This is my Data from the api from the looks of it, it is a list of list.
with ApiClient(configuration) as api_client:
api_instance = MetricsApi(api_client)
response = api_instance.query_metrics(
_from=int(yesterday_start_dt.timestamp()),
to=int(yesterday_end_dt.timestamp()),
query="default_zero(sum:trace.servlet.request.hits{env:prd-main,service:api}.as_rate())",
)
result = response['series'][0]['pointlist']
print(result)
[[1648339200000.0, 1105.8433333333332], [1648339500000.0, 1093.3266666666666], [1648339800000.0, 1076.92], [1648340100000.0, 1059.5133333333333], [1648340400000.0, 1053.8966666666668], [1648340700000.0, 1041.2166666666667], [1648341000000.0, 1055.0533333333333], [1648341300000.0, 1037.8933333333334], [1648341600000.0, 1015.4], [1648341900000.0, 1003.3233333333334], [1648342200000.0, 1017.02], [1648342500000.0, 1017.7766666666666], [1648342800000.0, 1011.0333333333333], [1648343100000.0, 993.9366666666666], [1648343400000.0, 973.9733333333334], [1648343700000.0, 967.8433333333334], [1648344000000.0, 933.2166666666667], [1648344300000.0, 945.0833333333334], [1648344600000.0, 905.2166666666667], [1648344900000.0, 923.9966666666667], [1648345200000.0, 925.4633333333334], [1648345500000.0, 915.5533333333333], [1648345800000.0, 918.8966666666666], [1648346100000.0, 883.6], [1648346400000.0, 908.9166666666666], [1648346700000.0, 856.7333333333333], [1648347000000.0, 873.01], [1648347300000.0, 833.99], [1648347600000.0, 846.5466666666666], [1648347900000.0, 820.7833333333333], [1648348200000.0, 821.4633333333334], [1648348500000.0, 812.8633333333333], [1648348800000.0, 817.78], [1648349100000.0, 821.91], [1648349400000.0, 791.17], [1648349700000.0, 780.3066666666666], [1648350000000.0, 803.4633333333334], [1648350300000.0, 781.9033333333333], [1648350600000.0, 759.4933333333333], [1648350900000.0, 746.11], [1648351200000.0, 731.3133333333334], [1648351500000.0, 724.0533333333333], [1648351800000.0, 710.56], [1648352100000.0, 722.87], [1648352400000.0, 677.5266666666666], [1648352700000.0, 681.7833333333333], [1648353000000.0, 679.9233333333333], [1648353300000.0, 650.6466666666666], [1648353600000.0, 663.78], [1648353900000.0, 650.8133333333334], [1648354200000.0, 645.9133333333333], [1648354500000.0, 642.4566666666667], [1648354800000.0, 627.93], [1648355100000.0, 616.65], [1648355400000.0, 609.94], [1648355700000.0, 602.0733333333334], [1648356000000.0, 581.6133333333333], [1648356300000.0, 592.48], [1648356600000.0, 593.4], [1648356900000.0, 582.2633333333333], [1648357200000.0, 598.3766666666667], [1648357500000.0, 589.99], [1648357800000.0, 577.7433333333333], [1648358100000.0, 570.1733333333333], [1648358400000.0, 592.58], [1648358700000.0, 578.2533333333333], [1648359000000.0, 586.8833333333333], [1648359300000.0, 590.4033333333333], [1648359600000.0, 601.49], [1648359900000.0, 594.8], [1648360200000.0, 609.01], [1648360500000.0, 620.08], [1648360800000.0, 642.6466666666666], [1648361100000.0, 635.93], [1648361400000.0, 638.42], [1648361700000.0, 645.2], [1648362000000.0, 650.42], [1648362300000.0, 667.88], [1648362600000.0, 689.3666666666667], [1648362900000.0, 694.4433333333334], [1648363200000.0, 690.3933333333333], [1648363500000.0, 710.55], [1648363800000.0, 706.3], [1648364100000.0, 729.5], [1648364400000.0, 771.36], [1648364700000.0, 754.03], [1648365000000.0, 771.4866666666667], [1648365300000.0, 767.52], [1648365600000.0, 779.4133333333333], [1648365900000.0, 800.4266666666666], [1648366200000.0, 788.41], [1648366500000.0, 806.8666666666667], [1648366800000.0, 805.7466666666667], [1648367100000.0, 815.2433333333333], [1648367400000.0, 828.0833333333334], [1648367700000.0, 817.1966666666667], [1648368000000.0, 879.4733333333334], [1648368300000.0, 840.7933333333333], [1648368600000.0, 846.4266666666666], [1648368900000.0, 848.1266666666667], [1648369200000.0, 836.9066666666666], [1648369500000.0, 845.4966666666667], [1648369800000.0, 863.5033333333333], [1648370100000.0, 867.1866666666666], [1648370400000.0, 866.74], [1648370700000.0, 863.8066666666666], [1648371000000.0, 882.38], [1648371300000.0, 876.0233333333333], [1648371600000.0, 905.3366666666667], [1648371900000.0, 879.8066666666666], [1648372200000.0, 878.37], [1648372500000.0, 876.9333333333333], [1648372800000.0, 868.1533333333333], [1648373100000.0, 882.12], [1648373400000.0, 896.9233333333333], [1648373700000.0, 872.84], [1648374000000.0, 880.71], [1648374300000.0, 894.8066666666666], [1648374600000.0, 873.7266666666667], [1648374900000.0, 891.0033333333333], [1648375200000.0, 927.2433333333333], [1648375500000.0, 905.52], [1648375800000.0, 895.0233333333333], [1648376100000.0, 895.86], [1648376400000.0, 899.3133333333334], [1648376700000.0, 920.22], [1648377000000.0, 937.68], [1648377300000.0, 916.46], [1648377600000.0, 926.6833333333333], [1648377900000.0, 936.4366666666666], [1648378200000.0, 947.6133333333333], [1648378500000.0, 957.7133333333334], [1648378800000.0, 989.1133333333333], [1648379100000.0, 959.0766666666667], [1648379400000.0, 963.5133333333333], [1648379700000.0, 978.3466666666667], [1648380000000.0, 1017.78], [1648380300000.0, 989.7566666666667], [1648380600000.0, 1023.4633333333334], [1648380900000.0, 1033.7166666666667], [1648381200000.0, 1025.1933333333334], [1648381500000.0, 1045.8633333333332], [1648381800000.0, 1063.6133333333332], [1648382100000.0, 1078.45], [1648382400000.0, 1116.3866666666668], [1648382700000.0, 1098.9766666666667], [1648383000000.0, 1101.29], [1648383300000.0, 1127.6], [1648383600000.0, 1102.5233333333333], [1648383900000.0, 1140.84], [1648384200000.0, 1169.23], [1648384500000.0, 1158.6], [1648384800000.0, 1180.01], [1648385100000.0, 1190.43], [1648385400000.0, 1207.3733333333332], [1648385700000.0, 1212.7666666666667], [1648386000000.0, 1244.17], [1648386300000.0, 1245.3166666666666], [1648386600000.0, 1240.69], [1648386900000.0, 1270.33], [1648387200000.0, 1277.8033333333333], [1648387500000.0, 1270.5966666666666], [1648387800000.0, 1304.4266666666667], [1648388100000.0, 1295.6933333333334], [1648388400000.0, 1322.3066666666666], [1648388700000.0, 1351.41], [1648389000000.0, 1339.9566666666667], [1648389300000.0, 1353.2966666666666], [1648389600000.0, 1398.45], [1648389900000.0, 1378.21], [1648390200000.0, 1361.0933333333332], [1648390500000.0, 1404.0833333333333], [1648390800000.0, 1394.6466666666668], [1648391100000.0, 1391.1366666666668], [1648391400000.0, 1450.0], [1648391700000.0, 1438.97], [1648392000000.0, 1411.83], [1648392300000.0, 1432.8233333333333], [1648392600000.0, 1473.3966666666668], [1648392900000.0, 1491.0166666666667], [1648393200000.0, 1509.8766666666668], [1648393500000.0, 1488.6566666666668], [1648393800000.0, 1488.4933333333333], [1648394100000.0, 1511.4466666666667], [1648394400000.0, 1508.3566666666666], [1648394700000.0, 1507.8966666666668], [1648395000000.0, 1515.8633333333332], [1648395300000.0, 1517.3], [1648395600000.0, 1528.81], [1648395900000.0, 1546.1266666666668], [1648396200000.0, 1554.57], [1648396500000.0, 1584.0333333333333], [1648396800000.0, 1584.45], [1648397100000.0, 1590.4633333333334], [1648397400000.0, 1580.0066666666667], [1648397700000.0, 1596.3833333333334], [1648398000000.0, 1571.96], [1648398300000.0, 1583.8233333333333], [1648398600000.0, 1618.7033333333334], [1648398900000.0, 1588.12], [1648399200000.0, 1599.56], [1648399500000.0, 1604.1833333333334], [1648399800000.0, 1621.5666666666666], [1648400100000.0, 1598.98], [1648400400000.0, 1627.02], [1648400700000.0, 1612.7833333333333], [1648401000000.0, 1612.2433333333333], [1648401300000.0, 1572.89], [1648401600000.0, 1601.8933333333334], [1648401900000.0, 1612.5366666666666], [1648402200000.0, 1608.7266666666667], [1648402500000.0, 1594.4366666666667], [1648402800000.0, 1614.3366666666666], [1648403100000.0, 1649.0733333333333], [1648403400000.0, 1627.12], [1648403700000.0, 1644.9633333333334], [1648404000000.0, 1653.9033333333334], [1648404300000.0, 1636.6966666666667], [1648404600000.0, 1639.5733333333333], [1648404900000.0, 1627.3866666666668], [1648405200000.0, 1626.3733333333332], [1648405500000.0, 1616.7966666666666], [1648405800000.0, 1667.2933333333333], [1648406100000.0, 1637.0733333333333], [1648406400000.0, 1654.6366666666668], [1648406700000.0, 1673.9566666666667], [1648407000000.0, 1658.4466666666667], [1648407300000.0, 1650.6766666666667], [1648407600000.0, 1662.1933333333334], [1648407900000.0, 1686.9733333333334], [1648408200000.0, 1623.0433333333333], [1648408500000.0, 1630.2866666666666], [1648408800000.0, 1599.0466666666666], [1648409100000.0, 1624.8033333333333], [1648409400000.0, 1606.0333333333333], [1648409700000.0, 1594.15], [1648410000000.0, 1557.1333333333334], [1648410300000.0, 1630.6133333333332], [1648410600000.0, 1591.93], [1648410900000.0, 1579.5733333333333], [1648411200000.0, 1585.1466666666668], [1648411500000.0, 1565.6166666666666], [1648411800000.0, 1566.3366666666666], [1648412100000.0, 1544.1866666666667], [1648412400000.0, 1511.8166666666666], [1648412700000.0, 1525.2333333333333], [1648413000000.0, 1505.57], [1648413300000.0, 1462.9033333333334], [1648413600000.0, 1478.0733333333333], [1648413900000.0, 1460.76], [1648414200000.0, 1504.59], [1648414500000.0, 1460.3366666666666], [1648414800000.0, 1445.9366666666667], [1648415100000.0, 1410.0033333333333], [1648415400000.0, 1412.8466666666666], [1648415700000.0, 1364.8933333333334], [1648416000000.0, 1348.4], [1648416300000.0, 1338.3333333333333], [1648416600000.0, 1326.8633333333332], [1648416900000.0, 1276.24], [1648417200000.0, 1310.0333333333333], [1648417500000.0, 1285.63], [1648417800000.0, 1244.14], [1648418100000.0, 1258.38], [1648418400000.0, 1218.37], [1648418700000.0, 1182.0266666666666], [1648419000000.0, 1196.8133333333333], [1648419300000.0, 1144.54], [1648419600000.0, 1165.62], [1648419900000.0, 1122.0166666666667], [1648420200000.0, 1112.6766666666667], [1648420500000.0, 1102.6], [1648420800000.0, 1095.6966666666667], [1648421100000.0, 1056.63], [1648421400000.0, 1074.5066666666667], [1648421700000.0, 1047.5933333333332], [1648422000000.0, 1057.2633333333333], [1648422300000.0, 1043.99], [1648422600000.0, 1003.4033333333333], [1648422900000.0, 1022.2633333333333], [1648423200000.0, 1016.59], [1648423500000.0, 997.4466666666667], [1648423800000.0, 988.7666666666667], [1648424100000.0, 966.1666666666666], [1648424400000.0, 991.21], [1648424700000.0, 977.6633333333333], [1648425000000.0, 959.64], [1648425300000.0, 961.6989966555184]]
But when i try to convert into pandas it convert but the result is what i expected, i expected that the dataframe will make two columns.
with ApiClient(configuration) as api_client:
api_instance = MetricsApi(api_client)
response = api_instance.query_metrics(
_from=int(yesterday_start_dt.timestamp()),
to=int(yesterday_end_dt.timestamp()),
query="default_zero(sum:trace.servlet.request.hits{env:prd-main,service:api}.as_rate())",
)
result = response['series'][0]['pointlist']
df = pd.DataFrame(result)
print(df)
0
0 [1648339200000.0, 1105.8433333333332]
1 [1648339500000.0, 1093.3266666666666]
2 [1648339800000.0, 1076.92]
3 [1648340100000.0, 1059.5133333333333]
4 [1648340400000.0, 1053.8966666666668]
.. ...
283 [1648424100000.0, 966.1666666666666]
284 [1648424400000.0, 991.21]
285 [1648424700000.0, 977.6633333333333]
286 [1648425000000.0, 959.64]
287 [1648425300000.0, 961.6989966555184]
[288 rows x 1 columns]
As I pointed out in the comment referring to another answer, here how you may do it.
columns = ['point 1', 'point 2']
result = response['series'][0]['pointlist']
df = pd.DataFrame(result,columns=columns)
If you want the first elements of sublists to be in one column, I suggest you create an intermediate np.array and then reshape it into the needed output.
array_results=np.array(results)
df=pd.DataFrame(array_results.reshape(2, len(results)))
following few samples of 'results', here are my outputs
I want to display all three lists side by side with the names associated with the values in a table format. I am manually doing it right now and it's taking a while for all 20 files I must do. Thank you for your help!
maxpreandpost = [Pre1,Pre2,Pre3,Pre4,Pre5,Pre6,Pre7,Pre8,Pre9,Pre10,Post1,Post2,Post3,Post4,Post5,Post6,Post7,Post8,Post9,Post10]
for i in maxpreandpost:
height = max(i.Z)
print (height)
165.387
160.214
159.118
186.685
163.744
160.717
184.026
171.25099999999995
175.73
156.512
150.339
131.528
148.52100000000004
126.738
136.389
148.334
129.855
153.599
144.595
159.32299999999995
lenpreandpost = [Pre1,Pre2,Pre3,Pre4,Pre5,Pre6,Pre7,Pre8,Pre9,Pre10,Post1,Post2,Post3,Post4,Post5,Post6,Post7,Post8,Post9,Post10]
for i in lenpreandpost:
duration = len(i.Z)
print (duration)
690
543
292
271
293
147
209
355
230
293
395
256
349
255
335
255
231
243
315
267
dis = [Pre1,Pre2,Pre3,Pre4,Pre5,Pre6,Pre7,Pre8,Pre9,Pre10,Post1,Post2,Post3,Post4,Post5,Post6,Post7,Post8,Post9,Post10]
for i in dis:
p1 = [max(i.X),max(i.Y)]
p2 = [min(i.X),min(i.Y)]
distance = math.sqrt(((p1[0]-p2[0])**2)+((p1[1]-p2[1])**2))
print (distance)
2219.0546989150585
2337.434842606099
1857.1832474809803
1450.0472277998394
1512.6539831504758
1058.5635689541748
1653.517987682021
1854.670452561212
1861.8190476064021
1775.672511965326
1872.275393720069
1814.9932559772114
1852.3299779009246
1875.2281201398403
1867.1599096301313
1708.250531327712
1793.8521780715407
1862.7949271803914
1872.843665022548
1800.2239125453254
Sure, append all values to output lists and then add them to a pandas dataframe:
import pandas as pd
heightmax = []
maxpreandpost = [Pre1,Pre2,Pre3,Pre4,Pre5,Pre6,Pre7,Pre8,Pre9,Pre10,Post1,Post2,Post3,Post4,Post5,Post6,Post7,Post8,Post9,Post10]
for i in maxpreandpost:
height = max(i.Z)
heightmax.append(height)
duration_pre_post = []
lenpreandpost = [Pre1,Pre2,Pre3,Pre4,Pre5,Pre6,Pre7,Pre8,Pre9,Pre10,Post1,Post2,Post3,Post4,Post5,Post6,Post7,Post8,Post9,Post10]
for i in lenpreandpost:
duration = len(i.Z)
duration_pre_post.append(duration)
dis_p1_p2 = []
dis = [Pre1,Pre2,Pre3,Pre4,Pre5,Pre6,Pre7,Pre8,Pre9,Pre10,Post1,Post2,Post3,Post4,Post5,Post6,Post7,Post8,Post9,Post10]
for i in dis:
p1 = [max(i.X),max(i.Y)]
p2 = [min(i.X),min(i.Y)]
distance = math.sqrt(((p1[0]-p2[0])**2)+((p1[1]-p2[1])**2))
dis_p1_p2.append(distance)
df = pd.DataFrame() # initialize empty dataframe
# Store each list as a column in the df.
df['HeightMax'] = heightmax
df['DurationPrePost'] = duration_pre_post
df['DistanceP1P2'] = dis_p1_p2
#if you want to write this out to a tabular file:
df.to_csv('./Desktop/myDf.csv', sep='\t', index=False)
The output of this would be something like:
HeightMax DurationPrePost DistanceP1P2
0 165.387 690 2219.0546989150585
1 160.214 543 2337.434842606099
2 159.118 292 1857.1832474809803
3 186.685 271 1450.0472277998394
4 163.744 293 1512.6539831504758
... #extends to end of lists