I tried so hard to converting PNG to Bitmap smoothly but failed every time.
but now I think I might found a reason.
it's because of the alpha channels.
('feather' in Photoshop)
Input image:
Output I've expected:
Current output:
I want to convert it to 8bit Bitmap and colour every invisible(alpha) pixels to purple(#FF00FF) and set them to dot zero. (very first palette)
but apparently, the background area and the invisible area around the actual image has a different colour.
i want all of them coloured same as background.
what should i do?
i tried these three
image = Image.open(file).convert('RGB')
image = Image.open(file)
image = image.convert('P')
pp = image.getpalette()
pp[0] = 255
pp[1] = 0
pp[2] = 255
image.putpalette(pp)
image = Image.open('feather.png')
result = image.quantize(colors=256, method=2)
the third method looks better but it becomes the same when I save it as a bitmap.
I just want to get it over now. I wasted too much time on this.
if i remove background from the output file,
it still looks awkward.
You question is kind of misleading as You stated:-
I want to convert it to 8bit Bitmap and colour every invisible(alpha) pixels to purple(#FF00FF) and set them to dot zero. (very first palette)
But in the description you gave an input image having no alpha channel. Luckily, I have seen your previous question Convert PNG to 8 bit bitmap, therefore I obtained the image containing alpha (that you mentioned in the description) but didn't posted.
HERE IS THE IMAGE WITH ALPHA:-
Now we have to obtain .bmp equivalent of this image, in P mode.
from PIL import Image
image = Image.open(r"Image_loc")
new_img = Image.new("RGB", (image.size[0],image.size[1]), (255, 0, 255))
cmp_img = Image.composite(image, new_img, image).quantize(colors=256, method=2)
cmp_img.save("Destination_path.bmp")
OUTPUT IMAGE:-
Related
I am trying to process an image file into something that can be displayed on a Black/White/Red e-ink display, but I am running into a problem with the output resolution.
Based on the example code for the display, it expects two arrays of bytes (one for Black/White, one for Red), each 15,000 bytes. The resolution of the e-ink display is 400x300.
I'm using the following Python script to generate two BMP files: one for Black/White and one for Red. This is all working, but the file sizes are 360,000 bytes each, which won't fit in the ESP32 memory. The input image (a PNG file) is 195,316 bytes.
The library I'm using has a function called EPD_4IN2B_V2_Display(BLACKWHITEBUFFER, REDBUFFER);, which wants the full image (one channel for BW, one for Red) to be in memory. But, with these image sizes, it won't fit on the ESP32. And, the example uses 15KB for each color channel (BW, R), so I feel like I'm missing something in the image processing necessary to make this work.
Can anyone shed some light on what I'm missing? How would I update the Python image-processing script to account for this?
I am using the Waveshare 4.2inch E-Ink display and the Waveshare ESP32 driver board. A lot of the Python code is based on this StackOverflow post but I can't seem to find the issue.
import io
import traceback
from wand.image import Image as WandImage
from PIL import Image
# This function takes as input a filename for an image
# It resizes the image into the dimensions supported by the ePaper Display
# It then remaps the image into a tri-color scheme using a palette (affinity)
# for remapping, and the Floyd Steinberg algorithm for dithering
# It then splits the image into two component parts:
# a white and black image (with the red pixels removed)
# a white and red image (with the black pixels removed)
# It then converts these into PIL Images and returns them
# The PIL Images can be used by the ePaper library to display
def getImagesToDisplay(filename):
print(filename)
red_image = None
black_image = None
try:
with WandImage(filename=filename) as img:
img.resize(400, 300)
with WandImage() as palette:
with WandImage(width = 1, height = 1, pseudo ="xc:red") as red:
palette.sequence.append(red)
with WandImage(width = 1, height = 1, pseudo ="xc:black") as black:
palette.sequence.append(black)
with WandImage(width = 1, height = 1, pseudo ="xc:white") as white:
palette.sequence.append(white)
palette.concat()
img.remap(affinity=palette, method='floyd_steinberg')
red = img.clone()
black = img.clone()
red.opaque_paint(target='black', fill='white')
black.opaque_paint(target='red', fill='white')
red_image = Image.open(io.BytesIO(red.make_blob("bmp")))
black_image = Image.open(io.BytesIO(black.make_blob("bmp")))
red_bytes = io.BytesIO(red.make_blob("bmp"))
black_bytes = io.BytesIO(black.make_blob("bmp"))
except Exception as ex:
print ('traceback.format_exc():\n%s',traceback.format_exc())
return (red_image, black_image, red_bytes, black_bytes)
if __name__ == "__main__":
print("Running...")
file_path = "testimage-tree.png"
with open(file_path, "rb") as f:
image_data = f.read()
red_image, black_image, red_bytes, black_bytes = getImagesToDisplay(file_path)
print("bw: ", red_bytes)
print("red: ", black_bytes)
black_image.save("output/bw.bmp")
red_image.save("output/red.bmp")
print("BW file size:", len(black_image.tobytes()))
print("Red file size:", len(red_image.tobytes()))
As requested, and in the event that it may be useful for future reader, I write a little bit more extensively what I've said in comments (and was verified to be indeed the reason of the problem).
The e-ink display needs usually a black&white image. That is 1 bit per pixel image. Not a grayscale (1 channel byte per pixel), even less a RGB (3 channels/bytes per pixel).
I am not familiar with bi-color red/black displays. But it seems quite logical that it behave just like 2 binary displays (one black & white display, and one black-white & red display). Sharing the same location.
What your code seemingly does is to remove all black pixels from a RGB image, and use it as a red image, and remove all red pixels from the same RDB image, and use it as a black image. But since those images are obtained with clone they are still RGB images. RGB images that happen to contain only black and white pixels, or red and white pixels, but still RGB image.
With PIL, it is the mode that control how images are represented in memory, and therefore, how they are saved to file.
Relevant modes are RGB, L (grayscale aka 1 linear byte/channel per pixel), and 1 (binary aka 1 bit per pixel).
So what you need is to convert to mode 1. Usind .convert('1') method on both your images.
Note that 400x300×3 (uncompressed rgb data for your image) is 360000, which is what you got. 400×300 (L mode for same image) is 120000, and 400×300/8 (1 mode, 1 bit/pixel) is 15000, which is precisely the expected size as you mentioned. So that is another confirmation that, indeed, 1 bit/pixel image is expected.
I am having an issue where I'm using Pillow to recolor an image that has a lot of soft gradients but it seems to not completely color the most translucent part of these gradients, with the recolored image having a gradient that is not as smooth. Is there a way to fix this issue? Example Images and current code below.
enter image description here
Original Gradient: 1: https://i.stack.imgur.com/VFi75.png
enter image description here
Recolored Gradient: 1: https://i.stack.imgur.com/e5iNa.png
Here is the Original transparent PNG of the image
import random
import Owl_Attributes
from PIL import Image, ImageColor
# I create the image here and convert the color code to RGBA
RGB_im = image_base_accent3.convert("RGBA")
datas = RGB_im.getdata()
newData = []
for item in datas:
if item[0] == 208 and item[1] == 231 and item[2] == 161:
newData.append((255, 0, 0, item[3]))
else:
newData.append(item)
RGB_im.putdata(newData)
RGB_im.save('Owl_project_pictures\_final_RGB.png')
First, a couple of things to consider:
Inspect your images before you start work. Yours has an alpha channel that is pretty much pointless and irrelevant so I would discard that to save space and processing time.
Using for loops over Python lists of pixels is slow, inefficient, and error-prone in Python. Try to use built-in functions based on C code, or to use vectorised functions like Numpy.
On to your image. There are a whole load of shades and gradations of tone in your image and dealing with one separately through if statements is going to be difficult. I would suggest you want to use HSV colourspace instead.
I think you want the basic result to be a very saturated red with the lightness dictated by the lightness of the original image.
So, I would make an image with:
Hue=0 (see lower part of this diagram), and
Saturation=255 (i.e. fully saturated), and
Value (i.e. brightness) of the original image.
In code that might look like this:
#!/usr/bin/env python3
# ImageMagick command-line "equivalent"
# magick -size 599x452 xc:black xc:white \( VFi75.png -colorspace gray +level 0,60% \) +combine HSL result.png
from PIL import Image
# Load image and create HSV version
im = Image.open('VFi75.png')
HSV = im.convert('HSV')
# Split into separate channels for processing, discarding Hue and Saturation
_, _, V = HSV.split()
# Synthesize Hue channel, same size as input image, filled with 0, to make Red
H = Image.new('L', (im.width, im.height), 0)
# Synthesize Saturation channel, same size as input image, filled with 255, to make fully saturated
S = Image.new('L', (im.width, im.height), 255)
# Recombine synthesized H, S and V (based on original image brightness) back into a recombined image
RGB = Image.merge('HSV', (H,S,V)).convert('RGB')
# Save processed result
RGB.save('result.png')
If you wanted to make it lime green, you would change the Hue angle like this:
# Synthesize Hue channel, same size as input image, filled with 120, to make Lime Green
H = Image.new('L', (im.width, im.height), 120)
If you wanted to make it less saturated, you would change the saturation like this:
# Synthesize Saturation channel, same size as input image, filled with 64, to make less saturated
S = Image.new('L', (im.width, im.height), 64)
I have two images, one overlay and one background.
I want to create a new image, by editing overlay image and manipulating it to show only the pixels which have blue colour in the background image.
I dont want to add the background, it is only for selecting the pixels.
Rest part should be transparent.
Any hints or ideas please? PS: I edited result image with paint so its not perfect.
Image 1 is background image.
Image 2 is overlay image.
Image 3 is the check I want to perform. (to find out which pixels have blue in background and making remaining pixels transparent)
Image 4 is the result image after editing.
I renamed your images according to my way of thinking, so I took this as image.png:
and this as mask.png:
Then I did what I think you want as follows. I wrote it quite verbosely so you can see all the steps along the way:
#!/usr/local/bin/python3
from PIL import Image
import numpy as np
# Open input images
image = Image.open("image.png")
mask = Image.open("mask.png")
# Get dimensions
h,w=image.size
# Resize mask to match image, taking care not to introduce new colours (Image.NEAREST)
mask = mask.resize((h,w), Image.NEAREST)
mask.save('mask_resized.png')
# Convert both images to numpy equivalents
npimage = np.array(image)
npmask = np.array(mask)
# Make image transparent where mask is not blue
# Blue pixels in mask seem to show up as RGB(163 204 255)
npimage[:,:,3] = np.where((npmask[:,:,0]<170) & (npmask[:,:,1]<210) & (npmask[:,:,2]>250),255,0).astype(np.uint8)
# Identify grey pixels in image, i.e. R=G=B, and make transparent also
RequalsG=np.where(npimage[:,:,0]==npimage[:,:,1],1,0)
RequalsB=np.where(npimage[:,:,0]==npimage[:,:,2],1,0)
grey=(RequalsG*RequalsB).astype(np.uint8)
npimage[:,:,3] *= 1-grey
# Convert numpy image to PIL image and save
PILrgba=Image.fromarray(npimage)
PILrgba.save("result.png")
And this is the result:
Notes:
a) Your image already has an (unused) alpha channel present.
b) Any lines starting:
npimage[:,:,3] = ...
are just modifying the 4th channel, i.e. the alpha/transparency channel of the image
I can successfully convert a rectangular image into a png with transparent rounded corners like this:
However, when I take this transparent cornered image and I want to use it in another image generated with Pillow, I end up with this:
The transparent corners become black. I've been playing around with this for a while but I can't find any way in which the transparent parts of an image don't turn black once I place them on another image with Pillow.
Here is the code I use:
mask = Image.open('Test mask.png').convert('L')
im = Image.open('boat.jpg')
im.resize(mask.size)
output = ImageOps.fit(im, mask.size, centering=(0.5, 0.5))
output.putalpha(mask)
output.save('output.png')
im = Image.open('output.png')
image_bg = Image.new('RGBA', (1292,440), (255,255,255,100))
image_fg = im.resize((710, 400), Image.ANTIALIAS)
image_bg.paste(image_fg, (20, 20))
image_bg.save('output2.jpg')
Is there a solution for this? Thanks.
Per some suggestions I exported the 2nd image as a PNG, but then I ended up with an image with holes in it:
Obviously I want the second image to have a consistent white background without holes.
Here is what I actually want to end up with. The orange is only placed there to highlight the image itself. It's a rectangular image with white background, with a picture placed into it with rounded corners.
If you paste an image with transparent pixels onto another image, the transparent pixels are just copied as well. It looks like you only want to paste the non-transparent pixels. In that case, you need a mask for the paste function.
image_bg.paste(image_fg, (20, 20), mask=image_fg)
Note the third argument here. From the documentation:
If a mask is given, this method updates only the regions indicated by
the mask. You can use either "1", "L" or "RGBA" images (in the latter
case, the alpha band is used as mask). Where the mask is 255, the
given image is copied as is. Where the mask is 0, the current value
is preserved. Intermediate values will mix the two images together,
including their alpha channels if they have them.
What we did here is provide an RGBA image as mask, and use the alpha channel as mask.
Basically, I have two images. One is comprised of white and black pixels, the black pixels making up a word, and the other image that I'm trying to paste the black pixels on top of. I've pasted the code below, however I'm aware that there's an issue with the "if pixels [x,y] == (0, 0, 0):' being a tuple and not an indice, however I'm uncertain of how to get it to look for black pixels with other means.
So essentially I need to find, and remember the positions of, the black pixels so that I can paste them onto the first image. Any help is very much appreciated!
image_one = Image.open (image_one)
image_two = Image.open (image_two)
pixels = list(image_two.getdata())
for y in xrange(image_two.size[1]):
for x in xrange(image_two.size[0]):
if pixels[x,y] == (0, 0, 0):
pixels = black_pixels
black_pixels.append()
image = Image.open (image_one);
image_one.putdata(pixels)
image.save(image_one+ "_X.bmp")
del image_one, image_two;
You're almost there. I am not too familiar with the PIL class, but instead of calling the getdata method, let's use getpixel directly on the image object, and directly set the results into the output image. That eliminates the need to store the set of pixels to overwrite. However, there may be cases beyond what you've listed here where such an approach would be necessary. I created a random image and then set various pixels to black. For this test I used a different condition - if the R channel of the image is greater than 50. You can comment that out and use the other test, which tests for tuple (R,G,B) == (0,0,0) which will work fine.
imagea = PIL.Image.open('temp.png')
imageb = PIL.Image.open('temp.png')
for y in xrange(imagea.size[1]):
for x in xrange(imagea.size[0]):
currentPixel = imagea.getpixel((x,y))
if currentPixel[0] > 50:
#if currentPixel ==(0,0,0):
#this is a black pixel, you can directly modify image 2 now
imageb.putpixel((x,y),(0,0,0))
imageb.save('outputfile.png')
An alternative way to do this is just to multiply the two images together. Any pixel that's black in the binary image will be black in the result (multiply by zero) and any pixel that's white in the binary image will be unchanged from the other image in the result (multiply by one).
PIL can do this,
from PIL import Image, ImageChops
image_one = Image.open("image_one.bmp")
image_two = Image.open("image_two.bmp")
out = ImageChops.multiply(image_one, image_two)
out.save("output.bmp")