I am using sympy 1.4 to do kinematics and dynamics of ur5 robot. The express function in sympy seems to return wrong answer.ere The overall aim would be to obtain the Mass, Coriolis, Centripetal and gravity matrices as symbolic expressions. In the attached code, I am trying out a 3R manipulator
In the attached code, I am expecting the position vector of J3 frame to be 0.707106781186548*Base.i + 2.70710678118655*Base.j with respect to B where as the expression returned by the express function has a negative j.
Any idea where I am making the mistake. Or is there a better way to convert Denavit-Hartenberg representation to get the coordinate frames of the joints?
edit 1: I find that the sign convention used in sympy is just the opposite of what I have learned. For example, for a z axis rotation, the rotation matrix of B with respect to A is defined in sympy as
[cos(a) sin(a) 0;
-sin(a) cos(a) 0;
0 0 1]
Is there a way to go to the sign convention where R_z =
[cos(a) -sin(a) 0;
sin(a) cos(a) 0;
0 0 1]
without using the transpose function always?
from sympy import *
from sympy.physics.mechanics import *
from sympy.physics.vector import ReferenceFrame, Vector
from sympy.physics.vector import time_derivative
from sympy.tensor.array import Array
# Planar 3R manipulator (minimal code)
# DH representation
a = Array([0, 1, 2])
d = Array([0.0, 0.0, 0.0])
alpha = Array([0.0, 0.0, 0.0])
# q1, q2, q3 = dynamicsymbols('q1:4')
# q = [q1, q2, q3]
q = [np.pi/4, np.pi/4, 0.0,]
x_p = a[1]*cos(q[0]) + a[2]*cos(q[0] + q[1])
y_p = a[1]*sin(q[0]) + a[2]*sin(q[0] + q[1])
print 'x_p, y_p:', x_p, y_p
def transformationMatrix():
q_i = Symbol("q_i")
alpha_i = Symbol("alpha_i")
a_i = Symbol("a_i")
d_i = Symbol("d_i")
T = Matrix([[cos(q_i), -sin(q_i), 0, a_i],
[sin(q_i) * cos(alpha_i), cos(q_i) * cos(alpha_i), -sin(alpha_i), -sin(alpha_i) * d_i],
[sin(q_i) * sin(alpha_i), cos(q_i) * sin(alpha_i), cos(alpha_i), cos(alpha_i) * d_i],
[0, 0, 0, 1]])
return T
T = transformationMatrix()
q_i = Symbol("q_i")
alpha_i = Symbol("alpha_i")
a_i = Symbol("a_i")
d_i = Symbol("d_i")
T01 = T.subs(alpha_i, alpha[0]).subs(a_i, a[0]).subs(d_i, d[0]).subs(q_i, q[0])
T12 = T.subs(alpha_i, alpha[1]).subs(a_i, a[1]).subs(d_i, d[1]).subs(q_i, q[1])
T23 = T.subs(alpha_i, alpha[2]).subs(a_i, a[2]).subs(d_i, d[2]).subs(q_i, q[2])
T02 = T01*T12
T03 = T02*T23
B = CoordSys3D('Base') # Base (0) reference frame
J1 = CoordSys3D('Joint1', location=T01[0, 3]*B.i + T01[1, 3]*B.j + T01[2, 3]*B.k, rotation_matrix=T01[0:3, 0:3], parent=B)
J2 = CoordSys3D('Joint2', location=T12[0, 3]*J1.i + T12[1, 3]*J1.j + T12[2, 3]*J1.k, rotation_matrix=T12[0:3, 0:3], parent=J1)
J3 = CoordSys3D('Joint3', location=T23[0, 3]*J2.i + T23[1, 3]*J2.j + T23[2, 3]*J2.k, rotation_matrix=T23[0:3, 0:3], parent=J2)
express(J3.position_wrt(B), B)
expected result : produces 0.707106781186548*Base.i + 2.70710678118655*Base.j
actual result: produces 0.707106781186548*Base.i + (-2.70710678118655)*Base.j
Related
I am trying to find the control points and handles of a Cubic Bezier curve from a series of points. My current code is below (credit to Zero Zero on the Python Discord). The Cubic Spline is creating the desired fit, but the handles (in orange) are incorrect. How may I find the handles of this curve?
Thank you!
import numpy as np
import scipy as sp
def fit_curve(points):
# Fit a cubic bezier curve to the points
curve = sp.interpolate.CubicSpline(points[:, 0], points[:, 1], bc_type=((1, 0.0), (1, 0.0)))
# Get 4 control points for the curve
p = np.zeros((4, 2))
p[0, :] = points[0, :]
p[3, :] = points[-1, :]
p[1, :] = points[0, :] + 0.3 * (points[-1, :] - points[0, :])
p[2, :] = points[-1, :] - 0.3 * (points[-1, :] - points[0, :])
return p, curve
ypoints = [0.0, 0.03771681353260319, 0.20421680080883106, 0.49896111463402026, 0.7183501026981503, 0.8481517096346528, 0.9256128196832564, 0.9705404287079152, 0.9933297674379904, 1.0]
xpoints = [x for x in range(len(ypoints))]
points = np.array([xpoints, ypoints]).T
from scipy.interpolate import splprep, splev
tck, u = splprep([xpoints, ypoints], s=0)
#print(tck, u)
xnew, ynew = splev(np.linspace(0, 1, 100), tck)
# Plot the original points and the Bézier curve
import matplotlib.pyplot as plt
#plt.plot(xpoints, ypoints, 'x', xnew, ynew, xpoints, ypoints, 'b')
plt.axis([0, 10, -0.05, 1.05])
plt.legend(['Points', 'Bézier curve', 'True curve'])
plt.title('Bézier curve fitting')
# Get the curve
p, curve = fit_curve(points)
# Plot the points and the curve
plt.plot(points[:, 0], points[:, 1], 'o')
plt.plot(p[:, 0], p[:, 1], 'o')
plt.plot(np.linspace(0, 9, 100), curve(np.linspace(0, 9, 100)))
plt.show()
The answer for my case was a Bezier best fit function that accepts an input of point values, fits the points to a Cubic Spline, and outputs the Bézier handles of the curve by finding their coefficients.
Here is one such script, fitCurves, which can be used like so:
import numpy as np
from fitCurve import fitCurve
import matplotlib.pyplot as plt
y = [0.0,
0.03771681353260319,
0.20421680080883106,
0.49896111463402026,
0.7183501026981503,
0.8481517096346528,
0.9256128196832564,
0.9705404287079152,
0.9933297674379904,
1.0]
x = np.linspace(0, 1, len(y))
pts = np.array([x,y]).T
bezier_handles = fitCurve(points=pts , maxError=20)
x_bez = []
y_bez = []
for bez in bezier_handles:
for pt in bez:
x_bez.append(pt[0])
y_bez.append(pt[1])
plt.plot(pts[:,0], pts[:,1], 'bo-', label='Points')
plt.plot(x_bez[:2], y_bez[:2], 'ro--', label='Handle') # handle 1
plt.plot(x_bez[2:4], y_bez[2:4], 'ro--') # handle 2
plt.legend()
plt.show()
fitCurve.py
from numpy import *
""" Python implementation of
Algorithm for Automatically Fitting Digitized Curves
by Philip J. Schneider
"Graphics Gems", Academic Press, 1990
"""
# evaluates cubic bezier at t, return point
def q(ctrlPoly, t):
return (1.0-t)**3 * ctrlPoly[0] + 3*(1.0-t)**2 * t * ctrlPoly[1] + 3*(1.0-t)* t**2 * ctrlPoly[2] + t**3 * ctrlPoly[3]
# evaluates cubic bezier first derivative at t, return point
def qprime(ctrlPoly, t):
return 3*(1.0-t)**2 * (ctrlPoly[1]-ctrlPoly[0]) + 6*(1.0-t) * t * (ctrlPoly[2]-ctrlPoly[1]) + 3*t**2 * (ctrlPoly[3]-ctrlPoly[2])
# evaluates cubic bezier second derivative at t, return point
def qprimeprime(ctrlPoly, t):
return 6*(1.0-t) * (ctrlPoly[2]-2*ctrlPoly[1]+ctrlPoly[0]) + 6*(t) * (ctrlPoly[3]-2*ctrlPoly[2]+ctrlPoly[1])
# Fit one (ore more) Bezier curves to a set of points
def fitCurve(points, maxError):
leftTangent = normalize(points[1] - points[0])
rightTangent = normalize(points[-2] - points[-1])
return fitCubic(points, leftTangent, rightTangent, maxError)
def fitCubic(points, leftTangent, rightTangent, error):
# Use heuristic if region only has two points in it
if (len(points) == 2):
dist = linalg.norm(points[0] - points[1]) / 3.0
bezCurve = [points[0], points[0] + leftTangent * dist, points[1] + rightTangent * dist, points[1]]
return [bezCurve]
# Parameterize points, and attempt to fit curve
u = chordLengthParameterize(points)
bezCurve = generateBezier(points, u, leftTangent, rightTangent)
# Find max deviation of points to fitted curve
maxError, splitPoint = computeMaxError(points, bezCurve, u)
if maxError < error:
return [bezCurve]
# If error not too large, try some reparameterization and iteration
if maxError < error**2:
for i in range(20):
uPrime = reparameterize(bezCurve, points, u)
bezCurve = generateBezier(points, uPrime, leftTangent, rightTangent)
maxError, splitPoint = computeMaxError(points, bezCurve, uPrime)
if maxError < error:
return [bezCurve]
u = uPrime
# Fitting failed -- split at max error point and fit recursively
beziers = []
centerTangent = normalize(points[splitPoint-1] - points[splitPoint+1])
beziers += fitCubic(points[:splitPoint+1], leftTangent, centerTangent, error)
beziers += fitCubic(points[splitPoint:], -centerTangent, rightTangent, error)
return beziers
def generateBezier(points, parameters, leftTangent, rightTangent):
bezCurve = [points[0], None, None, points[-1]]
# compute the A's
A = zeros((len(parameters), 2, 2))
for i, u in enumerate(parameters):
A[i][0] = leftTangent * 3*(1-u)**2 * u
A[i][1] = rightTangent * 3*(1-u) * u**2
# Create the C and X matrices
C = zeros((2, 2))
X = zeros(2)
for i, (point, u) in enumerate(zip(points, parameters)):
C[0][0] += dot(A[i][0], A[i][0])
C[0][1] += dot(A[i][0], A[i][1])
C[1][0] += dot(A[i][0], A[i][1])
C[1][1] += dot(A[i][1], A[i][1])
tmp = point - q([points[0], points[0], points[-1], points[-1]], u)
X[0] += dot(A[i][0], tmp)
X[1] += dot(A[i][1], tmp)
# Compute the determinants of C and X
det_C0_C1 = C[0][0] * C[1][1] - C[1][0] * C[0][1]
det_C0_X = C[0][0] * X[1] - C[1][0] * X[0]
det_X_C1 = X[0] * C[1][1] - X[1] * C[0][1]
# Finally, derive alpha values
alpha_l = 0.0 if det_C0_C1 == 0 else det_X_C1 / det_C0_C1
alpha_r = 0.0 if det_C0_C1 == 0 else det_C0_X / det_C0_C1
# If alpha negative, use the Wu/Barsky heuristic (see text) */
# (if alpha is 0, you get coincident control points that lead to
# divide by zero in any subsequent NewtonRaphsonRootFind() call. */
segLength = linalg.norm(points[0] - points[-1])
epsilon = 1.0e-6 * segLength
if alpha_l < epsilon or alpha_r < epsilon:
# fall back on standard (probably inaccurate) formula, and subdivide further if needed.
bezCurve[1] = bezCurve[0] + leftTangent * (segLength / 3.0)
bezCurve[2] = bezCurve[3] + rightTangent * (segLength / 3.0)
else:
# First and last control points of the Bezier curve are
# positioned exactly at the first and last data points
# Control points 1 and 2 are positioned an alpha distance out
# on the tangent vectors, left and right, respectively
bezCurve[1] = bezCurve[0] + leftTangent * alpha_l
bezCurve[2] = bezCurve[3] + rightTangent * alpha_r
return bezCurve
def reparameterize(bezier, points, parameters):
return [newtonRaphsonRootFind(bezier, point, u) for point, u in zip(points, parameters)]
def newtonRaphsonRootFind(bez, point, u):
"""
Newton's root finding algorithm calculates f(x)=0 by reiterating
x_n+1 = x_n - f(x_n)/f'(x_n)
We are trying to find curve parameter u for some point p that minimizes
the distance from that point to the curve. Distance point to curve is d=q(u)-p.
At minimum distance the point is perpendicular to the curve.
We are solving
f = q(u)-p * q'(u) = 0
with
f' = q'(u) * q'(u) + q(u)-p * q''(u)
gives
u_n+1 = u_n - |q(u_n)-p * q'(u_n)| / |q'(u_n)**2 + q(u_n)-p * q''(u_n)|
"""
d = q(bez, u)-point
numerator = (d * qprime(bez, u)).sum()
denominator = (qprime(bez, u)**2 + d * qprimeprime(bez, u)).sum()
if denominator == 0.0:
return u
else:
return u - numerator/denominator
def chordLengthParameterize(points):
u = [0.0]
for i in range(1, len(points)):
u.append(u[i-1] + linalg.norm(points[i] - points[i-1]))
for i, _ in enumerate(u):
u[i] = u[i] / u[-1]
return u
def computeMaxError(points, bez, parameters):
maxDist = 0.0
splitPoint = len(points)/2
for i, (point, u) in enumerate(zip(points, parameters)):
dist = linalg.norm(q(bez, u)-point)**2
if dist > maxDist:
maxDist = dist
splitPoint = i
return maxDist, splitPoint
def normalize(v):
return v / linalg.norm(v)
I want to fit a set of data points in the xy plane to the general case of a rotated and translated hyperbola to back out the coefficients of the general equation of a conic.
I've tried the methodology proposed in here but so far I cannot make it work.
When fitting to a set of points known to be a hyperbola I get quite different outputs.
What I'm doing wrong in the code below?
Or is there any other way to solve this problem?
import numpy as np
from sympy import plot_implicit, Eq
from sympy.abc import x, y
def fit_hyperbola(x, y):
D1 = np.vstack([x**2, x*y, y**2]).T
D2 = np.vstack([x, y, np.ones(len(x))]).T
S1 = D1.T # D1
S2 = D1.T # D2
S3 = D2.T # D2
# define the constraint matrix and its inverse
C = np.array(((0, 0, -2), (0, 1, 0), (-2, 0, 0)), dtype=float)
Ci = np.linalg.inv(C)
# Setup and solve the generalized eigenvector problem
T = np.linalg.inv(S3) # S2.T
S = Ci#(S1 - S2#T)
eigval, eigvec = np.linalg.eig(S)
# evaluate and sort resulting constraint values
cond = eigvec[1]**2 - 4*eigvec[0]*eigvec[2]
# [condVals index] = sort(cond)
idx = np.argsort(cond)
condVals = cond[idx]
possibleHs = condVals[1:] + condVals[0]
minDiffAt = np.argmin(abs(possibleHs))
# minDiffVal = possibleHs[minDiffAt]
alpha1 = eigvec[:, idx[minDiffAt + 1]]
alpha2 = T#alpha1
return np.concatenate((alpha1, alpha2)).ravel()
if __name__ == '__main__':
# known hyperbola coefficients
coeffs = [1., 6., -2., 3., 0., 0.]
# hyperbola points
x_ = [1.56011303e+00, 1.38439984e+00, 1.22595618e+00, 1.08313085e+00,
9.54435408e-01, 8.38528681e-01, 7.34202759e-01, 6.40370424e-01,
5.56053814e-01, 4.80374235e-01, 4.12543002e-01, 3.51853222e-01,
2.97672424e-01, 2.49435970e-01, 2.06641170e-01, 1.68842044e-01,
1.35644673e-01, 1.06703097e-01, 8.17157025e-02, 6.04220884e-02,
4.26003457e-02, 2.80647476e-02, 1.66638132e-02, 8.27872926e-03,
2.82211172e-03, 2.37095181e-04, 4.96740239e-04, 3.60375275e-03,
9.59051203e-03, 1.85194083e-02, 3.04834928e-02, 4.56074477e-02,
6.40488853e-02, 8.59999904e-02, 1.11689524e-01, 1.41385205e-01,
1.75396504e-01, 2.14077865e-01, 2.57832401e-01, 3.07116093e-01,
3.62442545e-01, 4.24388335e-01, 4.93599021e-01, 5.70795874e-01,
6.56783391e-01, 7.52457678e-01, 8.58815793e-01, 9.76966133e-01,
1.10813998e+00, 1.25370436e+00]
y_ = [-0.66541515, -0.6339625 , -0.60485332, -0.57778425, -0.5524732 ,
-0.52865638, -0.50608561, -0.48452564, -0.46375182, -0.44354763,
-0.42370253, -0.4040097 , -0.38426392, -0.3642594 , -0.34378769,
-0.32263542, -0.30058217, -0.27739811, -0.25284163, -0.22665682,
-0.19857079, -0.16829086, -0.13550147, -0.0998609 , -0.06099773,
-0.01850695, 0.02805425, 0.07917109, 0.13537629, 0.19725559,
0.26545384, 0.34068177, 0.42372336, 0.51544401, 0.61679957,
0.72884632, 0.85275192, 0.98980766, 1.14144182, 1.30923466,
1.49493479, 1.70047747, 1.92800474, 2.17988774, 2.45875143,
2.76750196, 3.10935692, 3.48787892, 3.90701266, 4.3711261 ]
plot_implicit (Eq(coeffs[0]*x**2 + coeffs[1]*x*y + coeffs[2]*y**2 + coeffs[3]*x + coeffs[4]*y, -coeffs[5]))
coeffs_fit = fit_hyperbola(x_, y_)
plot_implicit (Eq(coeffs_fit[0]*x**2 + coeffs_fit[1]*x*y + coeffs_fit[2]*y**2 + coeffs_fit[3]*x + coeffs_fit[4]*y, -coeffs_fit[5]))
The general equation of hyperbola is defined with 5 independent coefficients (not 6). If the model equation includes dependant coefficients (which is the case with 6 coefficients) trouble might occur in the numerical regression calculus.
That is why the equation A * x * x + B * x * y + C * y * y + D * x + F * y = 1 is considered in the calculus below. The fitting is very good.
Then one can goback to the standard equation a * x * x + 2 * b * x * y + c * y * y + 2 * d * x + 2 * f * y + g = 0 in setting a value for g (for example g=-1).
The formulas to find the coordinates of the center, the equations of asymptotes, the equations of axis, are given in addition.
https://mathworld.wolfram.com/ConicSection.html
https://en.wikipedia.org/wiki/Conic_section
https://en.wikipedia.org/wiki/Hyperbola
As mentioned above, the function below works, however its very slow. I am very interested in using faster/optimised numpy (or other) vectorized alternatives. I have not posted the entire script here due to it being too large.
My specific question is - are there suitable numpy (or other) functions that I can use to 1) reduce run time and 2) reduce code volume of this function, specifically the for loop?
Edit: mass, temp, U and dpdh are functions that carry out simple algebraic calculations and return constants
def my_system(t, y, n, hIn, min, mAlumina, cpAlumina, sa, V):
dydt = np.zeros(3 * n) #setting up zeros array for solution (solving for [H0,Ts0,m0,H1,Ts1,m1,H2,Ts2,m2,..Hn,Tsn,mn])
# y = [h_0, Ts_0, m_0, ... h_n, Ts_n, m_n]
# y[0] = hin
# y[1] = Ts0
# y[2] = minL
i=0
## Using thermo
T = temp(y[i],P) #initial T
m = mass(y[i],P) #initial m
#initial values
dydt[i] = (min * (hIn - y[i]) + (U(hIn,P,min) * sa * (y[i + 1] - T))) / m # dH/dt (eq. 2)
dydt[i + 1] = -(U(hIn,P,min) * sa * (y[i + 1] - T)) / (mAlumina * cpAlumina) # dTs/dt from eq.3
dmdt = dydt[i] * dpdh(y[i], P) * V # dm/dt (holdup variation) eq. 4b
dydt[i + 2] = min - dmdt # mass flow out (eq.4a)
for i in range(3, 3 * n, 3): #starting at index 3, and incrementing by 3 because we are solving for 'triplets' [h,Ts,m] in each loop
## Using thermo
T = temp(y[i],P)
m = mass(y[i],P)
# [h, TS, mdot]
dydt[i] = (dydt[i-1] * (y[i - 3] - y[i]) + (U(y[i-3], P, dydt[i-1]) * sa * (y[i + 1] - T))) / m # dH/dt (eq.2), dydt[i-1] is the mass of the previous tank
dydt[i + 1] = -(U(y[i-3], P, dydt[i-1]) * sa * (y[i + 1] - T)) / (mAlumina * cpAlumina) # dTs/dt eq. (3)
dmdt = dydt[i] * dpdh(y[i], P) * V # Equation 4b
dydt[i + 2] = dydt[i-1] - dmdt # Equation 4a
return dydt
The functions mass, temp, U, and dpdh used inside the my_system function all take numbers as input, perform some simple algebraic operation and return a number (no need to optimise these I am just providing them for further context)
def temp(H,P):
# returns temperature given enthalpy (after processing function)
T = flasher.flash(H=H, P=P, zs=zs, retry=True).T
return T
def mass(H, P):
# returns mass holdup in mol
m = flasher.flash(H=H, P=P, zs=zs, retry=True).rho()*V
return m
def dpdh(H, P):
res = flasher.flash(H=H, P=P, zs=zs, retry=True)
if res.phase_count == 1:
if res.phase == 'L':
drho_dTf = res.liquid0.drho_dT()
else:
drho_dTf = res.gas.drho_dT()
else:
drho_dTf = res.bulk._equilibrium_derivative(of='rho', wrt='T', const='P')
dpdh = drho_dTf/res.dH_dT_P()
return dpdh
def U(H,P,m):
# Given T, P, m
air = Mixture(['nitrogen', 'oxygen'], Vfgs=[0.79, 0.21], H=H, P=P)
mu = air.mu*1000/mWAir #mol/m.s
cp = air.Cpm #J/mol.K
kg = air.k #W/m.K
g0 = m/areaBed #mol/m2.s
a = sa*n/vTotal #m^2/m^3 #QUESTIONABLE
psi = 1
beta = 10
pr = (mu*cp)/kg
re = (6*g0)/(a*mu*psi)
hfs = ((2.19*(re**1/3)) + (0.78*(re**0.619)))*(pr**1/3)*(kg)/diameterParticle
h = 1/((1/hfs) + ((diameterParticle/beta)/kAlumina))
return h
Reference Image:
enter image description here
For improving the speed, you can see Numba, which is useable if you use NumPy a lot but not every code can be used with Numba. Apart from that, the formulation of the equation system is confusing. You are solving 3 equations and adding the result to a single dydt list by 3 elements each. You can simply create three lists, solve each equation and add them to their respective list. For this, you need to re-write my_system as:
import numpy as np
def my_system(t, RHS, hIn, Ts0, minL, mAlumina, cpAlumina, sa, V):
# get initial boundary condition values
y1 = RHS[0]
y2 = RHS[1]
y3 = RHS[2]
## Using thermo
T = # calculate T
m = # calculate m
# [h, TS, mdot] solve dy1dt for h, dy2dt for TS and dy3dt for mdot
dy1dt = # dH/dt (eq.2), y1 corresponds to initial or previous value of dy1dt
dy2dt = # dTs/dt eq. (3), y2 corresponds to initial or previous value of dy2dt
dmdt = # Equation 4b
dy3dt = # Equation 4a, y3 corresponds to initial or previous value of dy3dt
# Left-hand side of ODE
LHS = np.zeros([3,])
LHS[0] = dy1dt
LHS[1] = dy2dt
LHS[2] = dy3dt
return LHS
In this function, you can pass RHS as a list with initial values ([dy1dt, dy2dt, dy3dt]) which will be unpacked as y1, y2, and y3 respectively and use them for respective differential equations. The solved equations (next values) will be saved to dy1dt, dy2dt, and dy3dt which will be returned as a list LHS.
Now you can solve this using scipy.integrate.odeint. Therefore, you can leave the for loop structure and solve the equations by using this method as follows:
hIn = #some val
Ts0 = #some val
minL = #some val
mAlumina = #some vaL
cpAlumina = #some val
sa = #some val
V = #some val
P = #some val
## Using thermo
T = temp(hIn,P) #initial T
m = mass(hIn,P) #initial m
#initial values
y01 = # calculate dH/dt (eq. 2)
y02 = # calculate dTs/dt from eq.3
dmdt = # calculate dm/dt (holdup variation) eq. 4b
y03 = # calculatemass flow out (eq.4a)
n = # time till where you want to solve the equation system
y0 = [y01, y02, y03]
step_size = 1
t = np.linspace(0, n, int(n/step_size)) # use that start time to which initial values corresponds
res = odeint(my_sytem, y0, t, args=(hIn, Ts0, minL, mAlumina, cpAlumina, sa, V,), tfirst=True)
print(res[:,0]) # print results for dH/dt
print(res[:,1]) # print results for dTs/dt
print(res[:,2]) # print results for Equation 4a
Here, I have passed all the initial values as y0 and chosen a step size of 1 which you can change as per your need.
In our physics class we have to model a damping torsional pendulum.
Ilustration of torsional pendulum:
We came up with this equation of motion:
Where θ is the angle, A is torsion parameter, B is Newton's parameter, C is Stokes' parameter, and D is friction parameter. We also use the sign function sgn that determines the direction of the acting force upon the pendulum, depending on the current angle from the reference point.
The problem is, that I'm unable to solve it using Runge-Kutta method in Python.
I got a working solution in MATLAB by using Euler's method, which has some flaws, but it is something.
MATLAB Code:
function [theta, dtheta, epsilon] = drt(t, theta0, dtheta0, A, B, C, D)
epsilon = zeros(1, length(t));
theta = epsilon;
dtheta = epsilon;
theta(1) = theta0;
dtheta(1) = dtheta0;
epsilon(1) = A * alpha0 - B * dtheta^2 - C * dtheta - D;
dt = t(2) - t(1);
for i = 1 : (length(t) - 1)
epsilon(i + 1)= - A * theta(i) - B * dtheta(i)^2 * sign(dtheta(i)) - C * dtheta(i) - D * sign(dtheta(i));
dtheta(i + 1)= dtheta(i) + dt * epsilon(i);
theta(i + 1) = theta(i) + dt * dtheta(i);
end
end
We call this MATLAB function like this for example:
t = linspace(0, 10, 100);
theta0 = 90;
dtheta0 = 0;
A = 1;
B = 0.1;
C = 0.1;
D = 0.1;
[theta, dtheta, epsilon] = drt(t, theta0, dtheta0, A, B, C, D);
We can then plot the theta and other values in a graph, which shows us, how the torsional pendulum is being damped by the external forces acting on it.
Python Code:
import numpy as np
import matplotlib.pyplot as plt
# Damping torsional pendulum
def drp(drp_alpha, drp_d_alpha, drp_params):
a = drp_params["tors"]
b = drp_params["newt"]
c = drp_params["stok"]
d = drp_params["fric"]
result = a * drp_alpha - b * np.power(drp_d_alpha, 2) * np.sign(drp_d_alpha) - c * drp_d_alpha - d * np.sign(drp_d_alpha)
return result
# Runge-Kutta 4th Order
# f - function DamRotPen
# x0 - initial condition
# t0 - initial time
# tmax - maximum time
# dt - sample time
def RG4(rg4_f, rg4_x0, rg4_t0, rg4_tmax, rg4_dt):
# Time vector
rg4_t = np.arange(rg4_t0, rg4_tmax, rg4_dt)
# Time vector size
rg4_t_sz = rg4_t.size
# Initialize the array
rg4_alpha = np.zeros(rg4_t_sz)
# Initial value of the system
rg4_alpha[0] = rg4_x0
for k in range(rg4_t_sz - 1):
k1 = dt * f(rg4_t[k], rg4_alpha[k])
k2 = dt * rg4_f(rg4_t[k] + dt / 2, rg4_alpha[k] + k1 / 2)
k3 = dt * rg4_f(rg4_t[k] + dt / 2, rg4_alpha[k] + k2 / 2)
k4 = dt * rg4_f(rg4_t[k] + dt, rg4_alpha[k] + k3)
rg4_d_alpha = (k1 + 2 * k2 + 2 * k3 + k4) / 6
rg4_alpha[k + 1] = rg4_alpha[k] + rg4_d_alpha
return rg4_alpha, rg4_t
# Parameters of the forces acting on the system
# tors - torsion parameter
# newt - Newton's parameter
# stok - Stokes' parameter
# fric - friction parameter
params = {"tors": 1, "newt": 0.1, "stok": 0.1, "fric": 0.1}
# Start parameters
alpha = 90
d_alpha = 0
# Initial time
t0 = 0
# Maximum time
tmax = 120
# Sample time
dt = 0.01
# Define DamRotPen function as 'f' using lambda
f = lambda t, alpha : drp(alpha, d_alpha, params)
# Try to solve this shit
alpha, t = RG4(f, alpha, t0, tmax, dt)
# Plot this shit
plt.plot(t, alpha, "r", "r", label="Position I guess")
plt.xlabel("Time t / s")
plt.grid()
plt.show()
After plotting the values, we can see on the graph, that the θ sky rockets after certain amount of time. I don't know what I'm doing wrong, I tried practically everything, so that's why I'm asking you for help. (Though I think part of the problem might be my misunderstanding on how to implement the Runge-Kutta method, maybe I got the math wrong, etc...)
I've been trying to solve a set of differential equations using solve_ivp. The Jacobian matrix of the system is the A as you can see below. I wanted to enable the option vectorized='True' but unfortunately i do not know how to modify the present code to vectorize the Jacobian matrix A. Does anyone know how this can be done?
# imports
import numpy as np
import scipy.sparse as sp
from scipy.integrate import solve_ivp
import matplotlib.pyplot as plt
# grid sizing
R=0.05 #sphere radius
N=1000#number of points
D=0.00002 #diffusion coefficient
k=10 # Arrhenius
Cs=1.0 # Boundary concentration
C0=0.0 # Initial concentration
time_constant=R**2.0/D
dr=R/(N-1)
# Algebra simplification
a=D/dr**2
Init_conc=np.linspace(0,0,N)
B=np.zeros(N)
B[N-1]=Cs*(a+a/(N-1))
#
e1 = np.ones(N)
e2 = np.ones(N)
e3 = np.ones(N)
#
#
#
e1[0]=-k-6*a
e1[1:]=-k-2*a
#
#
e2[1]=6*a
for i in range(2,N) :
e2[i]=a+a/(i-1)
#
#
#
for i in range (0,N-1) :
e3[i]=a-a/(i+1)
A = sp.spdiags([e3,e1,e2],[-1,0,1],N,N,format="csc")
def dc_dt(t,C) :
dc=A.dot(C)+B
return dc
# Solving the system, I want to implement the same thing with vectorized='True'
OutputTimes=np.linspace(0,0.2*time_constant,100)
ans=solve_ivp(dc_dt,(0,0.2*time_constant),Init_conc,method='RK45',t_eval=OutputTimes,vectorized='False')
print (ans)
Please have a look at this answer, the explanation is thorough. For your code in particular, please see below for updated snippet and figure. It is not obvious that vectorize is providing any speed-up. However, providing A for the keyword jac makes a difference. But I guess it is only valid if A is constant?
# imports
import numpy as np
import scipy.sparse as sp
from scipy.integrate import solve_ivp
import matplotlib.pyplot as plt # noqa
def dc_dt(t, C):
print(C.shape)
if len(C.shape) == 1:
return np.squeeze(A.dot(C)) + B
else:
return A.dot(C) + np.transpose(np.tile(B, (C.shape[1], 1)))
# return np.squeeze(A.dot(C)) + B
# grid sizing
R = 0.05 # sphere radius
N = 1000 # number of points
D = 0.00002 # diffusion coefficient
k = 10 # Arrhenius
Cs = 1.0 # Boundary concentration
C0 = 0.0 # Initial concentration
time_constant = R**2.0 / D
dr = R / (N - 1)
# Algebra simplification
a = D / dr**2
Init_conc = np.repeat(0, N)
B = np.zeros(N)
B[-1] = Cs * (a + a / (N - 1))
e1 = np.ones(N)
e2 = np.ones(N)
e3 = np.ones(N)
e1[0] = -k - 6 * a
e1[1:] = -k - 2 * a
e2[1] = 6 * a
for i in range(2, N):
e2[i] = a + a / (i - 1)
for i in range(0, N - 1):
e3[i] = a - a / (i + 1)
A = sp.spdiags([e3, e1, e2], [-1, 0, 1], N, N, format="csc")
# Solving the system, I want to implement the same thing with vectorized='True'
OutputTimes = np.linspace(0, 0.2 * time_constant, 10000)
ans = solve_ivp(dc_dt, (0, 0.2 * time_constant), Init_conc,
method='BDF', t_eval=OutputTimes, jac=A, vectorized=True)
plt.plot(np.arange(N), ans.y[:, 0])
plt.plot(np.arange(N), ans.y[:, 1])
plt.plot(np.arange(N), ans.y[:, 10])
plt.plot(np.arange(N), ans.y[:, 20])
plt.plot(np.arange(N), ans.y[:, 50])
plt.plot(np.arange(N), ans.y[:, -1])
plt.show()