More "pythonic" way to show a 4d matrix in 2d - python

I would like to plot a 4d matrix as a 2d matrix with indices:
[i][j][k][l] --> [i * nj + j][ k * nl + l]
I have a working version here.
This is working as I want, but it's not very elegant. I looked into "reshape" but this is not exactly what I'm looking for, or perhaps I am using it incorrectly.
Given a 4d array "r" with shape (100000,4), the relevant snippet I want to replace is:
def transform(i,j,k,l, s1, s2):
return [i * s1 + j, k * s2 + l]
nx = 5
ny = 11
iedges=np.linspace(0,100, nx)
jedges=np.linspace(0, 20, ny)
bins = ( iedges,jedges,iedges,jedges )
H, edges = np.histogramdd(r, bins=bins )
H2 = np.zeros(( (nx-1)*(ny-1),(nx-1)*(ny-1)))
for i in range(nx-1):
for j in range(ny-1):
for k in range(nx-1):
for l in range(ny-1):
x,y = transform(i,j,k,l,ny-1,ny-1)
H2[x][y] = H[i][j][k][l]
In this case the values of H2 will correspond to the values of H, but the entry i,j,k,l will display as i*ny + j, k * ny + l.
Example plot:

Are you sure reshape doesn't work?
I ran your code on a small random r. The nonzero terms of H are:
In [13]: np.argwhere(H)
Out[13]:
array([[0, 9, 3, 1],
[1, 1, 1, 2],
[1, 2, 1, 3],
[2, 2, 2, 3],
[3, 1, 1, 8]])
and for the transformed H2:
In [14]: np.argwhere(H2)
Out[14]:
array([[ 9, 31],
[11, 12],
[12, 13],
[22, 23],
[31, 18]])
And one of the H indices transforms to H2 indices with:
In [16]: transform(0,9,3,1,4,10)
Out[16]: [9, 31]
If I simply reshape H, I get the same array as H2:
In [17]: H3=H.reshape(40,40)
In [18]: np.argwhere(H3)
Out[18]:
array([[ 9, 31],
[11, 12],
[12, 13],
[22, 23],
[31, 18]])
In [19]: np.allclose(H2,H3)
Out[19]: True
So without delving into the details of your code, it looks to me like a simple reshape.

Looks like you can calculate i,j,k,l from x,y? This should be something like:
from functools import partial
def get_ijkl(x, y, s1, s2):
# "Reverse" of `transform`
i, j = divmod(x, s1)
k, l = divmod(y, s2)
return (i, j, k, l)
def get_2d_val(x, y, s1, s2, four_dim_array):
return four_dim_array[get_ijkl(x, y, s1, s2)]
smaller_shape = ((nx-1)*(ny-1), (nx-1)*(ny-1))
Knowing this there are several approaches possible:
numpy.fromfunction:
H3 = np.fromfunction(
partial(get_2d_val, s1=ny-1, s2=ny-1, four_dim_array=H),
shape=smaller_shape,
dtype=int,
)
assert np.all(H2 == H3)
by indexing:
indices_to_take = np.array([
[list(get_ijkl(x, y, ny-1, ny-1)) for x in range(smaller_shape[0])] for y in range(smaller_shape[1])
]).transpose()
H4 = H[tuple(indices_to_take)]
assert np.all(H2 == H4)
as answered by #hpaulj you can simply reshape array and it will be faster. But If you have some different transform and can calculate appropriate "reverse" function then using fromfunction or custom indexing will get useful

Related

What does np.einsum act on? [duplicate]

How does np.einsum work?
Given arrays A and B, their matrix multiplication followed by transpose is computed using (A # B).T, or equivalently, using:
np.einsum("ij, jk -> ki", A, B)
(Note: this answer is based on a short blog post about einsum I wrote a while ago.)
What does einsum do?
Imagine that we have two multi-dimensional arrays, A and B. Now let's suppose we want to...
multiply A with B in a particular way to create new array of products; and then maybe
sum this new array along particular axes; and then maybe
transpose the axes of the new array in a particular order.
There's a good chance that einsum will help us do this faster and more memory-efficiently than combinations of the NumPy functions like multiply, sum and transpose will allow.
How does einsum work?
Here's a simple (but not completely trivial) example. Take the following two arrays:
A = np.array([0, 1, 2])
B = np.array([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11]])
We will multiply A and B element-wise and then sum along the rows of the new array. In "normal" NumPy we'd write:
>>> (A[:, np.newaxis] * B).sum(axis=1)
array([ 0, 22, 76])
So here, the indexing operation on A lines up the first axes of the two arrays so that the multiplication can be broadcast. The rows of the array of products are then summed to return the answer.
Now if we wanted to use einsum instead, we could write:
>>> np.einsum('i,ij->i', A, B)
array([ 0, 22, 76])
The signature string 'i,ij->i' is the key here and needs a little bit of explaining. You can think of it in two halves. On the left-hand side (left of the ->) we've labelled the two input arrays. To the right of ->, we've labelled the array we want to end up with.
Here is what happens next:
A has one axis; we've labelled it i. And B has two axes; we've labelled axis 0 as i and axis 1 as j.
By repeating the label i in both input arrays, we are telling einsum that these two axes should be multiplied together. In other words, we're multiplying array A with each column of array B, just like A[:, np.newaxis] * B does.
Notice that j does not appear as a label in our desired output; we've just used i (we want to end up with a 1D array). By omitting the label, we're telling einsum to sum along this axis. In other words, we're summing the rows of the products, just like .sum(axis=1) does.
That's basically all you need to know to use einsum. It helps to play about a little; if we leave both labels in the output, 'i,ij->ij', we get back a 2D array of products (same as A[:, np.newaxis] * B). If we say no output labels, 'i,ij->, we get back a single number (same as doing (A[:, np.newaxis] * B).sum()).
The great thing about einsum however, is that it does not build a temporary array of products first; it just sums the products as it goes. This can lead to big savings in memory use.
A slightly bigger example
To explain the dot product, here are two new arrays:
A = array([[1, 1, 1],
[2, 2, 2],
[5, 5, 5]])
B = array([[0, 1, 0],
[1, 1, 0],
[1, 1, 1]])
We will compute the dot product using np.einsum('ij,jk->ik', A, B). Here's a picture showing the labelling of the A and B and the output array that we get from the function:
You can see that label j is repeated - this means we're multiplying the rows of A with the columns of B. Furthermore, the label j is not included in the output - we're summing these products. Labels i and k are kept for the output, so we get back a 2D array.
It might be even clearer to compare this result with the array where the label j is not summed. Below, on the left you can see the 3D array that results from writing np.einsum('ij,jk->ijk', A, B) (i.e. we've kept label j):
Summing axis j gives the expected dot product, shown on the right.
Some exercises
To get more of a feel for einsum, it can be useful to implement familiar NumPy array operations using the subscript notation. Anything that involves combinations of multiplying and summing axes can be written using einsum.
Let A and B be two 1D arrays with the same length. For example, A = np.arange(10) and B = np.arange(5, 15).
The sum of A can be written:
np.einsum('i->', A)
Element-wise multiplication, A * B, can be written:
np.einsum('i,i->i', A, B)
The inner product or dot product, np.inner(A, B) or np.dot(A, B), can be written:
np.einsum('i,i->', A, B) # or just use 'i,i'
The outer product, np.outer(A, B), can be written:
np.einsum('i,j->ij', A, B)
For 2D arrays, C and D, provided that the axes are compatible lengths (both the same length or one of them of has length 1), here are a few examples:
The trace of C (sum of main diagonal), np.trace(C), can be written:
np.einsum('ii', C)
Element-wise multiplication of C and the transpose of D, C * D.T, can be written:
np.einsum('ij,ji->ij', C, D)
Multiplying each element of C by the array D (to make a 4D array), C[:, :, None, None] * D, can be written:
np.einsum('ij,kl->ijkl', C, D)
Grasping the idea of numpy.einsum() is very easy if you understand it intuitively. As an example, let's start with a simple description involving matrix multiplication.
To use numpy.einsum(), all you have to do is to pass the so-called subscripts string as an argument, followed by your input arrays.
Let's say you have two 2D arrays, A and B, and you want to do matrix multiplication. So, you do:
np.einsum("ij, jk -> ik", A, B)
Here the subscript string ij corresponds to array A while the subscript string jk corresponds to array B. Also, the most important thing to note here is that the number of characters in each subscript string must match the dimensions of the array (i.e., two chars for 2D arrays, three chars for 3D arrays, and so on). And if you repeat the chars between subscript strings (j in our case), then that means you want the einsum to happen along those dimensions. Thus, they will be sum-reduced (i.e., that dimension will be gone).
The subscript string after this -> symbol represent the dimensions of our resultant array.
If you leave it empty, then everything will be summed and a scalar value is returned as the result. Else the resultant array will have dimensions according to the subscript string. In our example, it'll be ik. This is intuitive because we know that for the matrix multiplication to work, the number of columns in array A has to match the number of rows in array B which is what is happening here (i.e., we encode this knowledge by repeating the char j in the subscript string)
Here are some more examples illustrating the use/power of np.einsum() in implementing some common tensor or nd-array operations, succinctly.
Inputs
# a vector
In [197]: vec
Out[197]: array([0, 1, 2, 3])
# an array
In [198]: A
Out[198]:
array([[11, 12, 13, 14],
[21, 22, 23, 24],
[31, 32, 33, 34],
[41, 42, 43, 44]])
# another array
In [199]: B
Out[199]:
array([[1, 1, 1, 1],
[2, 2, 2, 2],
[3, 3, 3, 3],
[4, 4, 4, 4]])
1) Matrix multiplication (similar to np.matmul(arr1, arr2))
In [200]: np.einsum("ij, jk -> ik", A, B)
Out[200]:
array([[130, 130, 130, 130],
[230, 230, 230, 230],
[330, 330, 330, 330],
[430, 430, 430, 430]])
2) Extract elements along the main-diagonal (similar to np.diag(arr))
In [202]: np.einsum("ii -> i", A)
Out[202]: array([11, 22, 33, 44])
3) Hadamard product (i.e. element-wise product of two arrays) (similar to arr1 * arr2)
In [203]: np.einsum("ij, ij -> ij", A, B)
Out[203]:
array([[ 11, 12, 13, 14],
[ 42, 44, 46, 48],
[ 93, 96, 99, 102],
[164, 168, 172, 176]])
4) Element-wise squaring (similar to np.square(arr) or arr ** 2)
In [210]: np.einsum("ij, ij -> ij", B, B)
Out[210]:
array([[ 1, 1, 1, 1],
[ 4, 4, 4, 4],
[ 9, 9, 9, 9],
[16, 16, 16, 16]])
5) Trace (i.e. sum of main-diagonal elements) (similar to np.trace(arr))
In [217]: np.einsum("ii -> ", A)
Out[217]: 110
6) Matrix transpose (similar to np.transpose(arr))
In [221]: np.einsum("ij -> ji", A)
Out[221]:
array([[11, 21, 31, 41],
[12, 22, 32, 42],
[13, 23, 33, 43],
[14, 24, 34, 44]])
7) Outer Product (of vectors) (similar to np.outer(vec1, vec2))
In [255]: np.einsum("i, j -> ij", vec, vec)
Out[255]:
array([[0, 0, 0, 0],
[0, 1, 2, 3],
[0, 2, 4, 6],
[0, 3, 6, 9]])
8) Inner Product (of vectors) (similar to np.inner(vec1, vec2))
In [256]: np.einsum("i, i -> ", vec, vec)
Out[256]: 14
9) Sum along axis 0 (similar to np.sum(arr, axis=0))
In [260]: np.einsum("ij -> j", B)
Out[260]: array([10, 10, 10, 10])
10) Sum along axis 1 (similar to np.sum(arr, axis=1))
In [261]: np.einsum("ij -> i", B)
Out[261]: array([ 4, 8, 12, 16])
11) Batch Matrix Multiplication
In [287]: BM = np.stack((A, B), axis=0)
In [288]: BM
Out[288]:
array([[[11, 12, 13, 14],
[21, 22, 23, 24],
[31, 32, 33, 34],
[41, 42, 43, 44]],
[[ 1, 1, 1, 1],
[ 2, 2, 2, 2],
[ 3, 3, 3, 3],
[ 4, 4, 4, 4]]])
In [289]: BM.shape
Out[289]: (2, 4, 4)
# batch matrix multiply using einsum
In [292]: BMM = np.einsum("bij, bjk -> bik", BM, BM)
In [293]: BMM
Out[293]:
array([[[1350, 1400, 1450, 1500],
[2390, 2480, 2570, 2660],
[3430, 3560, 3690, 3820],
[4470, 4640, 4810, 4980]],
[[ 10, 10, 10, 10],
[ 20, 20, 20, 20],
[ 30, 30, 30, 30],
[ 40, 40, 40, 40]]])
In [294]: BMM.shape
Out[294]: (2, 4, 4)
12) Sum along axis 2 (similar to np.sum(arr, axis=2))
In [330]: np.einsum("ijk -> ij", BM)
Out[330]:
array([[ 50, 90, 130, 170],
[ 4, 8, 12, 16]])
13) Sum all the elements in array (similar to np.sum(arr))
In [335]: np.einsum("ijk -> ", BM)
Out[335]: 480
14) Sum over multiple axes (i.e. marginalization)
(similar to np.sum(arr, axis=(axis0, axis1, axis2, axis3, axis4, axis6, axis7)))
# 8D array
In [354]: R = np.random.standard_normal((3,5,4,6,8,2,7,9))
# marginalize out axis 5 (i.e. "n" here)
In [363]: esum = np.einsum("ijklmnop -> n", R)
# marginalize out axis 5 (i.e. sum over rest of the axes)
In [364]: nsum = np.sum(R, axis=(0,1,2,3,4,6,7))
In [365]: np.allclose(esum, nsum)
Out[365]: True
15) Double Dot Products (similar to np.sum(hadamard-product) cf. 3)
In [772]: A
Out[772]:
array([[1, 2, 3],
[4, 2, 2],
[2, 3, 4]])
In [773]: B
Out[773]:
array([[1, 4, 7],
[2, 5, 8],
[3, 6, 9]])
In [774]: np.einsum("ij, ij -> ", A, B)
Out[774]: 124
16) 2D and 3D array multiplication
Such a multiplication could be very useful when solving linear system of equations (Ax = b) where you want to verify the result.
# inputs
In [115]: A = np.random.rand(3,3)
In [116]: b = np.random.rand(3, 4, 5)
# solve for x
In [117]: x = np.linalg.solve(A, b.reshape(b.shape[0], -1)).reshape(b.shape)
# 2D and 3D array multiplication :)
In [118]: Ax = np.einsum('ij, jkl', A, x)
# indeed the same!
In [119]: np.allclose(Ax, b)
Out[119]: True
On the contrary, if one has to use np.matmul() for this verification, we have to do couple of reshape operations to achieve the same result like:
# reshape 3D array `x` to 2D, perform matmul
# then reshape the resultant array to 3D
In [123]: Ax_matmul = np.matmul(A, x.reshape(x.shape[0], -1)).reshape(x.shape)
# indeed correct!
In [124]: np.allclose(Ax, Ax_matmul)
Out[124]: True
Bonus: Read more math here : Einstein-Summation and definitely here: Tensor-Notation
When reading einsum equations, I've found it the most helpful to just be able to
mentally boil them down to their imperative versions.
Let's start with the following (imposing) statement:
C = np.einsum('bhwi,bhwj->bij', A, B)
Working through the punctuation first we see that we have two 4-letter comma-separated blobs - bhwi and bhwj, before the arrow,
and a single 3-letter blob bij after it. Therefore, the equation produces a rank-3 tensor result from two rank-4 tensor inputs.
Now, let each letter in each blob be the name of a range variable. The position at which the letter appears in the blob
is the index of the axis that it ranges over in that tensor.
The imperative summation that produces each element of C, therefore, has to start with three nested for loops, one for each index of C.
for b in range(...):
for i in range(...):
for j in range(...):
# the variables b, i and j index C in the order of their appearance in the equation
C[b, i, j] = ...
So, essentially, you have a for loop for every output index of C. We'll leave the ranges undetermined for now.
Next we look at the left-hand side - are there any range variables there that don't appear on the right-hand side? In our case - yes, h and w.
Add an inner nested for loop for every such variable:
for b in range(...):
for i in range(...):
for j in range(...):
C[b, i, j] = 0
for h in range(...):
for w in range(...):
...
Inside the innermost loop we now have all indices defined, so we can write the actual summation and
the translation is complete:
# three nested for-loops that index the elements of C
for b in range(...):
for i in range(...):
for j in range(...):
# prepare to sum
C[b, i, j] = 0
# two nested for-loops for the two indexes that don't appear on the right-hand side
for h in range(...):
for w in range(...):
# Sum! Compare the statement below with the original einsum formula
# 'bhwi,bhwj->bij'
C[b, i, j] += A[b, h, w, i] * B[b, h, w, j]
If you've been able to follow the code thus far, then congratulations! This is all you need to be able to read einsum equations. Notice in particular how the original einsum formula maps to the final summation statement in the snippet above. The for-loops and range bounds are just fluff and that final statement is all you really need to understand what's going on.
For the sake of completeness, let's see how to determine the ranges for each range variable. Well, the range of each variable is simply the length of the dimension(s) which it indexes.
Obviously, if a variable indexes more than one dimension in one or more tensors, then the lengths of each of those dimensions have to be equal.
Here's the code above with the complete ranges:
# C's shape is determined by the shapes of the inputs
# b indexes both A and B, so its range can come from either A.shape or B.shape
# i indexes only A, so its range can only come from A.shape, the same is true for j and B
assert A.shape[0] == B.shape[0]
assert A.shape[1] == B.shape[1]
assert A.shape[2] == B.shape[2]
C = np.zeros((A.shape[0], A.shape[3], B.shape[3]))
for b in range(A.shape[0]): # b indexes both A and B, or B.shape[0], which must be the same
for i in range(A.shape[3]):
for j in range(B.shape[3]):
# h and w can come from either A or B
for h in range(A.shape[1]):
for w in range(A.shape[2]):
C[b, i, j] += A[b, h, w, i] * B[b, h, w, j]
Another view on np.einsum
Most answers here explain by example, I thought I'd give an additional point of view.
You can see einsum as a generalized matrix summation operator. The string given contains the subscripts which are labels representing axes. I like to think of it as your operation definition. The subscripts provide two apparent constraints:
the number of axes for each input array,
axis size equality between inputs.
Let's take the initial example: np.einsum('ij,jk->ki', A, B). Here the constraints 1. translates to A.ndim == 2 and B.ndim == 2, and 2. to A.shape[1] == B.shape[0].
As you will see later down, there are other constraints. For instance:
labels in the output subscript must not appear more than once.
labels in the output subscript must appear in the input subscripts.
When looking at ij,jk->ki, you can think of it as:
which components from the input arrays will contribute to component [k, i] of the output array.
The subscripts contain the exact definition of the operation for each component of the output array.
We will stick with operation ij,jk->ki, and the following definitions of A and B:
>>> A = np.array([[1,4,1,7], [8,1,2,2], [7,4,3,4]])
>>> A.shape
(3, 4)
>>> B = np.array([[2,5], [0,1], [5,7], [9,2]])
>>> B.shape
(4, 2)
The output, Z, will have a shape of (B.shape[1], A.shape[0]) and could naively be constructed in the following way. Starting with a blank array for Z:
Z = np.zeros((B.shape[1], A.shape[0]))
for i in range(A.shape[0]):
for j in range(A.shape[1]):
for k range(B.shape[0]):
Z[k, i] += A[i, j]*B[j, k] # ki <- ij*jk
np.einsum is about accumulating contributions in the output array. Each (A[i,j], B[j,k]) pair is seen contributing to each Z[k, i] component.
You might have noticed, it looks extremely similar to how you would go about computing general matrix multiplications...
Minimal implementation
Here is a minimal implementation of np.einsum in Python. This should help understand what is really going on under the hood.
As we go along I will keep referring to the previous example. Defining inputs as [A, B].
np.einsum can actually take more than two inputs. In the following, we will focus on the general case: n inputs and n input subscripts. The main goal is to find the domain of iteration, i.e. the cartesian product of all our ranges.
We can't rely on manually writing for loops, simply because we don't know how many there will be. The main idea is this: we need to find all unique labels (I will use key and keys to refer to them), find the corresponding array shape, then create ranges for each one, and compute the product of the ranges using itertools.product to get the domain of study.
index
keys
constraints
sizes
ranges
1
'i'
A.shape[0]
3
range(0, 3)
2
'j'
A.shape[1] == B.shape[0]
4
range(0, 4)
0
'k'
B.shape[1]
2
range(0, 2)
The domain of study is the cartesian product: range(0, 2) x range(0, 3) x range(0, 4).
Subscripts processing:
>>> expr = 'ij,jk->ki'
>>> qry_expr, res_expr = expr.split('->')
>>> inputs_expr = qry_expr.split(',')
>>> inputs_expr, res_expr
(['ij', 'jk'], 'ki')
Find the unique keys (labels) in the input subscripts:
>>> keys = set([(key, size) for keys, input in zip(inputs_expr, inputs)
for key, size in list(zip(keys, input.shape))])
{('i', 3), ('j', 4), ('k', 2)}
We should be checking for constraints (as well as in the output subscript)! Using set is a bad idea but it will work for the purpose of this example.
Get the associated sizes (used to initialize the output array) and construct the ranges (used to create our domain of iteration):
>>> sizes = dict(keys)
{'i': 3, 'j': 4, 'k': 2}
>>> ranges = [range(size) for _, size in keys]
[range(0, 2), range(0, 3), range(0, 4)]
We need an list containing the keys (labels):
>>> to_key = sizes.keys()
['k', 'i', 'j']
Compute the cartesian product of the ranges
>>> domain = product(*ranges)
Note: [itertools.product][1] returns an iterator which gets consumed over time.
Initialize the output tensor as:
>>> res = np.zeros([sizes[key] for key in res_expr])
We will be looping over domain:
>>> for indices in domain:
... pass
For each iteration, indices will contain the values on each axis. In our example, that would provide i, j, and k as a tuple: (k, i, j). For each input (A and B) we need to determine which component to fetch. That's A[i, j] and B[j, k], yes! However, we don't have variables i, j, and k, literally speaking.
We can zip indices with to_key to create a mapping between each key (label) and its current value:
>>> vals = dict(zip(to_key, indices))
To get the coordinates for the output array, we use vals and loop over the keys: [vals[key] for key in res_expr]. However, to use these to index the output array, we need to wrap it with tuple and zip to separate the indices along each axis:
>>> res_ind = tuple(zip([vals[key] for key in res_expr]))
Same for the input indices (although there can be several):
>>> inputs_ind = [tuple(zip([vals[key] for key in expr])) for expr in inputs_expr]
We will use a itertools.reduce to compute the product of all contributing components:
>>> def reduce_mult(L):
... return reduce(lambda x, y: x*y, L)
Overall the loop over the domain looks like:
>>> for indices in domain:
... vals = {k: v for v, k in zip(indices, to_key)}
... res_ind = tuple(zip([vals[key] for key in res_expr]))
... inputs_ind = [tuple(zip([vals[key] for key in expr]))
... for expr in inputs_expr]
...
... res[res_ind] += reduce_mult([M[i] for M, i in zip(inputs, inputs_ind)])
>>> res
array([[70., 44., 65.],
[30., 59., 68.]])
That's pretty close to what np.einsum('ij,jk->ki', A, B) returns!
I found NumPy: The tricks of the trade (Part II) instructive
We use -> to indicate the order of the output array. So think of 'ij, i->j' as having left hand side (LHS) and right hand side (RHS). Any repetition of labels on the LHS computes the product element wise and then sums over. By changing the label on the RHS (output) side, we can define the axis in which we want to proceed with respect to the input array, i.e. summation along axis 0, 1 and so on.
import numpy as np
>>> a
array([[1, 1, 1],
[2, 2, 2],
[3, 3, 3]])
>>> b
array([[0, 1, 2],
[3, 4, 5],
[6, 7, 8]])
>>> d = np.einsum('ij, jk->ki', a, b)
Notice there are three axes, i, j, k, and that j is repeated (on the left-hand-side). i,j represent rows and columns for a. j,k for b.
In order to calculate the product and align the j axis we need to add an axis to a. (b will be broadcast along(?) the first axis)
a[i, j, k]
b[j, k]
>>> c = a[:,:,np.newaxis] * b
>>> c
array([[[ 0, 1, 2],
[ 3, 4, 5],
[ 6, 7, 8]],
[[ 0, 2, 4],
[ 6, 8, 10],
[12, 14, 16]],
[[ 0, 3, 6],
[ 9, 12, 15],
[18, 21, 24]]])
j is absent from the right-hand-side so we sum over j which is the second axis of the 3x3x3 array
>>> c = c.sum(1)
>>> c
array([[ 9, 12, 15],
[18, 24, 30],
[27, 36, 45]])
Finally, the indices are (alphabetically) reversed on the right-hand-side so we transpose.
>>> c.T
array([[ 9, 18, 27],
[12, 24, 36],
[15, 30, 45]])
>>> np.einsum('ij, jk->ki', a, b)
array([[ 9, 18, 27],
[12, 24, 36],
[15, 30, 45]])
>>>
Lets make 2 arrays, with different, but compatible dimensions to highlight their interplay
In [43]: A=np.arange(6).reshape(2,3)
Out[43]:
array([[0, 1, 2],
[3, 4, 5]])
In [44]: B=np.arange(12).reshape(3,4)
Out[44]:
array([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11]])
Your calculation, takes a 'dot' (sum of products) of a (2,3) with a (3,4) to produce a (4,2) array. i is the 1st dim of A, the last of C; k the last of B, 1st of C. j is 'consumed' by the summation.
In [45]: C=np.einsum('ij,jk->ki',A,B)
Out[45]:
array([[20, 56],
[23, 68],
[26, 80],
[29, 92]])
This is the same as np.dot(A,B).T - it's the final output that's transposed.
To see more of what happens to j, change the C subscripts to ijk:
In [46]: np.einsum('ij,jk->ijk',A,B)
Out[46]:
array([[[ 0, 0, 0, 0],
[ 4, 5, 6, 7],
[16, 18, 20, 22]],
[[ 0, 3, 6, 9],
[16, 20, 24, 28],
[40, 45, 50, 55]]])
This can also be produced with:
A[:,:,None]*B[None,:,:]
That is, add a k dimension to the end of A, and an i to the front of B, resulting in a (2,3,4) array.
0 + 4 + 16 = 20, 9 + 28 + 55 = 92, etc; Sum on j and transpose to get the earlier result:
np.sum(A[:,:,None] * B[None,:,:], axis=1).T
# C[k,i] = sum(j) A[i,j (,k) ] * B[(i,) j,k]
Once get familiar with the dummy index (the common or repeating index) and the summation along the dummy index in the Einstein Summation (einsum), the output -> shaping is easy. Hence focus on:
Dummy index, the common index j in np.einsum("ij,jk->ki", a, b)
Summation along the dummy index j
Dummy index
For einsum("...", a, b), element wise multiplication always happens in-between matrices a and b regardless there are common indices or not. We can have einsum('xy,wz', a, b) which has no common index in the subscripts 'xy,wz'.
If there is a common index, as j in "ij,jk->ki", then it is called a dummy index in the Einstein Summation.
Einstein Summation
An index that is summed over is a summation index, in this case "i". It is also called a dummy index since any symbol can replace "i" without changing the meaning of the expression provided that it does not collide with index symbols in the same term.
Summation along the dummy index
For np.einsum("ij,j", a, b) of the green rectangle in the diagram, j is the dummy index. The element-wise multiplication a[i][j] * b[j] is summed up along the j axis as Σ ( a[i][j] * b[j] ).
It is a dot product np.inner(a[i], b) for each i. Here being specific with np.inner() and avoiding np.dot as it is not strictly a mathematical dot product operation.
Einstein Summation Convention: an Introduction
The dummy index can appear anywhere as long as the rules (please see the youtube for details) are met.
For the dummy index i in np.einsum(“ik,il", a, b), it is a row index of the matrices a and b, hence a column from a and that from b are extracted to generate the dot products.
Output form
Because the summation occurs along the dummy index, the dummy index disappears in the result matrix, hence i from “ik,il" is dropped and form the shape (k,l). We can tell np.einsum("... -> <shape>") to specify the output form by the output subscript labels with -> identifier.
See the explicit mode in numpy.einsum for details.
In explicit mode the output can be directly controlled by specifying
output subscript labels. This requires the identifier ‘->’ as well as
the list of output subscript labels. This feature increases the
flexibility of the function since summing can be disabled or forced
when required. The call np.einsum('i->', a) is like np.sum(a, axis=-1), and np.einsum('ii->i', a) is like np.diag(a). The difference
is that einsum does not allow broadcasting by default. Additionally
np.einsum('ij,jh->ih', a, b) directly specifies the order of the
output subscript labels and therefore returns matrix multiplication,
unlike the example above in implicit mode.
Without a dummy index
An example for having no dummy index in the einsum.
A term (subscript Indices, e.g. "ij") selects an element in each array.
Each left-hand side element is applied on the element on the right-hand side for element-wise multiplication (hence multiplication always happens).
a has shape (2,3) each element of which is applied to b of shape (2,2). Hence it creates a matrix of shape (2,3,2,2) without no summation as (i,j), (k.l) are all free indices.
# --------------------------------------------------------------------------------
# For np.einsum("ij,kl", a, b)
# 1-1: Term "ij" or (i,j), two free indices, selects selects an element a[i][j].
# 1-2: Term "kl" or (k,l), two free indices, selects selects an element b[k][l].
# 2: Each a[i][j] is applied on b[k][l] for element-wise multiplication a[i][j] * b[k,l]
# --------------------------------------------------------------------------------
# for (i,j) in a:
# for(k,l) in b:
# a[i][j] * b[k][l]
np.einsum("ij,kl", a, b)
array([[[[ 0, 0],
[ 0, 0]],
[[10, 11],
[12, 13]],
[[20, 22],
[24, 26]]],
[[[30, 33],
[36, 39]],
[[40, 44],
[48, 52]],
[[50, 55],
[60, 65]]]])
Examples
dot products from matrix A rows and matrix B columns
A = np.matrix('0 1 2; 3 4 5')
B = np.matrix('0 -3; -1 -4; -2 -5');
np.einsum('ij,ji->i', A, B)
# Same with
np.diagonal(np.matmul(A,B))
(A*B).diagonal()
---
[ -5 -50]
[ -5 -50]
[[ -5 -50]]
I think the simplest example is in tensorflow docs
There are four steps to convert your equation to einsum notation. Lets take this equation as an example C[i,k] = sum_j A[i,j] * B[j,k]
First we drop the variable names. We get ik = sum_j ij * jk
We drop the sum_j term as it is implicit. We get ik = ij * jk
We replace * with ,. We get ik = ij, jk
The output is on the RHS and is separated with -> sign. We get ij, jk -> ik
The einsum interpreter just runs these 4 steps in reverse. All indices missing in the result are summed over.
Here are some more examples from the docs
# Matrix multiplication
einsum('ij,jk->ik', m0, m1) # output[i,k] = sum_j m0[i,j] * m1[j, k]
# Dot product
einsum('i,i->', u, v) # output = sum_i u[i]*v[i]
# Outer product
einsum('i,j->ij', u, v) # output[i,j] = u[i]*v[j]
# Transpose
einsum('ij->ji', m) # output[j,i] = m[i,j]
# Trace
einsum('ii', m) # output[j,i] = trace(m) = sum_i m[i, i]
# Batch matrix multiplication
einsum('aij,ajk->aik', s, t) # out[a,i,k] = sum_j s[a,i,j] * t[a, j, k]

Remove and append middle column from a 3D numpy array

Suppose I have a 3D numpy array A, say given below:
A = np.array( [[[1,2,3], [4,5,6]] , [[7,8,9] , [10,11,12], [13,14,15]] ] , ndmin = 3 )
The only thing given about A is that it is a 3D arrays which is an array of arbitrary number of 2D arrays, where each 2D array is an array of arbitrary number of 1D arrays, and each 1D array has exactly 3 elements.
I want to remove the middle element from each 1D array from this 3D array, basically get the new array A1, and the removed column as X given below:
A1 = np.array( [[[1,3], [4,6]] , [[7,9] , [10,12], [13,15]] ] , ndmin = 3 )
X = np.array( [ [[2],[5]], [[8],[11],[14]] ], ndmin = 3 )
I want to write a function that given A it outputs (A1, X) and another function which given (A1, X) outputs A. I believe it should be possible to write the first function via array slicing, but I am not able to do so. Also how do I write the second function.
For you ragged array, it is better to store in a list of np.arrays with shape n by 3:
A = [np.array([[1,2,3],
[4,5,6]]) ,
np.array([[7,8,9],
[10,11,12],
[13,14,15]])]
Now you could:
def remove_middle(arr):
x = [a[:, 1] for a in arr]
arr_new = [np.delete(a, 1, axis = 1) for a in arr]
return arr_new, x
def insert_middle(arr, x):
return [np.concatenate([a[:, :1], xx.reshape(-1, 1), a[:, 1:]], axis = 1) for a, xx in zip(arr, x)]
remove_middle(A)
([array([[1, 3],
[4, 6]]),
array([[ 7, 9],
[10, 12],
[13, 15]])],
[array([2, 5]), array([ 8, 11, 14])])
insert_middle(*remove_middle(A))
# gets back the original A
[array([[1, 2, 3],
[4, 5, 6]]),
array([[ 7, 8, 9],
[10, 11, 12],
[13, 14, 15]])]
Without the ndmin=3 argument I can solve your answer using two nested list comprehensions in which the first indexes the middle argument and the second one deletes the middle argument of the inner arrays.
import numpy
A = np.array([[[1,2,3], [4,5,6]] , [[7,8,9] , [10,11,12], [13,14,15]]])
middle = [[array1d[1] for array1d in array2d] for array2d in A]
without_middle = [[np.delete(array1d, 1) for array1d in array2d] for array2d in A]
With your strange data, this absurd-looking quintuple-nested list-comprehension is the best I could come up with :P
A1 = [[[[[e for i, e in enumerate(d) if i != 1] for d in c] for c in b] for b in a] for a in A]
X = [[[[[e for i, e in enumerate(d) if i == 1] for d in c] for c in b] for b in a] for a in A]
Output:
>>> A1
[[[[[1, 3], [4, 6]], [[7, 9], [10, 12], [13, 15]]]]]
>>> X
[[[[[2], [5]], [[8], [11], [14]]]]]
Here is a solution. Note that lists are returned as raw python list which you can use as you want.
I changed your definition of A to a more suitable object.
import numpy as np
def f(A):
A1 = A.tolist()
X = []
for i in range(len(A1)):
temp = []
for j in range(len(A1[i])):
temp.append([A1[i][j].pop(1)])
X.append(temp)
return (A1, X)
def g(A1, X):
A = A1
for i in range(len(A1)):
for j in range(len(A1[i])):
A[i][j].insert(1, X[i][j][0])
return A
def main():
#A = np.array( [ [ [1,2,3], [4,5,6] ] , [ [7,8,9] , [10,11,12], [13,14,15] ] ] , ndmin = 3 )
A = np.asarray([ [ [1,2,3], [4,5,6] ] , [ [7,8,9] , [10,11,12], [13,14,15] ] ])
B, X = f(A)
print(g(B,X))
if __name__ == '__main__':
main()
Finally please note that this is one solution among many possible alternatives.

Select specific indexes of 3D Pytorch Tensor using a 1D long tensor that represents indexes

So I have a tensor that is M x B x C, where M is the number of models, B is the batch and C is the classes and each cell is the probability of a class for a given model and batch. Then I have a tensor of the correct answers which is just a 1D of size B we'll call "t". How do I use the 1D of size B to just return a M x B x 1, where the returned tensor is just the value at the correct class? Say the M x B x C tensor is called "blah" I've tried
blah[:, :, C]
for i in range(M):
blah[i, :, C]
blah[:, C, :]
The top 2 just return the values of indexes t in the 3rd dimension of every slice. The last one returns the values at t indexes in the 2nd dimension. How do I do this?
We can get the desired result by combining advanced and basic indexing
import torch
# shape [2, 3, 4]
blah = torch.tensor([
[[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11]],
[[12, 13, 14, 15],
[16, 17, 18, 19],
[20, 21, 22, 23]]])
# shape [3]
t = torch.tensor([2, 1, 0])
b = torch.arange(blah.shape[1]).type_as(t)
# shape [2, 3, 1]
result = blah[:, b, t].unsqueeze(-1)
which results in
>>> result
tensor([[[ 2],
[ 5],
[ 8]],
[[14],
[17],
[20]]])
Here is one way to do it:
Suppose a is your M x B x C shaped tensor. I am taking some representative values below,
>>> M = 3
>>> B = 5
>>> C = 4
>>> a = torch.rand(M, B, C)
>>> a
tensor([[[0.6222, 0.6703, 0.0057, 0.3210],
[0.6251, 0.3286, 0.8451, 0.5978],
[0.0808, 0.8408, 0.3795, 0.4872],
[0.8589, 0.8891, 0.8033, 0.8906],
[0.5620, 0.5275, 0.4272, 0.2286]],
[[0.2419, 0.0179, 0.2052, 0.6859],
[0.1868, 0.7766, 0.3648, 0.9697],
[0.6750, 0.4715, 0.9377, 0.3220],
[0.0537, 0.1719, 0.0013, 0.0537],
[0.2681, 0.7514, 0.6523, 0.7703]],
[[0.5285, 0.5360, 0.7949, 0.6210],
[0.3066, 0.1138, 0.6412, 0.4724],
[0.3599, 0.9624, 0.0266, 0.1455],
[0.7474, 0.2999, 0.7476, 0.2889],
[0.1779, 0.3515, 0.8900, 0.2301]]])
Let's say the 1D class tensor is t, which gives the true class of each example in the batch. So it is a 1D tensor of shape (B, ) having class labels in the range {0, 1, 2, ..., C-1}.
>>> t = torch.randint(C, size = (B, ))
>>> t
tensor([3, 2, 1, 1, 0])
So basically you want to select the indices corresponding to t from the innermost dimension of a. This can be achieved using fancy indexing and broadcasting combined as follows:
>>> i = torch.arange(M).reshape(M, 1, 1)
>>> j = torch.arange(B).reshape(1, B, 1)
>>> k = t.reshape(1, B, 1)
Note that once you index anything by (i, j, k), they are going to expand and take the shape (M, B, 1) which is the desired output shape.
Now just indexing a by i, j and k gives:
>>> a[i, j, k]
tensor([[[0.3210],
[0.8451],
[0.8408],
[0.8891],
[0.5620]],
[[0.6859],
[0.3648],
[0.4715],
[0.1719],
[0.2681]],
[[0.6210],
[0.6412],
[0.9624],
[0.2999],
[0.1779]]])
So essentially, if you generate the index arrays conveying your access pattern beforehand, you can directly use them to extract some slice of the tensor.
You simply need to pass:
your index as the third slice
range(B) as the second slice
(i.e. which element in the 2nd dim each 3rd dim index corresponds to)
blah[:,range(B),t]

How I select/format only the values from a dictionary into a list or numpy array?

How do I get it to print just a list of the averages?
I just need it to be the exact same format as my np
arrays so I can compare them to see if they are the same or not.
Code:
import numpy as np
from pprint import pprint
centroids = np.array([[3,44],[4,15],[5,15]])
dataPoints = np.array([[2,4],[17,4],[45,2],[45,7],[16,32],[32,14],[20,56],[68,33]])
def size(vector):
return np.sqrt(sum(x**2 for x in vector))
def distance(vector1, vector2):
return size(vector1 - vector2)
def distances(array1, array2):
lists = [[distance(vector1, vector2) for vector2 in array2] for vector1 in array1]
#print lists.index(min, zip(*lists))
smallest = [min(zip(l,range(len(l)))) for l in zip(*lists)]
clusters = {}
for j, (_, i) in enumerate(smallest):
clusters.setdefault(i,[]).append(dataPoints[j])
pprint (clusters)
print'\nAverage of Each Point'
avgDict = {}
for k,v in clusters.iteritems():
avgDict[k] = sum(v)/ (len(v))
avgList = np.asarray(avgDict)
pprint (avgList)
distances(centroids,dataPoints)
Current Output:
{0: [array([16, 32]), array([20, 56])],
1: [array([2, 4])],
2: [array([17, 4]),
array([45, 2]),
array([45, 7]),
array([32, 14]),
array([68, 33])]}
Average of Each Point
array({0: array([18, 44]), 1: array([2, 4]), 2: array([41, 12])}, dtype=object)
Desired Output:
[[18,44],[2,4],[41,12]]
Or whatever the best format to compare my arrays/lists. I am aware I should have just stuck with one data type.
Do you try to cluster the dataPoints by the index of the nearest centroids, and find out the average position of the clustered points? If it is, I advise to use some broadcast rules of numpy to get the output you need.
Consider this,
np.linalg.norm(centroids[None, :, :] - dataPoints[:, None, :], axis=-1)
It creates a matrix showing all distances between dataPoints and centroids,
array([[ 40.01249805, 11.18033989, 11.40175425],
[ 42.3792402 , 17.02938637, 16.2788206 ],
[ 59.39696962, 43.01162634, 42.05948169],
[ 55.97320788, 41.77319715, 40.79215611],
[ 17.69180601, 20.80865205, 20.24845673],
[ 41.72529209, 28.01785145, 27.01851217],
[ 20.80865205, 44.01136217, 43.65775991],
[ 65.9241989 , 66.48308055, 65.520989 ]])
And you can compute the indices of the nearest centroids by this trick (they are split into 3 lines for readability),
In: t0 = centroids[None, :, :] - dataPoints[:, None, :]
In: t1 = np.linalg.norm(t0, axis=-1)
In: t2 = np.argmin(t1, axis=-1)
Now t2 has the indices,
array([1, 2, 2, 2, 0, 2, 0, 2])
To find the #1 cluster, use the boolean mask t2 == 0,
In: dataPoints[t2 == 0]
Out: array([[16, 32],
[20, 56]])
In: dataPoints[t2 == 1]
Out: array([[2, 4]])
In: dataPoints[t2 == 2]
Out: array([[17, 4],
[45, 2],
[45, 7],
[32, 14],
[68, 33]])
Or just calculate the average in your case,
In: np.mean(dataPoints[t2 == 0], axis=0)
Out: array([ 18., 44.])
In: np.mean(dataPoints[t2 == 1], axis=0)
Out: array([ 2., 4.])
In: np.mean(dataPoints[t2 == 2], axis=0)
Out: array([ 41.4, 12. ])
Of course, the latter blocks can be rewritten in for-loop if you want.
It might be a good practice to formulate the solution by numpy's conventions in my opinion.

matrix using python

I'm new to python and I'm writing a program fro matrix but there is a problem I don't know to get the right output and I need help with it.
this is the question:Given a nXn matrix A and a kXn matrix B find AB .
and here is what I have so far. Thank you in advance
def matrixmult (A, B):
rows_A = len(A)
cols_A = len(A[0])
rows_B = len(B)
cols_B = len(B[0])
if cols_A != rows_B:
print "Cannot multiply the two matrices. Incorrect dimensions."
return
# Create the result matrix
# Dimensions would be rows_A x cols_B
C = [[0 for row in range(cols_B)] for col in range(rows_A)]
print C
for i in range(rows_A):
for j in range(cols_B):
for k in range(cols_A):
C[i][j] += A[i][k]*B[k][j]
return C
Your function:
def matrixmult (A, B):
rows_A = len(A)
cols_A = len(A[0])
rows_B = len(B)
cols_B = len(B[0])
if cols_A != rows_B:
print "Cannot multiply the two matrices. Incorrect dimensions."
return
# Create the result matrix
# Dimensions would be rows_A x cols_B
C = [[0 for row in range(cols_B)] for col in range(rows_A)]
print C
for i in range(rows_A):
for j in range(cols_B):
for k in range(cols_A):
C[i][j] += A[i][k]*B[k][j]
return C
Which appears to be the same as this function.
If I run this:
matrix=[[1,2,3],
[4,5,6],
[7,8,9]]
print matrixmult(matrix, matrix) # that is your function...
It returns:
[[30, 36, 42], [66, 81, 96], [102, 126, 150]]
This is the same as Numpy:
import numpy as np
a=np.array(matrix)
b=np.array(matrix)
print np.dot(a,b)
# [[ 30 36 42]
[ 66 81 96]
[102 126 150]]
And the same as the matrix multiply more tersely stated:
def mult(mtx_a,mtx_b):
tpos_b = zip( *mtx_b)
rtn = [[ sum( ea*eb for ea,eb in zip(a,b)) for b in tpos_b] for a in mtx_a]
return rtn
So -- it is probably your input data that is the issue.
Use numPy library to solve your problem.
import numpy as np
x = np.array( ((2,3), (3, 5)) )
y = np.array( ((1,2), (5, -1)) )
print x * y
array([[ 2, 6],
[15, -5]])
More examples:
http://www.python-course.eu/matrix_arithmetic.php
Download numPy:
http://scipy.org/Download
One liner:
def matrixmult(m1, m2):
return [
[sum(x * y for x, y in zip(m1_r, m2_c)) for m2_c in zip(*m2)] for m1_r in m1
]
Explanation:
zip(*m2) - gets a column from the second matrix
zip(m1_r, m2_c) - creates tuple from m1 row and m2 column
sum(...) - sums multiplication row * col
Test:
m1 = [[1, 2, 3], [4, 5, 6]]
m2 = [[7, 8], [9, 10], [11, 12]]
result = matrixmult(m1, m2)
assert result == [[58, 64], [139, 154]]

Categories

Resources