enumerate in dictionary loop take long time how to improv the speed - python

I am using python-3.x and I would like to speed my code where in every loop, I am creating new values and I checked if they exist or not in the dictionary by using the (check if) then I will keep the index where it is found if it exists in the dictionary. I am using the enumerate but it takes a long time and it very clear way. is there any way to speed my code by using another way or in my case the enumerate is the only way I need to work with? I am not sure in my case using numpy will be better.
Here is my code:
# import numpy
import numpy as np
# my first array
my_array_1 = np.random.choice ( np.linspace ( -1000 , 1000 , 2 ** 8 ) , size = ( 100 , 3 ) , replace = True )
my_array_1 = np.array(my_array_1)
# here I want to find the unique values from my_array_1
indx = np.unique(my_array_1, return_index=True, return_counts= True,axis=0)
#then saved the result to dictionary
dic_t= {"my_array_uniq":indx[0], # unique values in my_array_1
"counts":indx[2]} # how many times this unique element appear on my_array_1
# here I want to create random array 100 times
for i in range (100):
print (i)
# my 2nd array
my_array_2 = np.random.choice ( np.linspace ( -1000 , 1000 , 2 ** 8 ) , size = ( 100 , 3 ) , replace = True )
my_array_2 = np.array(my_array_2)
# I would like to check if the values in my_array_2 exists or not in the dictionary (my_array_uniq":indx[0])
# if it exists then I want to hold the index number of that value in the dictionary and
# add 1 to the dic_t["counts"], which mean this value appear agin and cunt how many.
# if not exists, then add this value to the dic (my_array_uniq":indx[0])
# also add 1 to the dic_t["counts"]
for i, a in enumerate(my_array_2):
ix = [k for k,j in enumerate(dic_t["my_array_uniq"]) if (a == j).all()]
if ix:
print (50*"*", i, "Yes", "at", ix[0])
dic_t["counts"][ix[0]] +=1
else:
# print (50*"*", i, "No")
dic_t["counts"] = np.hstack((dic_t["counts"],1))
dic_t["my_array_uniq"] = np.vstack((dic_t["my_array_uniq"], my_array_2[i]))
explanation:
1- I will create an initial array.
2- then I want to find the unique values, index and count from an initial array by using (np.unique).
3- saved the result to the dictionary (dic_t)
4- Then I want to start the loop by creating random values 100 times.
5- I would like to check if this random values in my_array_2 exist or not in the dictionary (my_array_uniq":indx[0])
6- if one of them exists then I want to hold the index number of that value in the dictionary.
7 - add 1 to the dic_t["counts"], which mean this value appears again and count how many.
8- if not exists, then add this value to the dic as new unique value (my_array_uniq":indx[0])
9 - also add 1 to the dic_t["counts"]

So from what I can see you are
Creating 256 random numbers from a linear distribution of numbers between -1000 and 1000
Generating 100 triplets from those (it could be fewer than 100 due to unique but with overwhelming probability it will be exactly 100)
Then doing pretty much the same thing 100 times and each time checking for each of the triplets in the new list whether they exist in the old list.
You're then trying to get a count of how often each element occurs.
I'm wondering why you're trying to do this, because it doesn't make much sense to me, but I'll give a few pointers:
There's no reason to make a dictionary dic_t if you're only going to hold to objects in it, just use two variables my_array_uniq and counts
You're dealing with triplets of floating point numbers. In the given range, that should give you about 10^48 different possible triplets (I may be wrong on the exact number but it's an absurdly large number either way). The way you're generating them does reduce the total phase-space a fair bit, but nowhere near enough. The probability of finding identical ones is very very low.
If you have a set of objects (in this case number triplets) and you want to determine whether you have seen a given one before, you want to use sets. Sets can only contain immutable objects, so you want to turn your triplets into tuples. Determining whether a given triplet is already contained in your set is then an O(1) operation.
For counting the number of occurences of sth, collections.Counter is the natural datastructure to use.

Related

Parallel algorithm for set splitting

I'm trying to solve an issue with subsection set.
The input data is the list and the integer.
The case is to divide a set into N-elements subsets whose sum of element is almost equal. As this is an NP-hard problem I try two approaches:
a) iterate all possibilities and distribute it using mpi4py to many machines (the list above 100 elements and 20 element subsets working too long)
b) using mpi4py send the list to different seed but in this case I potentially calculate the same set many times. For instance of 100 numbers and 5 subsets with 20 elements each in 60s my result could be easily better by human simply looking for the table.
Finally I'm looking for heuristic algorithm, which could be computing in distributed system and create N-elements subsets from bigger set whose sum is almost equal.
a = [range(12)]
k = 3
One of the possible solution:
[1,2,11,12] [3,4,9,10] [5,6,7,8]
because sum is 26, 26, 26
Not always it is possible to create exactly the equal sums or number of
elements. The difference between maximum and minimum number of elements in
sets could be 0 (if len(a)/k is integer) or 1.
edit 1:
I investigate two option: 1. Parent generate all iteration and then send to the parallel algorithm (but this is slow for me). 2. Parent send a list and each node generates own subsets and calculated the subset sum in restricted time. Then send the best result to parent. Parent received this results and choose the best one with minimized the difference between sums in subsets. I think the second option has potential to be faster.
Best regards,
Szczepan
I think you're trying to do something more complicated than necessary - do you actually need an exact solution (global optimum)? Regarding the heuristic solution, I had to do something along these lines in the past so here's my take on it:
Reformulate the problem as follows: You have a vector with given mean ('global mean') and you want to break it into chunks such that means of each individual chunk will be as close as possible to the 'global mean'.
Just divide it into chunks randomly and then iteratively swap elements between the chunks until you get acceptable results. You can experiment with different ways how to do it, here I'm just reshuffling elements of chunks with the minimum at maximum 'chunk-mean'.
In general, the bigger the chunk is, the easier it becomes, because the first random split would already give you not-so-bad solution (think sample means).
How big is your input list? I tested this with 100000 elements input (uniform distribution integers). With 50 2000-elements chunks you get the result instantly, with 2000 50-elements chunks you need to wait <1min.
import numpy as np
my_numbers = np.random.randint(10000, size=100000)
chunks = 50
iter_limit = 10000
desired_mean = my_numbers.mean()
accepatable_range = 0.1
split = np.array_split(my_numbers, chunks)
for i in range(iter_limit):
split_means = np.array([array.mean() for array in split]) # this can be optimized, some of the means are known
current_min = split_means.min()
current_max = split_means.max()
mean_diff = split_means.ptp()
if(i % 100 == 0 or mean_diff <= accepatable_range):
print("Iter: {}, Desired: {}, Min {}, Max {}, Range {}".format(i, desired_mean, current_min, current_max, mean_diff))
if mean_diff <= accepatable_range:
print('Acceptable solution found')
break
min_index = split_means.argmin()
max_index = split_means.argmax()
if max_index < min_index:
merged = np.hstack((split.pop(min_index), split.pop(max_index)))
else:
merged = np.hstack((split.pop(max_index), split.pop(min_index)))
reshuffle_range = mean_diff+1
while reshuffle_range > mean_diff:
# this while just ensures that you're not getting worse split, either the same or better
np.random.shuffle(merged)
modified_arrays = np.array_split(merged, 2)
reshuffle_range = np.array([array.mean() for array in modified_arrays]).ptp()
split += modified_arrays

Best way to hash ordered permutation of [1,9]

I'm trying to implement a method to keep the visited states of the 8 puzzle from generating again.
My initial approach was to save each visited pattern in a list and do a linear check each time the algorithm wants to generate a child.
Now I want to do this in O(1) time through list access. Each pattern in 8 puzzle is an ordered permutation of numbers between 1 to 9 (9 being the blank block), for example 125346987 is:
1 2 5
3 4 6
_ 8 7
The number of all of the possible permutation of this kind is around 363,000 (9!). what is the best way to hash these numbers to indexes of a list of that size?
You can map a permutation of N items to its index in the list of all permutations of N items (ordered lexicographically).
Here's some code that does this, and a demonstration that it produces indexes 0 to 23 once each for all permutations of a 4-letter sequence.
import itertools
def fact(n):
r = 1
for i in xrange(n):
r *= i + 1
return r
def I(perm):
if len(perm) == 1:
return 0
return sum(p < perm[0] for p in perm) * fact(len(perm) - 1) + I(perm[1:])
for p in itertools.permutations('abcd'):
print p, I(p)
The best way to understand the code is to prove its correctness. For an array of length n, there's (n-1)! permutations with the smallest element of the array appearing first, (n-1)! permutations with the second smallest element appearing first, and so on.
So, to find the index of a given permutation, see count how many items are smaller than the first thing in the permutation and multiply that by (n-1)!. Then recursively add the index of the remainder of the permutation, considered as a permutation of (n-1) elements. The base case is when you have a permutation of length 1. Obviously there's only one such permutation, so its index is 0.
A worked example: [1324].
[1324]: 1 appears first, and that's the smallest element in the array, so that gives 0 * (3!)
Removing 1 gives us [324]. The first element is 3. There's one element that's smaller, so that gives us 1 * (2!).
Removing 3 gives us [24]. The first element is 2. That's the smallest element remaining, so that gives us 0 * (1!).
Removing 2 gives us [4]. There's only one element, so we use the base case and get 0.
Adding up, we get 0*3! + 1*2! + 0*1! + 0 = 1*2! = 2. So [1324] is at index 2 in the sorted list of 4 permutations. That's correct, because at index 0 is [1234], index 1 is [1243], and the lexicographically next permutation is our [1324].
I believe you're asking for a function to map permutations to array indices. This dictionary maps all permutations of numbers 1-9 to values from 0 to 9!-1.
import itertools
index = itertools.count(0)
permutations = itertools.permutations(range(1, 10))
hashes = {h:next(index) for h in permutations}
For example, hashes[(1,2,5,3,4,6,9,8,7)] gives a value of 1445.
If you need them in strings instead of tuples, use:
permutations = [''.join(x) for x in itertools.permutations('123456789')]
or as integers:
permutations = [int(''.join(x)) for x in itertools.permutations('123456789')]
It looks like you are only interested in whether or not you have already visited the permutation.
You should use a set. It grants the O(1) look-up you are interested in.
A space as well lookup efficient structure for this problem is a trie type structure, as it will use common space for lexicographical matches in any
permutation.
i.e. the space used for "123" in 1234, and in 1235 will be the same.
Lets assume 0 as replacement for '_' in your example for simplicity.
Storing
Your trie will be a tree of booleans, the root node will be an empty node, and then each node will contain 9 children with a boolean flag set to false, the 9 children specify digits 0 to 8 and _ .
You can create the trie on the go, as you encounter a permutation, and store the encountered digits as boolean in the trie by setting the bool as true.
Lookup
The trie is traversed from root to children based on digits of the permutation, and if the nodes have been marked as true, that means the permutation has occured before. The complexity of lookup is just 9 node hops.
Here is how the trie would look for a 4 digit example :
Python trie
This trie can be easily stored in a list of booleans, say myList.
Where myList[0] is the root, as explained in the concept here :
https://webdocs.cs.ualberta.ca/~holte/T26/tree-as-array.html
The final trie in a list would be around 9+9^2+9^3....9^8 bits i.e. less than 10 MB for all lookups.
Use
I've developed a heuristic function for this specific case. It is not a perfect hashing, as the mapping is not between [0,9!-1] but between [1,767359], but it is O(1).
Let's assume we already have a file / reserved memory / whatever with 767359 bits set to 0 (e.g., mem = [False] * 767359). Let a 8puzzle pattern be mapped to a python string (e.g., '125346987'). Then, the hash function is determined by:
def getPosition( input_str ):
data = []
opts = range(1,10)
n = int(input_str[0])
opts.pop(opts.index(n))
for c in input_str[1:len(input_str)-1]:
k = opts.index(int(c))
opts.pop(k)
data.append(k)
ind = data[3]<<14 | data[5]<<12 | data[2]<<9 | data[1]<<6 | data[0]<<3 | data[4]<<1 | data[6]<<0
output_str = str(ind)+str(n)
output = int(output_str)
return output
I.e., in order to check if a 8puzzle pattern = 125346987 has already been used, we need to:
pattern = '125346987'
pos = getPosition(pattern)
used = mem[pos-1] #mem starts in 0, getPosition in 1.
With a perfect hashing we would have needed 9! bits to store the booleans. In this case we need 2x more (767359/9! = 2.11), but recall that it is not even 1Mb (barely 100KB).
Note that the function is easily invertible.
Check
I could prove you mathematically why this works and why there won't be any collision, but since this is a programming forum let's just run it for every possible permutation and check that all the hash values (positions) are indeed different:
def getPosition( input_str ):
data = []
opts = range(1,10)
n = int(input_str[0])
opts.pop(opts.index(n))
for c in input_str[1:len(input_str)-1]:
k = opts.index(int(c))
opts.pop(k)
data.append(k)
ind = data[3]<<14 | data[5]<<12 | data[2]<<9 | data[1]<<6 | data[0]<<3 | data[4]<<1 | data[6]<<0
output_str = str(ind)+str(n)
output = int(output_str)
return output
#CHECKING PURPOSES
def addperm(x,l):
return [ l[0:i] + [x] + l[i:] for i in range(len(l)+1) ]
def perm(l):
if len(l) == 0:
return [[]]
return [x for y in perm(l[1:]) for x in addperm(l[0],y) ]
#We generate all the permutations
all_perms = perm([ i for i in range(1,10)])
print "Number of all possible perms.: "+str(len(all_perms)) #indeed 9! = 362880
#We execute our hash function over all the perms and store the output.
all_positions = [];
for permutation in all_perms:
perm_string = ''.join(map(str,permutation))
all_positions.append(getPosition(perm_string))
#We wan't to check if there has been any collision, i.e., if there
#is one position that is repeated at least twice.
print "Number of different hashes: "+str(len(set(all_positions)))
#also 9!, so the hash works properly.
How does it work?
The idea behind this has to do with a tree: at the beginning it has 9 branches going to 9 nodes, each corresponding to a digit. From each of these nodes we have 8 branches going to 8 nodes, each corresponding to a digit except its parent, then 7, and so on.
We first store the first digit of our input string in a separate variable and pop it out from our 'node' list, because we have already taken the branch corresponding to the first digit.
Then we have 8 branches, we choose the one corresponding with our second digit. Note that, since there are 8 branches, we need 3 bits to store the index of our chosen branch and the maximum value it can take is 111 for the 8th branch (we map branch 1-8 to binary 000-111). Once we have chosen and store the branch index, we pop that value out, so that the next node list doesn't include again this digit.
We proceed in the same way for branches 7, 6 and 5. Note that when we have 7 branches we still need 3 bits, though the maximum value will be 110. When we have 5 branches, the index will be at most binary 100.
Then we get to 4 branches and we notice that this can be stored just with 2 bits, same for 3 branches. For 2 branches we will just need 1bit, and for the last branch we don't need any bit: there will be just one branch pointing to the last digit, which will be the remaining from our 1-9 original list.
So, what we have so far: the first digit stored in a separated variable and a list of 7 indexes representing branches. The first 4 indexes can be represented with 3bits, the following 2 indexes can be represented with 2bits and the last index with 1bit.
The idea is to concatenate all this indexes in their bit form to create a larger number. Since we have 17bits, this number will be at most 2^17=131072. Now we just add the first digit we had stored to the end of that number (at most this digit will be 9) and we have that the biggest number we can create is 1310729.
But we can do better: recall that when we had 5 branches we needed 3 bits, though the maximum value was binary 100. What if we arrange our bits so that those with more 0s come first? If so, in the worst case scenario our final bit number will be the concatenation of:
100 10 101 110 111 11 1
Which in decimal is 76735. Then we proceed as before (adding the 9 at the end) and we get that our biggest possible generated number is 767359, which is the ammount of bits we need and corresponds to input string 987654321, while the lowest possible number is 1 which corresponds to input string 123456789.
Just to finish: one might wonder why have we stored the first digit in a separate variable and added it at the end. The reason is that if we had kept it then the number of branches at the beginning would have been 9, so for storing the first index (1-9) we would have needed 4 bits (0000 to 1000). which would have make our mapping much less efficient, as in that case the biggest possible number (and therefore the amount of memory needed) would have been
1000 100 10 101 110 111 11 1
which is 1125311 in decimal (1.13Mb vs 768Kb). It is quite interesting to see that the ratio 1.13M/0.768K = 1.47 has something to do with the ratio of the four bits compared to just adding a decimal value (2^4/10 = 1.6) which makes a lot of sense (the difference is due to the fact that with the first approach we are not fully using the 4 bits).
First. There is nothing faster than a list of booleans. There's a total of 9! == 362880 possible permutations for your task, which is a reasonably small amount of data to store in memory:
visited_states = [False] * math.factorial(9)
Alternatively, you can use array of bytes which is slightly slower (not by much though) and has a much lower memory footprint (by a power of magnitude at least). However any memory savings from using an array will probably be of little value considering the next step.
Second. You need to convert your specific permutation to it's index. There are algorithms which do this, one of the best StackOverflow questions on this topic is probably this one:
Finding the index of a given permutation
You have fixed permutation size n == 9, so whatever complexity an algorithm has, it will be equivalent to O(1) in your situation.
However to produce even faster results, you can pre-populate a mapping dictionary which will give you an O(1) lookup:
all_permutations = map(lambda p: ''.join(p), itertools.permutations('123456789'))
permutation_index = dict((perm, index) for index, perm in enumerate(all_permutations))
This dictionary will consume about 50 Mb of memory, which is... not that much actually. Especially since you only need to create it once.
After all this is done, checking your specific combination is done with:
visited = visited_states[permutation_index['168249357']]
Marking it to visited is done in the same manner:
visited_states[permutation_index['168249357']] = True
Note that using any of permutation index algorithms will be much slower than mapping dictionary. Most of those algorithms are of O(n2) complexity and in your case it results 81 times worse performance even discounting the extra python code itself. So unless you have heavy memory constraints, using mapping dictionary is probably the best solution speed-wise.
Addendum. As has been pointed out by Palec, visited_states list is actually not needed at all - it's perfectly possible to store True/False values directly in the permutation_index dictionary, which saves some memory and an extra list lookup.
Notice if you type hash(125346987) it returns 125346987. That is for a reason, because there is no point in hashing an integer to anything other than an integer.
What you should do, is when you find a pattern add it to a dictionary rather than a list. This will provide the fast lookup you need rather than traversing the list like you are doing now.
So say you find the pattern 125346987 you can do:
foundPatterns = {}
#some code to find the pattern
foundPatterns[1] = 125346987
#more code
#test if there?
125346987 in foundPatterns.values()
True
If you must always have O(1), then seems like a bit array would do the job. You'd only need to store 363,000 elements, which seems doable. Though note that in practice it's not always faster. Simplest implementation looks like:
Create data structure
visited_bitset = [False for _ in xrange(373000)]
Test current state and add if not visited yet
if !visited[current_state]:
visited_bitset[current_state] = True
Paul's answer might work.
Elisha's answer is perfectly valid hash function that would guarantee that no collision happen in the hash function. The 9! would be a pure minimum for a guaranteed no collision hash function, but (unless someone corrects me, Paul probably has) I don't believe there exists a function to map each board to a value in the domain [0, 9!], let alone a hash function that is nothing more that O(1).
If you have a 1GB of memory to support a Boolean array of 864197532 (aka 987654321-12346789) indices. You guarantee (computationally) the O(1) requirement.
Practically (meaning when you run in a real system) speaking this isn't going to be cache friendly but on paper this solution will definitely work. Even if an perfect function did exist, doubt it too would be cache friendly either.
Using prebuilts like set or hashmap (sorry I haven't programmed Python in a while, so don't remember the datatype) must have an amortized 0(1). But using one of these with a suboptimal hash function like n % RANDOM_PRIME_NUM_GREATER_THAN_100000 might give the best solution.

Selecting random elements in a list conditional on attribute

class Agent:
def __init__(self, state):
self.state = state
#initialize values
state_0_agents = 10
state_1_agents = 10
numberofselections = 2 #number of agents who can choose to transition to the higher plane
#list of agents
agents = [Agent(0) for i in range(state_0_agents)]
agents.extend(Agent(1) for i in range(state_1_agents))
random.choice(agents)
I want to randomly select a couple of agents from this Agents list whose state I will end up changing to 1. Unfortunately the random.choice function selects among all the elements. However I want to randomly select only among those whose state is 0.
I would prefer if this could occur without creating a new list.
I see 3 options here:
Create a list anyway, you can do so with a list comprehension:
random.choice([a for a in agents if a.state == 0])
Put the random.choice() call in a loop, keep trying until you get one that matches the criteria:
while True:
agent = random.choice(agents)
if agent.state == 0:
break
Index your agents list, then pick from that index; these are really just lists still:
agent_states_index = {}
for index, agent in enumerate(agents):
agent_states_index.setdefault(agent.state, []).append(index)
agent_index = random.choice(agent_states_index[0])
agent = agents[agent_index]
There are four algorithms I know of for this.
The first is detailed in this answer. Iterate through the array, then if you come across an element that satisfies a condition, check to see if a random integer is less than (1/(however many elements you've passed that satisfy the condition)).
The second is to iterate through your array, adding to a new array elements that fulfill the condition, then randomly pick one out of that list.
Both of these algorithms run in O(n) time, where n is the size of the array. They are guaranteed to find an element if it is there and satisfies the condition.
There are another two algorithms that are much faster. They both run in O(1) time but have some major weaknesses.
The first is to keep picking indexes randomly until you hit on one that satisfies the condition. This has a potentially infinite time complexity but is O(1) in practice. (If there are very few elements that satisfy the condition and the array is very large, something like 1 in 10000 elements, this becomes slower.) It is also not guaranteed to find an element if it is not there; if there is no element that satisfies the condition, you either have an infinite loop or have to write the algorithm to make a finite number of guesses and you might miss an element even if it is there.
The second is to pick a random index, then keep incrementing it until you find an index that satisfies the condition. It is guaranteed to either find an acceptable index or look through all of the indexes without entering into an infinite loop. It has the downside of not being completely random. Obviously, if you increment the index by 1 every time, it will be really, really nonrandom (if there are clumps of acceptable indexes in the array). However, if you choose the increment randomly from one of a handful of numbers that are coprime to the number of elements of the array, then it's still not fair and random, but is fairly fair and random, and guaranteed to succeed.
Again, these last 2 algorithms are very fast but are either not guaranteed to work or not guaranteed to be completely random. I don't know of an algorithm that is both fast, guaranteed to work, and completely fair and random.
Use numpy.where:
import numpy as np
class Agent:
def __init__(self, state):
self.state = state
#initialize values
state_0_agents = 10
state_1_agents = 10
#list of agents
agents = [0]*state_0_agents
agents += [1]*state_1_agents
selected_agent_idx = random.choice(np.where(np.array(agents) == 0))
You can also use the nonzero function in numpy as it returns a list of indices where an iterable is not zero. Then you can combine it with the choice function to change the value of a random in a element index of that list:
import numpy as np
index_agent0 = np.nonzero(agents==0)[0]
agents[np.random.choice(index_agent0)] = 1

Sometimes my set comes out ordered and sometimes not (Python)

So I know that a set is supposed to be an unordered list. I am trying to do some coding of my own and ended up with a weird happening. My set will sometimes go in order from 1 - 100 (when using a larger number) and when I use a smaller number it will stay unordered. Why is that?
#Steps:
#1) Take a number value for total random numbers in 1-100
#2) Put those numbers into a set (which will remove duplicates)
#3) Print that set and the total number of random numbers
import random
randomnums = 0
Min = int(1)
Max = int(100)
print('How many random numbers would you like?')
numsneeded = int(input('Please enter a number. '))
print("\n" * 25)
s = set()
while (randomnums < numsneeded):
number = random.randint(Min, Max)
s.add(number)
randomnums = randomnums + 1
print s
print len(s)
If anyone has any pointers on cleaning up my code I am 100% willing to learn. Thank you for your time!
When the documentation for set says it is an unordered collection, it only means that you can assume no specific order on the elements of the set. The set can choose what internal representation it uses to hold the data, and when you ask for the elements, they might come back in any order at all. The fact that they are sorted in some cases might mean that the set has chosen to store your elements in a sorted manner.
The set can make tradeoff decisions between performance and space depending on factors such as the number of elements in the set. For example, it could store small sets in a list, but larger sets in a tree. The most natural way to retrieve elements from a tree is in sorted order, so that's what could be happening for you.
See also Can Python's set absence of ordering be considered random order? for further info about this.
Sets are implemented with a hash implementation. The hash of an integer is just the integer. To determine where to put the number in the table the remainder of the integer when divided by the table size is used. The table starts with a size of 8, so the numbers 0 to 7 would be placed in their own slot in order, but 8 would be placed in the 0 slot. If you add the numbers 1 to 4 and 8 into an empty set it will display as:
set([8,1,2,3,4])
What happens when 5 is added is that the table has exceeded 2/3rds full. At that point the table is increased in size to 32. When creating the new table the existing table is repopulated into the new table. Now it displays as:
set([1,2,3,4,5,8])
In your example as long as you've added enough entries to cause the table to have 128 entries, then they will all be placed in the table in their own bins in order. If you've only added enough entries that the table has 32 slots, but you are using numbers up to 100 the items won't necessarily be in order.

Retrieve List Position Of Highest Value?

There is a list with float values, which can differ or not. How can I find the randomly chosen list-index of one of the highest values in this list?
If the context is interesting to you:
I try to write a solver for the pen&paper game Battleship. I attempt to calculate probabilities for a hit on each of the fields and then want the the solver to shoot at one of the most likely spots, which means retrieving the index of the highest likelyhood in my likelyhood-list and then tell the game engine this index as my choice. Already the first move shows that it can happen, that there are a lot of fields with the same likelyhood. In this case it makes sense to choose one of them at random (and not just take always the first or anything like that).
Find the maximum using How to find all positions of the maximum value in a list?. Then pick a random from the list using random.choice.
>>> m = max(a)
>>> max_pos = [i for i, j in enumerate(a) if j == m]
>>> random.choice(max_pos)

Categories

Resources