How to read multiple json files into pandas dataframe? - python

I'm having a hard time loading multiple line delimited JSON files into a single pandas dataframe. This is the code I'm using:
import os, json
import pandas as pd
import numpy as np
import glob
pd.set_option('display.max_columns', None)
temp = pd.DataFrame()
path_to_json = '/Users/XXX/Desktop/Facebook Data/*'
json_pattern = os.path.join(path_to_json,'*.json')
file_list = glob.glob(json_pattern)
for file in file_list:
data = pd.read_json(file, lines=True)
temp.append(data, ignore_index = True)
It looks like all the files are loading when I look through file_list, but cannot figure out how to get each file into a dataframe. There are about 50 files with a couple lines in each file.

Change the last line to:
temp = temp.append(data, ignore_index = True)
The reason we have to do this is because the append doesn't happen in place. The append method does not modify the data frame. It just returns a new data frame with the result of the append operation.
Edit:
Since writing this answer I have learned that you should never use DataFrame.append inside a loop because it leads to quadratic copying (see this answer).
What you should do instead is first create a list of data frames and then use pd.concat to concatenate them all in a single operation. Like this:
dfs = [] # an empty list to store the data frames
for file in file_list:
data = pd.read_json(file, lines=True) # read data frame from json file
dfs.append(data) # append the data frame to the list
temp = pd.concat(dfs, ignore_index=True) # concatenate all the data frames in the list.
This alternative should be considerably faster.

If you need to flatten the JSON, Juan Estevez’s approach won’t work as is. Here is an alternative :
import pandas as pd
dfs = []
for file in file_list:
with open(file) as f:
json_data = pd.json_normalize(json.loads(f.read()))
dfs.append(json_data)
df = pd.concat(dfs, sort=False) # or sort=True depending on your needs
Or if your JSON are line-delimited (not tested) :
import pandas as pd
dfs = []
for file in file_list:
with open(file) as f:
for line in f.readlines():
json_data = pd.json_normalize(json.loads(line))
dfs.append(json_data)
df = pd.concat(dfs, sort=False) # or sort=True depending on your needs

from pathlib import Path
import pandas as pd
paths = Path("/home/data").glob("*.json")
df = pd.DataFrame([pd.read_json(p, typ="series") for p in paths])

I combined Juan Estevez's answer with glob. Thanks a lot.
import pandas as pd
import glob
def readFiles(path):
files = glob.glob(path)
dfs = [] # an empty list to store the data frames
for file in files:
data = pd.read_json(file, lines=True) # read data frame from json file
dfs.append(data) # append the data frame to the list
df = pd.concat(dfs, ignore_index=True) # concatenate all the data frames in the list.
return df

Maybe you should state, if the json files are created themselves with pandas pd.to_json() or in another way.
I used data which was not created with pd.to_json() and I think it is not possible to use pd.read_json() in my case. Instead, I programmed a customized for-each loop approach to write everything to the DataFrames

Related

how to use pandas to read some Excel file at a time? [duplicate]

I would like to read several CSV files from a directory into pandas and concatenate them into one big DataFrame. I have not been able to figure it out though. Here is what I have so far:
import glob
import pandas as pd
# Get data file names
path = r'C:\DRO\DCL_rawdata_files'
filenames = glob.glob(path + "/*.csv")
dfs = []
for filename in filenames:
dfs.append(pd.read_csv(filename))
# Concatenate all data into one DataFrame
big_frame = pd.concat(dfs, ignore_index=True)
I guess I need some help within the for loop?
See pandas: IO tools for all of the available .read_ methods.
Try the following code if all of the CSV files have the same columns.
I have added header=0, so that after reading the CSV file's first row, it can be assigned as the column names.
import pandas as pd
import glob
import os
path = r'C:\DRO\DCL_rawdata_files' # use your path
all_files = glob.glob(os.path.join(path , "/*.csv"))
li = []
for filename in all_files:
df = pd.read_csv(filename, index_col=None, header=0)
li.append(df)
frame = pd.concat(li, axis=0, ignore_index=True)
Or, with attribution to a comment from Sid.
all_files = glob.glob(os.path.join(path, "*.csv"))
df = pd.concat((pd.read_csv(f) for f in all_files), ignore_index=True)
It's often necessary to identify each sample of data, which can be accomplished by adding a new column to the dataframe.
pathlib from the standard library will be used for this example. It treats paths as objects with methods, instead of strings to be sliced.
Imports and Setup
from pathlib import Path
import pandas as pd
import numpy as np
path = r'C:\DRO\DCL_rawdata_files' # or unix / linux / mac path
# Get the files from the path provided in the OP
files = Path(path).glob('*.csv') # .rglob to get subdirectories
Option 1:
Add a new column with the file name
dfs = list()
for f in files:
data = pd.read_csv(f)
# .stem is method for pathlib objects to get the filename w/o the extension
data['file'] = f.stem
dfs.append(data)
df = pd.concat(dfs, ignore_index=True)
Option 2:
Add a new column with a generic name using enumerate
dfs = list()
for i, f in enumerate(files):
data = pd.read_csv(f)
data['file'] = f'File {i}'
dfs.append(data)
df = pd.concat(dfs, ignore_index=True)
Option 3:
Create the dataframes with a list comprehension, and then use np.repeat to add a new column.
[f'S{i}' for i in range(len(dfs))] creates a list of strings to name each dataframe.
[len(df) for df in dfs] creates a list of lengths
Attribution for this option goes to this plotting answer.
# Read the files into dataframes
dfs = [pd.read_csv(f) for f in files]
# Combine the list of dataframes
df = pd.concat(dfs, ignore_index=True)
# Add a new column
df['Source'] = np.repeat([f'S{i}' for i in range(len(dfs))], [len(df) for df in dfs])
Option 4:
One liners using .assign to create the new column, with attribution to a comment from C8H10N4O2
df = pd.concat((pd.read_csv(f).assign(filename=f.stem) for f in files), ignore_index=True)
or
df = pd.concat((pd.read_csv(f).assign(Source=f'S{i}') for i, f in enumerate(files)), ignore_index=True)
An alternative to darindaCoder's answer:
path = r'C:\DRO\DCL_rawdata_files' # use your path
all_files = glob.glob(os.path.join(path, "*.csv")) # advisable to use os.path.join as this makes concatenation OS independent
df_from_each_file = (pd.read_csv(f) for f in all_files)
concatenated_df = pd.concat(df_from_each_file, ignore_index=True)
# doesn't create a list, nor does it append to one
import glob
import os
import pandas as pd
df = pd.concat(map(pd.read_csv, glob.glob(os.path.join('', "my_files*.csv"))))
Almost all of the answers here are either unnecessarily complex (glob pattern matching) or rely on additional third-party libraries. You can do this in two lines using everything Pandas and Python (all versions) already have built in.
For a few files - one-liner
df = pd.concat(map(pd.read_csv, ['d1.csv', 'd2.csv','d3.csv']))
For many files
import os
filepaths = [f for f in os.listdir(".") if f.endswith('.csv')]
df = pd.concat(map(pd.read_csv, filepaths))
For No Headers
If you have specific things you want to change with pd.read_csv (i.e., no headers) you can make a separate function and call that with your map:
def f(i):
return pd.read_csv(i, header=None)
df = pd.concat(map(f, filepaths))
This pandas line, which sets the df, utilizes three things:
Python's map (function, iterable) sends to the function (the
pd.read_csv()) the iterable (our list) which is every CSV element
in filepaths).
Panda's read_csv() function reads in each CSV file as normal.
Panda's concat() brings all these under one df variable.
Easy and Fast
Import two or more CSV files without having to make a list of names.
import glob
import pandas as pd
df = pd.concat(map(pd.read_csv, glob.glob('data/*.csv')))
The Dask library can read a dataframe from multiple files:
>>> import dask.dataframe as dd
>>> df = dd.read_csv('data*.csv')
(Source: https://examples.dask.org/dataframes/01-data-access.html#Read-CSV-files)
The Dask dataframes implement a subset of the Pandas dataframe API. If all the data fits into memory, you can call df.compute() to convert the dataframe into a Pandas dataframe.
I googled my way into Gaurav Singh's answer.
However, as of late, I am finding it faster to do any manipulation using NumPy and then assigning it once to a dataframe rather than manipulating the dataframe itself on an iterative basis and it seems to work in this solution too.
I do sincerely want anyone hitting this page to consider this approach, but I don't want to attach this huge piece of code as a comment and making it less readable.
You can leverage NumPy to really speed up the dataframe concatenation.
import os
import glob
import pandas as pd
import numpy as np
path = "my_dir_full_path"
allFiles = glob.glob(os.path.join(path,"*.csv"))
np_array_list = []
for file_ in allFiles:
df = pd.read_csv(file_,index_col=None, header=0)
np_array_list.append(df.as_matrix())
comb_np_array = np.vstack(np_array_list)
big_frame = pd.DataFrame(comb_np_array)
big_frame.columns = ["col1", "col2"....]
Timing statistics:
total files :192
avg lines per file :8492
--approach 1 without NumPy -- 8.248656988143921 seconds ---
total records old :1630571
--approach 2 with NumPy -- 2.289292573928833 seconds ---
A one-liner using map, but if you'd like to specify additional arguments, you could do:
import pandas as pd
import glob
import functools
df = pd.concat(map(functools.partial(pd.read_csv, sep='|', compression=None),
glob.glob("data/*.csv")))
Note: map by itself does not let you supply additional arguments.
If you want to search recursively (Python 3.5 or above), you can do the following:
from glob import iglob
import pandas as pd
path = r'C:\user\your\path\**\*.csv'
all_rec = iglob(path, recursive=True)
dataframes = (pd.read_csv(f) for f in all_rec)
big_dataframe = pd.concat(dataframes, ignore_index=True)
Note that the three last lines can be expressed in one single line:
df = pd.concat((pd.read_csv(f) for f in iglob(path, recursive=True)), ignore_index=True)
You can find the documentation of ** here. Also, I used iglobinstead of glob, as it returns an iterator instead of a list.
EDIT: Multiplatform recursive function:
You can wrap the above into a multiplatform function (Linux, Windows, Mac), so you can do:
df = read_df_rec('C:\user\your\path', *.csv)
Here is the function:
from glob import iglob
from os.path import join
import pandas as pd
def read_df_rec(path, fn_regex=r'*.csv'):
return pd.concat((pd.read_csv(f) for f in iglob(
join(path, '**', fn_regex), recursive=True)), ignore_index=True)
Inspired from MrFun's answer:
import glob
import pandas as pd
list_of_csv_files = glob.glob(directory_path + '/*.csv')
list_of_csv_files.sort()
df = pd.concat(map(pd.read_csv, list_of_csv_files), ignore_index=True)
Notes:
By default, the list of files generated through glob.glob is not sorted. On the other hand, in many scenarios, it's required to be sorted e.g. one may want to analyze number of sensor-frame-drops v/s timestamp.
In pd.concat command, if ignore_index=True is not specified then it reserves the original indices from each dataframes (i.e. each individual CSV file in the list) and the main dataframe looks like
timestamp id valid_frame
0
1
2
.
.
.
0
1
2
.
.
.
With ignore_index=True, it looks like:
timestamp id valid_frame
0
1
2
.
.
.
108
109
.
.
.
IMO, this is helpful when one may want to manually create a histogram of number of frame drops v/s one minutes (or any other duration) bins and want to base the calculation on very first timestamp e.g.
begin_timestamp = df['timestamp'][0]
Without, ignore_index=True, df['timestamp'][0] generates the series containing very first timestamp from all the individual dataframes, it does not give just a value.
Another one-liner with list comprehension which allows to use arguments with read_csv.
df = pd.concat([pd.read_csv(f'dir/{f}') for f in os.listdir('dir') if f.endswith('.csv')])
Alternative using the pathlib library (often preferred over os.path).
This method avoids iterative use of pandas concat()/apped().
From the pandas documentation:
It is worth noting that concat() (and therefore append()) makes a full copy of the data, and that constantly reusing this function can create a significant performance hit. If you need to use the operation over several datasets, use a list comprehension.
import pandas as pd
from pathlib import Path
dir = Path("../relevant_directory")
df = (pd.read_csv(f) for f in dir.glob("*.csv"))
df = pd.concat(df)
If multiple CSV files are zipped, you may use zipfile to read all and concatenate as below:
import zipfile
import pandas as pd
ziptrain = zipfile.ZipFile('yourpath/yourfile.zip')
train = []
train = [ pd.read_csv(ziptrain.open(f)) for f in ziptrain.namelist() ]
df = pd.concat(train)
Based on Sid's good answer.
To identify issues of missing or unaligned columns
Before concatenating, you can load CSV files into an intermediate dictionary which gives access to each data set based on the file name (in the form dict_of_df['filename.csv']). Such a dictionary can help you identify issues with heterogeneous data formats, when column names are not aligned for example.
Import modules and locate file paths:
import os
import glob
import pandas
from collections import OrderedDict
path =r'C:\DRO\DCL_rawdata_files'
filenames = glob.glob(path + "/*.csv")
Note: OrderedDict is not necessary, but it'll keep the order of files which might be useful for analysis.
Load CSV files into a dictionary. Then concatenate:
dict_of_df = OrderedDict((f, pandas.read_csv(f)) for f in filenames)
pandas.concat(dict_of_df, sort=True)
Keys are file names f and values are the data frame content of CSV files.
Instead of using f as a dictionary key, you can also use os.path.basename(f) or other os.path methods to reduce the size of the key in the dictionary to only the smaller part that is relevant.
import os
os.system("awk '(NR == 1) || (FNR > 1)' file*.csv > merged.csv")
Where NR and FNR represent the number of the line being processed.
FNR is the current line within each file.
NR == 1 includes the first line of the first file (the header), while FNR > 1 skips the first line of each subsequent file.
In case of an unnamed column issue, use this code for merging multiple CSV files along the x-axis.
import glob
import os
import pandas as pd
merged_df = pd.concat([pd.read_csv(csv_file, index_col=0, header=0) for csv_file in glob.glob(
os.path.join("data/", "*.csv"))], axis=0, ignore_index=True)
merged_df.to_csv("merged.csv")
You can do it this way also:
import pandas as pd
import os
new_df = pd.DataFrame()
for r, d, f in os.walk(csv_folder_path):
for file in f:
complete_file_path = csv_folder_path+file
read_file = pd.read_csv(complete_file_path)
new_df = new_df.append(read_file, ignore_index=True)
new_df.shape
Consider using convtools library, which provides lots of data processing primitives and generates simple ad hoc code under the hood.
It is not supposed to be faster than pandas/polars, but sometimes it can be.
e.g. you could concat csv files into one for further reuse - here's the code:
import glob
from convtools import conversion as c
from convtools.contrib.tables import Table
import pandas as pd
def test_pandas():
df = pd.concat(
(
pd.read_csv(filename, index_col=None, header=0)
for filename in glob.glob("tmp/*.csv")
),
axis=0,
ignore_index=True,
)
df.to_csv("out.csv", index=False)
# took 20.9 s
def test_convtools():
table = None
for filename in glob.glob("tmp/*.csv"):
table_ = Table.from_csv(filename, header=False)
if table is None:
table = table_
else:
table = table.chain(table_)
table.into_csv("out_convtools.csv", include_header=False)
# took 15.8 s
Of course if you just want to obtain a dataframe without writing a concatenated file, it will take 4.63 s and 10.9 s correspondingly (pandas is faster here because it doesn't need to zip columns for writing it back).
import pandas as pd
import glob
path = r'C:\DRO\DCL_rawdata_files' # use your path
file_path_list = glob.glob(path + "/*.csv")
file_iter = iter(file_path_list)
list_df_csv = []
list_df_csv.append(pd.read_csv(next(file_iter)))
for file in file_iter:
lsit_df_csv.append(pd.read_csv(file, header=0))
df = pd.concat(lsit_df_csv, ignore_index=True)
This is how you can do it using Colaboratory on Google Drive:
import pandas as pd
import glob
path = r'/content/drive/My Drive/data/actual/comments_only' # Use your path
all_files = glob.glob(path + "/*.csv")
li = []
for filename in all_files:
df = pd.read_csv(filename, index_col=None, header=0)
li.append(df)
frame = pd.concat(li, axis=0, ignore_index=True,sort=True)
frame.to_csv('/content/drive/onefile.csv')

How to iterate over another xlsx when usecols is missing

Here is where in need your help.
I have multiple xlsx files and I am looking for the same columns information inside each one. Until now all was working fine but some *.xlsx files are not containing the data and my python script just stop but looking over the others.
import glob
import pandas as pd
# Setup variables
xlsx_input = 'D:\\script\\bdd\\xlsx\\*.xlsx'
csv_output = 'D:\\script\\bdd\\csv\\'
# Save all file matches: xlsx_files
xlsx_files = glob.glob(xlsx_input, recursive=True)
# Create an empty list: frames
frames = []
# Iterate over xlsx_files
for file in xlsx_files:
# Read xlsx into a DataFrame
df = pd.read_excel(file , usecols=['ref_01','ref_02','ref_03'])
# Append df to frames
frames.append(df)
# Concatenate frames into dataframe
excel_output = pd.concat(frames)
# Write CSV file
excel_output.to_csv ((csv_output +"bdd_export.csv"), encoding='utf-8-sig', index=None)
Any help would be greatly appreciated.
Cheers !
Ok, I have found how to do it.
Just by adding this: df = pd.read_excel(file , usecols=lambda c: c in ['ref_01','ref_02','ref_03'])

Pandas generating an empty csv while trying combine all csv's into one csv

I am writing a python script that will read all the csv files in the current location and merge them into a single csv file. Below is my code:-
import os
import numpy as np
import pandas as pd
import glob
path = os.getcwd()
extension = csv
os.chdir(path)
tables = glob.glob('*.{}'.format(extension))
data = pd.DataFrame()
for i in tables:
try:
df = pd.read_csv(r''+path+'/'+i+'')
# Here I want to create an index column with the name of the file and leave that column empty
df[i] = np.NaN
df.set_index(i, inplace=True)
# Below line appends an empty row for easy differentiation
df.loc[df.iloc[-1].name+1,:] = np.NaN
data = data.append(df)
except Exception as e:
print(e)
data.to_csv('final_output.csv', indexx=False, header=None)
If I remove the below lines of code then it works:-
df[i] = np.NaN
df.set_index(i, inplace=True)
But I want to have the first column name as the name of the file and its values NaN or empty.
I want the output to look something like this:-
I tend to avoid the .append method in favor of pandas.concat
Try this:
import os
from pathlib import Path
import pandas as pd
files = Path(os.getcwd()).glob('*.csv')
df = pd.concat([
pd.read_csv(f).assign(filename=f.name)
for f in files
], ignore_index=True)
df.to_csv('alldata.csv', index=False)

Convert multiple xlsm files automatically to multiple csv files by using pandas

I have 300 raw datas (.xlsm) and wanne to extract useful datas and turn them to csv files as input for subsequent neural network, now i try to implement them with 10 datas as example, i have sucessfully extracted the informations what i need, but i dont know how to convert them to csv files with the same name, for single data we can use df.to_csv, but how about for all the datas? with for function?
import glob
import pandas as pd
import numpy as np
import csv
import os
excel_files = glob.glob('../../Versuch/Versuche/RohBeispiel/*.xlsm')
directory = '/Beispiel'
for files in excel_files:
data = pd.read_excel(files)
# getting the list of rows and columns you need
list_of_dfs = pd.DataFrame(data.values[0:600:,12:26],
columns=data.columns[12:26]).drop(['Sauberkeit', 'Temparatur'], axis=1)
# converting pandas dataframe columns to numeric: string into float
cols = ['KonzA', 'KonzB', 'KonzC', 'TempA',
'TempB', 'TempC', 'Modul1', 'Modul2',
'Modul3', 'Modul4', 'Modul5', 'Modul6']
list_of_dfs[cols] = list_of_dfs[cols].apply(pd.to_numeric, errors='coerce', axis=1)
# Filling down from a column through missing data
for fec in list_of_dfs[cols]:
list_of_dfs[fec].fillna(method='ffill', inplace=True)
csvfilename = files.split('/')[-1].split('.')[0] + '.csv'
newtempfile = os.path.join(directory,csvfilename)
print(newtempfile)
print(list_of_dfs.head(2))
problem is solved.
folder_name = 'Beispiel'
csvfilename = files.split('/')[-1].split('.')[0] + '.csv' # change into csv files
newtempfile = os.path.join(folder_name, csvfilename)
# Verify if directory exists
if not os.path.exists(folder_name):
os.makedirs(folder_name) # If not, create it
print(newtempfile)
list_of_dfs.to_csv(newtempfile, index=False)
The easiest way of doing this is to get the filename from the excel and then use the os.path.join() method to save it to the directory you want.
directory = "C:/Test"
for files in excel_files:
csvfilename = (os.path.basename(file)[-1]).replace('.xlsm','.csv')
newtempfile=os.path.join(directory,csvfilename)
Since you already have the excel df you want to push into the csv file, just add the above code to the loop and change the output csv file to 'newtempfile' and that should do it.
df.to_csv(newtempfile, 'Beispel/data{0}.csv'.format(idx))
Hope this helps. :)
Updated Code:
cols = ['KonzA', 'KonzB', 'KonzC', 'TempA',
'TempB', 'TempC', 'Modul1', 'Modul2',
'Modul3', 'Modul4', 'Modul5', 'Modul6']
excel_files = glob.glob('../../Versuch/Versuche/RohBeispiel/*.xlsm')
for file in excel_files:
data = pd.read_excel(file, columns = cols) # import only the columns you need to the dataframe
csvfilename = (os.path.basename(files)[-1]).replace('.xlsm','.csv')
newtempfile=os.path.join(directory,csvfilename)
# converting pandas dataframe columns to numeric: string into float
data[cols] = data[cols].apply(pd.to_numeric, errors='coerce', axis=1)
data[cols].fillna(method='ffill', inplace=True)
data.to_csv(newtempfile).format(idx)

How to handle another Excel file in Python

Good Morning.
I'm starting with Python and I have a problem.
I need to find all .xls files (all have the same header) and merge all into a single DataFrame, so I need to say that the first line of the file should be ignored.
The current code I'm using is this:
os.chdir("file folder path")
fileLista = glob.glob('*.xls')
df = list()
for arquivo in fileLista:
df = df.append(pd.read_excel(arquivo))
Company= pd.concat(df)
Company.columns = Company.columns.str.strip()
I am using Glob to return all the .xls extension files,
df.append is to merge all the files that have been returned and put inside a DataFrame,
Company concat is to form a single file,
Company strip is to remove the spaces that it has in the column header.
When I run the code it returns me this error:
"erro NoneType' object is not iterable"
Can anyone help me with this mistake?
What about this instead?
fileLista = glob.glob('*.xls')
Company = pd.DataFrame()
for arquivo in fileLista:
df = pd.read_excel(arquivo)
Company= pd.concat([Company,df])
Company.columns = Company.columns.str.strip()
This should do what you want.
import pandas as pd
import numpy as np
import glob
glob.glob("C:/your_path_here/*.xlsx")
all_data = pd.DataFrame()
for f in glob.glob("C:/your_path_here/*.xlsx"):
df = pd.read_excel(f)
all_data = all_data.append(df,ignore_index=True)
print(all_data)
Here is another option to consider.
import pandas as pd
# filenames
excel_names = ["C:/your_path_here/Book1.xlsx", "C:/your_path_here/Book2.xlsx", "C:/your_path_here/Book3.xlsx"]
# read them in
excels = [pd.ExcelFile(name) for name in excel_names]
# turn them into dataframes
frames = [x.parse(x.sheet_names[0], header=None,index_col=None) for x in excels]
# delete the first row for all frames except the first
# i.e. remove the header row -- assumes it's the first
frames[1:] = [df[1:] for df in frames[1:]]
# concatenate them..
combined = pd.concat(frames)
# write it out
combined.to_excel("c.xlsx", header=False, index=False)
# Results go to the default directory if not assigned somewhere else.
# C:\Users\Excel\.spyder-py3

Categories

Resources