only get the distance for my one index.
Here's one for manhattan distance metric for one entry -
def bwdist_manhattan_single_entry(X, idx):
nz = np.argwhere(X==1)
return np.abs((idx-nz).sum(1)).min()
Sample run -
In [143]: bwdist_manhattan_single_entry(X, idx=(0,5))
Out[143]: 0
In [144]: bwdist_manhattan_single_entry(X, idx=(1,2))
Out[144]: 2
In [145]: bwdist_manhattan_single_entry(X, idx=(0,0))
Out[145]: 5
Optimize further on performance by extracting the boudary elements only off the blobs of 1s -
from scipy.ndimage.morphology import binary_erosion
def bwdist_manhattan_single_entry_v2(X, idx):
k = np.ones((3,3),dtype=int)
nz = np.argwhere((X==1) & (~binary_erosion(X,k,border_value=1)))
return np.abs((idx-nz).sum(1)).min()
Number of elements in nz with this method would be smaller number than the earlier one, hence it improves.
You can use scipy.ndimage.morphology.distance_transform_cdt to compute the "taxicab" (Manhattan) distance transform:
import numpy as np
import scipy.ndimage.morphology
x = np.array([[0, 0, 0, 0, 0, 1],
[0, 0, 0, 0, 1, 1],
[0, 0, 0, 1, 1, 1],
[0, 0, 1, 1, 1, 1],
[0, 0, 1, 1, 1, 1],
[0, 0, 0, 1, 1, 1]])
d = scipy.ndimage.morphology.distance_transform_cdt(1 - x, 'taxicab')
print(d[0, 5])
# 0
print(d[1, 2])
# 2
print(d[0, 0])
# 5
You can do it like this:
def Manhattan_distance(X, idx):
dist = min([ abs(i-idx[0]) + abs(j-idx[1]) for i, row in enumerate(X) for j, val in enumerate(X[i]) if val == 1])
return dist
Thanks.

Simultaneous changing of python numpy array elements

I have a vector of integers from range [0,3], for example:
v = [0,0,1,2,1,3, 0,3,0,2,1,1,0,2,0,3,2,1].
I know that I can replace a specific values of elements in the vector by other value using the following
v[v == 0] = 5
which changes all appearences of 0 in vector v to value 5.
But I would like to do something a little bit different - I want to change all values of 0 (let's call them target values) to 1, and all values different from 0 to 0, thus I want to obtain the following:
v = [1,1,0,0,0,0,1,0,1,0,0,0,1,0,1,0,0,0]
However, I cannot call the substitution code (which I used above) as follows:
v[v==0] = 1
v[v!=0] = 0
because this obviously leeds to a vector of zeros.
Is it possible to do the above substitution in a parralel way, to obtain the desired vector? (I want to have a universal technique, which will allow me to use it even if I will change what is my target value). Any suggestions will be very helpful!
You can check if v is equal to zero and then convert the boolean array to int, and so if the original value is zero, the boolean is true and converts to 1, otherwise 0:
v = np.array([0,0,1,2,1,3, 0,3,0,2,1,1,0,2,0,3,2,1])
(v == 0).astype(int)
# array([1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0])
Or use numpy.where:
np.where(v == 0, 1, 0)
# array([1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0])

Find consecutive ones in numpy array

How can I find the amount of consecutive 1s (or any other value) in each row for of the following numpy array? I need a pure numpy solution.
array([[0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0],
[0, 0, 1, 0, 0, 1, 2, 0, 0, 1, 1, 1],
[0, 0, 0, 4, 1, 0, 0, 0, 0, 1, 1, 0]])
There are two parts to my question, first: what is the maximum number of 1s in a row? Should be
array([2,3,2])
in the example case.
And second, what is the index of the start of the first set of multiple consecutive 1s in a row? For the example case this would be
array([3,9,9])
In this example I put 2 consecutive 1s in a row. But it should be possible to change that to 5 consecutive 1s in a row, this is important.
A similar question was answered using np.unique, but it only works for one row and not an array with multiple rows as the result would have different lengths.
Here's a vectorized approach based on differentiation -
import numpy as np
import pandas as pd
# Append zeros columns at either sides of counts
append1 = np.zeros((counts.shape[0],1),dtype=int)
counts_ext = np.column_stack((append1,counts,append1))
# Get start and stop indices with 1s as triggers
diffs = np.diff((counts_ext==1).astype(int),axis=1)
starts = np.argwhere(diffs == 1)
stops = np.argwhere(diffs == -1)
# Get intervals using differences between start and stop indices
start_stop = np.column_stack((starts[:,0], stops[:,1] - starts[:,1]))
# Get indices corresponding to max. interval lens and thus lens themselves
SS_df = pd.DataFrame(start_stop)
out = start_stop[SS_df.groupby([0],sort=False)[1].idxmax(),1]
Sample input, output -
Original sample case :
In [574]: counts
Out[574]:
array([[0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0],
[0, 0, 1, 0, 0, 1, 2, 0, 0, 1, 1, 1],
[0, 0, 0, 4, 1, 0, 0, 0, 0, 1, 1, 0]])
In [575]: out
Out[575]: array([2, 3, 2], dtype=int64)
Modified case :
In [577]: counts
Out[577]:
array([[0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0],
[0, 0, 1, 0, 0, 1, 2, 0, 1, 1, 1, 1],
[0, 0, 0, 4, 1, 1, 1, 1, 1, 0, 1, 0]])
In [578]: out
Out[578]: array([2, 4, 5], dtype=int64)
Here's a Pure NumPy version that is identical to the previous until we have start, stop. Here's the full implementation -
# Append zeros columns at either sides of counts
append1 = np.zeros((counts.shape[0],1),dtype=int)
counts_ext = np.column_stack((append1,counts,append1))
# Get start and stop indices with 1s as triggers
diffs = np.diff((counts_ext==1).astype(int),axis=1)
starts = np.argwhere(diffs == 1)
stops = np.argwhere(diffs == -1)
# Get intervals using differences between start and stop indices
intvs = stops[:,1] - starts[:,1]
# Store intervals as a 2D array for further vectorized ops to make.
c = np.bincount(starts[:,0])
mask = np.arange(c.max()) < c[:,None]
intvs2D = mask.astype(float)
intvs2D[mask] = intvs
# Get max along each row as final output
out = intvs2D.max(1)
I think one problem that is very similar is to check if between the sorted rows the element wise difference is a certain amount. Here if there is a difference of 1 between 5 consecutive would be as follows. It can also be done for difference of 0 for two cards:
cardAmount=cards[0,:].size
has4=cards[:,np.arange(0,cardAmount-4)]-cards[:,np.arange(cardAmount-3,cardAmount)]
isStraight=np.any(has4 == 4, axis=1)

Slicing different rows of a numpy array differently

I'm working on a Monte Carlo radiative transfer code, which simulates firing photons through a medium and statistically modelling their random walk. It runs slowly firing one photon at a time, so I'd like to vectorize it and run perhaps 1000 photons at once.
I have divided my slab through which the photons are passing into nlayers slices between optical depth 0 and depth. Effectively, that means that I have nlayers + 2 regions (nlayers plus the region above the slab and the region below the slab). At each step, I have to keep track of which layers each photon passes through.
Let's suppose that I already know that two photons start in layer 0. One takes a step and ends up in layer 2, and the other takes a step and ends up in layer 6. This is represented by an array pastpresent that looks like this:
[[ 0 2]
[ 0 6]]
I want to generate an array traveled_through with (nlayers + 2) columns and 2 rows, describing whether photon i passed through layer j (endpoint-inclusive). It would look something like this (with nlayers = 10):
[[ 1 1 1 0 0 0 0 0 0 0 0 0]
[ 1 1 1 1 1 1 1 0 0 0 0 0]]
I could do this by iterating over the photons and generating each row of traveled_through individually, but that's rather slow, and sort of defeats the point of running many photons at once, so I'd rather not do that.
I tried to define the array as follows:
traveled_through = np.zeros((2, nlayers)).astype(int)
traveled_through[ : , np.min(pastpresent, axis = 1) : np.max(pastpresent, axis = 1) + ] = 1
The idea was that in a given photon's row, the indices from the starting layer through and including the ending layer would be set to 1, with all others remaining 0. However, I get the following error:
traveled_through[ : , np.min(pastpresent, axis = 1) : np.max(pastpresent, axis = 1) + 1 ] = 1
IndexError: invalid slice
My best guess is that numpy does not allow different rows of an array to be indexed differently using this method. Does anyone have suggestions for how to generate traveled_through for an arbitrary number of photons and an arbitrary number of layers?
If the two photons always start at 0, you could perhaps construct your array as follows.
First setting the variables...
>>> pastpresent = np.array([[0, 2], [0, 6]])
>>> nlayers = 10
...and then constructing the array:
>>> (pastpresent[:,1][:,np.newaxis] + 1 > np.arange(nlayers+2)).astype(int)
array([[1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0]])
Or if the photons have an arbitrary starting layer:
>>> pastpresent2 = np.array([[1, 7], [3, 9]])
>>> (pastpresent2[:,0][:,np.newaxis] < np.arange(nlayers+2)) &
(pastpresent2[:,1][:,np.newaxis] + 1 > np.arange(nlayers+2)).astype(int)
array([[0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0]])
A little trick I kind of like for this kind of thing involves the accumulate method of the logical_xor ufunc:
>>> a = np.zeros(10, dtype=int)
>>> b = [3, 7]
>>> a[b] = 1
>>> a
array([0, 0, 0, 1, 0, 0, 0, 1, 0, 0])
>>> np.logical_xor.accumulate(a, out=a)
array([0, 0, 0, 1, 1, 1, 1, 0, 0, 0])
Note that this sets to 1 the entries between the positions in b, first index inclusive, last index exclusive, so you have to handle off by 1 errors depending on what exactly you are after.
With several rows, you could make it work as:
>>> a = np.zeros((3, 10), dtype=int)
>>> b = np.array([[1, 7], [0, 4], [3, 8]])
>>> b[:, 1] += 1 # handle the off by 1 error
>>> a[np.arange(len(b))[:, None], b] = 1
>>> a
array([[0, 1, 0, 0, 0, 0, 0, 0, 1, 0],
[1, 0, 0, 0, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 1, 0, 0, 0, 0, 0, 1]])
>>> np.logical_xor.accumulate(a, axis=1, out=a)
array([[0, 1, 1, 1, 1, 1, 1, 1, 0, 0],
[1, 1, 1, 1, 1, 0, 0, 0, 0, 0],
[0, 0, 0, 1, 1, 1, 1, 1, 1, 0]])

Categories

Resources