How can i get the values of coordinate in a POLYGON in a Geopandas Dataframe?
shapefile = gpd.read_file("CAMPOS_PRODUCAO_SIRGASPolygon.shp")
I can easy do it for a centroid of my POLYGON
with it:
print(campos_shape.centroid.iloc[0].x)
-39.853276865819765
print(type(campos_shape.centroid.iloc[0].x))
<class 'float'>
I want a list or numpy array with all point value of lat and lon
contained in POLYGON
So how can i convert a POLYGON to numpy array?
If anyone else has this problem, here is one solution
that work for me:
def coord_lister(geom):
coords = list(geom.exterior.coords)
return (coords)
coordinates_list = your_geopandas_df.geometry.apply(coord_lister)
Update:
This for example gives you the coordinates of the polygon for the first entry in the shapefile:
list(shapefile["geometry"][0].exterior.coords)
I have the polygon combination of lat-long1,lat2-long2 ..... and point like Lat - Long .
I have used GeoPandas library to get the result if there is any point is exist within polygon.
Sample Data of Polygon saved in csv file:
POLYGON((28.56056 77.36535,28.564635293716776
77.3675137204626,28.56871055311656 77.36967760850214,28.572785778190855 77.3718416641586,28.576860968931193 77.37400588747194,28.580936125329096 77.3761702784821,28.585011247376094 77.37833483722912,28.58908633506372 77.38049956375293,28.593161388383457 77.38266445809356,28.59723640732686 77.38482952029099,28.60131139188541 77.38699475038526,28.605386342050664 77.38916014841635,28.60946125781409 77.39132571442434,28.613536139167238 77.39349144844923,28.61761098610158 77.39565735053108,28.62168579860863 77.39782342070995,28.62576057667991 77.39998965902589,28.62983532030691 77.402156065519,28.633910029481108 77.40432264022931,28.637984704194054 77.40648938319696,28.642059344437207 77.408656294462,28.64068221074683 77.41187044231611,28.63920739580329 77.41502778244606,28.63763670052024 77.41812446187686,28.635972042808007 77.42115670220443,28.634215455216115 77.42412080422613,28.63236908243526 77.42701315247152,28.630435178662026 77.42983021962735,28.628416104829583 77.43256857085188,28.626314325707924 77.43522486797251,28.624132406877322 77.437795873562,28.621873011578572 77.44027845488824,28.619538897444272 77.4426695877325,28.617132913115164 77.44496636007166,28.614657994745563 77.44716597562005,28.612117162402576 77.44926575722634,28.609513516363293 77.45126315012166,28.606850233314923 77.45315572501488,28.604130562462267 77.45494118103147,28.60135782154758 77.45661734849246,28.598535392787774 77.45818219153013,28.595666718733966 77.45963381053753,28.592755298058414 77.46097044444889,28.589804681274302 77.46219047284835,28.586818466393503 77.46329241790465,28.583800294527727 77.46427494612952,28.58075384543836 77.46513686995802,28.57768283304089 77.46587714914885,28.574591000868892 77.4664948920035,28.571482117503592 77.46698935640259,28.568359971974488 77.46735995065883,28.565228369136484 77.46760623418534,28.56209112502966 77.4677279179792,28.558952062226695 77.4677248649196,28.55581500517431 77.46759708988064,28.552683775533943 77.46734475965891,28.552683775533943 77.46734475965891,28.553079397193876 77.4622453846313,28.553474828308865 77.45714597129259,28.55387006887434 77.4520465196603,28.554265118885752 77.44694702975198,28.554659978338513 77.4418475015852,28.555054647228083 77.43674793517746,28.555449125549913 77.43164833054634,28.555843413299442 77.42654868770937,28.55623751047213 77.42144900668411,28.556631417063407 77.41634928748812,28.55702513306874 77.41124953013893,28.55741865848359 77.40614973465412,28.557811993303396 77.40104990105122,28.55820513752363 77.39595002934782,28.558598091139757 77.39085011956145,28.558990854147225 77.38575017170969,28.559383426541523 77.3806501858101,28.559775808318093 77.37555016188024,28.560167999472434 77.37045009993768,28.56056 77.36535))
and second dataset is for LAT and LONG as 28.56282, 77.36824 respectively saved in csv file .
I have used below Python code to join both data set based on condition if point exist within polygon. like below
import pandas as pd
import shapely.geometry
from shapely.geometry import Point
import geopandas as gpd
site_df = pd.read_csv (r'lat_long_file.csv') # load lat and long file
site_df['geometry'] = pd.DataFrame(site_df).apply(lambda x: Point(x.LAT,x.LONG), axis='columns') # convert lat and long to point
gdf = gpd.GeoDataFrame(site_df, geometry = site_df.geometry,crs='EPSG:4326') #creating geo pandas data frame for point
from shapely import wkt
polygon_df = pd.read_csv (r'polygon_csv_file') #reading polygon sample raw string file
polygon_df['geometry'] = pd.DataFrame(polygon_df).apply(lambda row: shapely.wkt.loads(row.polygon), axis='columns') #converting string polygon to geometory
gd_polygon = gpd.GeoDataFrame(polygon_df, geometry = polygon_df.geometry,crs='EPSG:4326') #create geopandas dataframe
import shapely.speedups
shapely.speedups.enable() # this makes some spatial queries run faster
join_data = gpd.sjoin(gdf, gd_polygon, how="inner", op="within") //actual join condition
But that query does not retun anything . But point is exist within polygon. as we can see in below diagram
Green Location marker is point Lat and long which is exist within polygon.
I would check the axis order - WKT usually interpreted as longitude first, latitude second order, while the point you construct uses latitude:longitude order.
You can try removing the CRS identifier to see if it changes the result.
Also see
https://gis.stackexchange.com/questions/376751/shapely-flips-lat-long-coordinate
and
https://pyproj4.github.io/pyproj/stable/gotchas.html#axis-order-changes-in-proj-6
your sample data is unusable as it's an image
have sourced a polygon - a county boundary in UK
constructed a geopandas data frame of a point that is within this county
have used plotly to demonstrate visually the data
have used your code fragment gpd.sjoin(gdf, gd_polygon, how="inner", op="within") to do spatial join and it correctly joins point to polygon
import requests, json
import geopandas as gpd
import plotly.express as px
import shapely.geometry
# fmt: off
# get a polygon and construct a point
res = requests.get("https://opendata.arcgis.com/datasets/69dc11c7386943b4ad8893c45648b1e1_0.geojson")
gd_polygon = gpd.GeoDataFrame.from_features(res.json()).loc[lambda d: d["LAD20NM"].str.contains("Hereford")]
gdf = gpd.GeoDataFrame(geometry=gd_polygon.loc[:,["LONG","LAT"]].apply(shapely.geometry.Point, axis=1)).reset_index(drop=True)
# fmt: on
# plot to show point is within polygon
px.scatter_mapbox(gd_polygon, lon="LONG", lat="LAT").update_traces(
name="gd_polygon"
).add_traces(
px.scatter_mapbox(gdf, lat=gdf2.geometry.y, lon=gdf2.geometry.x)
.update_traces(name="gdf", marker_color="red")
.data
).update_traces(
showlegend=True
).update_layout(
mapbox={
"style": "carto-positron",
"layers": [
{"source": json.loads(gd_polygon.geometry.to_json()), "type": "line"}
],
}
).show()
# spatial join, all good :-)
gpd.sjoin(gdf, gd_polygon, how="inner", op="within")
output
spatial join has worked, point is within polygon
geometry
index_right
OBJECTID
LAD20CD
LAD20NM
LAD20NMW
BNG_E
BNG_N
LONG
LAT
Shape__Area
Shape__Length
0
POINT (-2.73931 52.081539)
18
19
E06000019
Herefordshire, County of
349434
242834
-2.73931
52.0815
2.18054e+09
285427
I am trying to overlay a polygon and lines in Geopandas, but I am getting tick plot problems.
ValueError: cannot convert float NaN to integer
import geopandas as gpd
from geopandas.tools import overlay
zip1 = "zip://data/mmcovidshp.zip"
mmcovid = gpd.read_file(zip1)
zip2 = "zip://data/roads_MM.zip"
mmroads = gpd.read_file(zip2)
overlay_intersection = overlay(mmcovid, mmroads,
how='intersection')
overlay_intersection.plot(figsize=(6, 8))
Data: https://drive.google.com/drive/folders/1Xxo1Ep6Dgau5ThmNetuqzehpSh9sgpfP?usp=sharing
It is not clear what are you trying to do.
overlay_intersection is empty because it tries to preserve the geometry type of the left GeoDataFrame. Because the left gdf are polygons and intersection of polygon and linestring is linestring, the result is empty. You can control that using keep_geom_type keyword. keep_geom_type=False returns everything.
The simple solution here is to change order.
overlay_intersection = overlay(mmroads, mmcovid
how='intersection')
That produces non-empty gdf. See more https://geopandas.readthedocs.io/en/latest/docs/user_guide/set_operations.html?highlight=overlay.
If you are trying to simply clip mmroads to mmcovid's shape, use geopandas.clip. https://geopandas.readthedocs.io/en/latest/gallery/plot_clip.html
I have the Polygon data from the States from the USA from the website
arcgis
and I also have an excel file with coordinates of citys. I have converted the coordinates to geometry data (Points).
Now I want to test if the Points are in the USA.
Both are dtype: geometry. I thought with this I can easily compare, but when I use my code I get for every Point the answer false. Even if there are Points that are in the USA.
The code is:
import geopandas as gp
import pandas as pd
import xlsxwriter
import xlrd
from shapely.geometry import Point, Polygon
df1 = pd.read_excel('PATH')
gdf = gp.GeoDataFrame(df1, geometry= gp.points_from_xy(df1.longitude, df1.latitude))
US = gp.read_file('PATH')
print(gdf['geometry'].contains(US['geometry']))
Does anybody know what I do wrong?
contains in GeoPandas currently work on a pairwise basis 1-to-1, not 1-to-many. For this purpose, use sjoin.
points_within = gp.sjoin(gdf, US, op='within')
That will return only those points within the US. Alternatively, you can filter polygons which contain points.
polygons_contains = gp.sjoin(US, gdf, op='contains')
I have written Code to establish Point in Polygon in Python, the program uses a shapefile that I read in as the Polygons.
I now have a dataframe I read in with a column containing the Polygon e.g [[28.050815,-26.242253],[28.050085,-26.25938],[28.011934,-26.25888],[28.020216,-26.230127],[28.049828,-26.230704],[28.050815,-26.242253]].
I want to transform this column into a polygon in order to perform Point in Polygon, but all the examples use geometry = [Point(xy) for xy in zip(dataPoints['Long'], dataPoints['Lat'])] but mine is already zip?
How would I go about achieving this?
Thanks
taking your example above you could do the following:
list_coords = [[28.050815,-26.242253],[28.050085,-26.25938],[28.011934,-26.25888],[28.020216,-26.230127],[28.049828,-26.230704],[28.050815,-26.242253]]
from shapely.geometry import Point, Polygon
# Create a list of point objects using list comprehension
point_list = [Point(x,y) for [x,y] in list_coords]
# Create a polygon object from the list of Point objects
polygon_feature = Polygon([[poly.x, poly.y] for poly in point_list])
And if you would like to apply it to a dataframe you could do the following:
import pandas as pd
import geopandas as gpd
df = pd.DataFrame({'coords': [list_coords]})
def get_polygon(list_coords):
point_list = [Point(x,y) for [x,y] in list_coords]
polygon_feature = Polygon([[poly.x, poly.y] for poly in point_list])
return polygon_feature
df['geom'] = df['coords'].apply(get_polygon)
However, there might be geopandas built-in functions in order to avoid "reinventing the wheel", so let's see if anyone else has a suggestion :)