Pandas - Incrementally add to DataFrame - python

I'm trying to add rows and columns to pandas incrementally. I have a lot of data stored across multiple datastores and a heuristic to determine a value. As I navigate across this datastore, I'd like to be able to incrementally update a dataframe, where in some cases, either names or days will be missing.
def foo():
df = pd.DataFrame()
year = 2016
names = ['Bill', 'Bob', 'Ryan']
for day in range(1, 4, 1):
for name in names:
if random.choice([True, False]): # sometimes a name will be missing
continue
value = random.randrange(0, 20, 1) # random value from heuristic
col = '{}_{}'.format(year, day) # column name
df = df.append({col: value, 'name': name}, ignore_index=True)
df.set_index('name', inplace=True, drop=True)
print(df.loc['Bill'])
This produces the following results:
2016_1 2016_2 2016_3
name
Bill 15.0 NaN NaN
Bill NaN 12.0 NaN
I've created a heatmap of the data and it's blocky due to duplicate names, so the output I'm looking for is:
2016_1 2016_2 2016_3
name
Bill 15.0 12.0 NaN
How can I combine these rows?
Is there a more efficient means of creating this dataframe?

Try this :-
df.groupby('name')[df.columns.values].sum()

try this:
df.pivot_table(index='name', aggfunc='sum', dropna=False)

After you run your foo() function, you can use any aggregation function (if you have only one value per column and all the othes are null) and groupby on df.
First, use reset_index to get back your name column.
Then use groupby and apply. Here I propose a custom function which checks that there is only one value per column, and raise a ValueError if not.
df.reset_index(inplace=True)
def aggdata(x):
if all([i <= 1 for i in x.count()]):
return x.mean()
else:
raise ValueError
ddf = df.groupby('name').apply(aggdata)
If all the values of the column are null but one, x.mean() will return that value (actually, you can use almost any aggregator, since there is only one value, that is the one returned).

It would be easier to have the name as column and date as index instead. Plus, you can work within the loop with lists and afterwards create the pd.DataFrame.
e.g.
year = 2016
names = ['Bill', 'Bob', 'Ryan']
index = []
valueBill = []
valueBob = []
valueRyan = []
for day in range(1, 4):
if random.choice([True, False]): # sometimes a name will be missing
valueBill.append(random.randrange(0, 20))
valueBob.append(random.randrange(0, 90))
valueRyan.append(random.randrange(0, 200))
index.append('{}-0{}'.format(year, day)) # column name
else:
valueBill.append(np.nan)
valueBob.append(np.nan)
valueRyan.append(np.nan)
index.append(np.nan)
df = pd.DataFrame({})
for name, value in zip(names,[valueBill,valueBob,valueRyan]):
df[name] = value
df.set_index(pd.to_datetime(index))

You can append the entries with new names if it does not already exist and then do an update to update existing entries.
import pandas as pd
import random
def foo():
df = pd.DataFrame()
year = 2016
names = ['Bill', 'Bob', 'Ryan']
for day in range(1, 4, 1):
for name in names:
if random.choice([True, False]): # sometimes a name will be missing
continue
value = random.randrange(0, 20, 1) # random value from heuristic
col = '{}_{}'.format(year, day) # column name
new_df = pd.DataFrame({col: value, 'name':name}, index=[1]).set_index('name')
df = pd.concat([df,new_df[~new_df.index.isin(df.index)].dropna()])
df.update(new_df)
#df.set_index('name', inplace=True, drop=True)
print(df)

Related

How to create lag feature in pandas in this case?

I have a table like this (with more columns):
date,Sector,Value1,Value2
14/03/22,Medical,86,64
14/03/22,Medical,464,99
14/03/22,Industry,22,35
14/03/22,Services,555,843
15/03/22,Services,111,533
15/03/22,Industry,222,169
15/03/22,Medical,672,937
15/03/22,Medical,5534,825
I have created some features like this:
sectorGroup = df.groupby(["date","Sector"])["Value1","Value2"].mean().reset_index()
df = pd.merge(df,sectorGroup,on=["date","Sector"],how="left",suffixes=["","_bySector"])
dateGroupGroup = df.groupby(["date"])["Value1","Value2"].mean().reset_index()
df = pd.merge(df,dateGroupGroup,on=["date"],how="left",suffixes=["","_byDate"])
Now my new df looks like this:
date,Sector,Value1,Value2,Value1_bySector,Value2_bySector,Value1_byDate,Value2_byDate
14/03/22,Medical,86,64,275.0,81.5,281.75,260.25
14/03/22,Medical,464,99,275.0,81.5,281.75,260.25
14/03/22,Industry,22,35,22.0,35.0,281.75,260.25
14/03/22,Services,555,843,555.0,843.0,281.75,260.25
15/03/22,Services,111,533,111.0,533.0,1634.75,616.0
15/03/22,Industry,222,169,222.0,169.0,1634.75,616.0
15/03/22,Medical,672,937,3103.0,881.0,1634.75,616.0
15/03/22,Medical,5534,825,3103.0,881.0,1634.75,616.0
Now, I want to create lag features for Value1_bySector,Value2_bySector,Value1_byDate,Value2_byDate
For example, a new column named Value1_by_Date_lag1 and Value1_bySector_lag1.
And this new column will look like this:
date,Sector,Value1_by_Date_lag1,Value1_bySector_lag1
15/03/22,Services,281.75,555.0
15/03/22,Industry,281.75,22.0
15/03/22,Medical,281.75,275.0
15/03/22,Medical,281.75,275.0
Basically in Value1_by_Date_lag1, the date "15/03" will contain the value "281.75" which is for the date "14/03" (lag of 1 shift).
Basically in Value1_bySector_lag1, the date "15/03" and Sector "Medical" will contain the value "275.0", which is the value for "14/03" and "Medical" rows.
I hope, the question is clear and gave you all the details.
Create a lagged date variable by shifting the date column, and then merge again with dateGroupGroup and sectorGroup using the lagged date instead of the actual date.
df = pd.read_csv(io.StringIO("""date,Sector,Value1,Value2
14/03/22,Medical,86,64
14/03/22,Medical,464,99
14/03/22,Industry,22,35
14/03/22,Services,555,843
15/03/22,Services,111,533
15/03/22,Industry,222,169
15/03/22,Medical,672,937
15/03/22,Medical,5534,825"""))
# Add a lagged date variable
lagged = df.groupby("date")["date"].first().shift()
df = df.join(lagged, on="date", rsuffix="_lag")
# Create date and sector groups and merge them into df, as you already do
sectorGroup = df.groupby(["date","Sector"])[["Value1","Value2"]].mean().reset_index()
df = pd.merge(df,sectorGroup,on=["date","Sector"],how="left",suffixes=["","_bySector"])
dateGroupGroup = df.groupby("date")[["Value1","Value2"]].mean().reset_index()
df = pd.merge(df, dateGroupGroup, on="date",how="left", suffixes=["","_byDate"])
# Merge again, this time matching the lagged date in df to the actual date in sectorGroup and dateGroupGroup
df = pd.merge(df, sectorGroup, left_on=["date_lag", "Sector"], right_on=["date", "Sector"], how="left", suffixes=["", "_by_sector_lag"])
df = pd.merge(df, dateGroupGroup, left_on="date_lag", right_on="date", how="left", suffixes=["", "_by_date_lag"])
# Drop the extra unnecessary columns that have been created in the merge
df = df.drop(columns=['date_by_date_lag', 'date_by_sector_lag'])
This assumes the data is sorted by date - if not you will have to sort before generating the lagged date. It will work whether or not all the dates are consecutive.
I found 1 inefficient solution (slow and memory intensive).
Lag of "date" group
cols = ["Value1_byDate","Value2_byDate"]
temp = df[["date"]+cols]
temp = temp.drop_duplicates()
for i in range(10):
temp.date = temp.date.shift(-1-i)
df = pd.merge(df,temp,on="date",how="left",suffixes=["","_lag"+str(i+1)])
Lag of "date" and "Sector" group
cols = ["Value1_bySector","Value2_bySector"]
temp = df[["date","Sector"]+cols]
temp = temp.drop_duplicates()
for i in range(10):
temp[["Value1_bySector","Value2_bySector"]] = temp.groupby("Sector")["Value1_bySector","Value2_bySector"].shift(1+1)
df = pd.merge(df,temp,on=["date","Sector"],how="left",suffixes=["","_lag"+str(i+1)])
Is there a more simple solution?

Pandas assign value based on next row(s)

Consider this simple pandas DataFrame with columns 'record', 'start', and 'param'. There can be multiple rows with the same record value, and each unique record value corresponds to the same start value. However, the 'param' value can be different for the same 'record' and 'start' combination:
pd.DataFrame({'record':[1,2,3,4,4,5,6,7,7,7,8], 'start':[0,5,7,13,13,19,27,38,38,38,54], 'param':['t','t','t','u','v','t','t','t','u','v','t']})
I'd like to make a column 'end' that takes the value of 'start' in the row with the next unique value of 'record'. The values of column 'end' should be:
[5,7,13,19,19,27,38,54,54,54,NaN]
I'm able to do this using a for loop, but I know this is not preferred when using pandas:
max_end = 100
for idx, row in df.iterrows():
try:
n = 1
next_row = df.iloc[idx+n]
while next_row['start'] == row['start']:
n = n+1
next_row = df.iloc[idx+n]
end = next_row['start']
except:
end = max_end
df.at[idx, 'end'] = end
Is there an easy way to achieve this without a for loop?
I have no doubt there is a smarter solution but here is mine.
df1['end'] = df1.drop_duplicates(subset = ['record', 'start'])['start'].shift(-1).reindex(index = df1.index, method = 'ffill')
-=EDIT=-
Added subset into drop_duplicates to account for question amendment
This solution is equivalent to #Quixotic22 although more explicit.
df = pd.DataFrame({
'record':[1,2,3,4,4,5,6,7,7,7,8],
'start':[0,5,7,13,13,19,27,38,38,38,54],
'param':['t','t','t','u','v','t','t','t','u','v','t']
})
max_end = 100
df["end"] = None # create new column with empty values
loc = df["record"].shift(1) != df["record"] # record where the next value is diff from previous
df.loc[loc, "end"] = df.loc[loc, "start"].shift(-1) # assign desired values
df["end"].fillna(method = "ffill", inplace = True) # fill remaining missing values
df.loc[df.index[-1], "end"] = max_end # override last value
df

Pandas: Replace empty column values with the non-empty value based on a condition

I have a dataset in this format:
and it needs to be grouped by DocumentId and PersonId columns and sorted by StartDate. Which I doing it like this:
df = pd.read_csv(path).sort_values(by=["StartDate"]).groupby(["DocumentId", "PersonId"])
Now if there is row in this group by with DocumentCode RT and EndDate not empty, all other rows need to be filled by that end date. So this result dataset should be following:
I could not figure out a way to do that. I think I can iterate over each groupby subset but how will find the value from the end date and replace it for each row in that subset.
Based on the suggestions to use bfill(). I tried putting it as following:
df["EndDate"] = (
df.sort_values(by=["StartDate"])
.groupby(["DocumentId", "PersonId"])["EndDate"]
.bfill()
)
Above works fine but how can I add the condition for DocumentCode being RT?
You can calculate the value to use to fill nan inside the apply function.
def fill_end_date(df):
rt_doc = df[df["DocumentCode"] == "RT"]
# if there is row in this group by with DocumentCode RT
if not rt_doc.empty:
end_date = rt_doc.iloc[0]["EndDate"]
# and EndDate not empty
if pd.notnull(end_date):
# all other rows need to be filled by that end date
df = df.fillna({"EndDate": end_date})
return df
df = pd.read_csv(path).sort_values(by=["StartDate"])
df.groupby(["DocumentId", "PersonId"]).apply(fill_end_date).reset_index(drop=True)
You could find the empty cells and replace with np.nan, then fillna with method='bfill'
df['EndDate'] = df['EndDate'].apply(lambda x: np.nan if x=='' else x)
df['EndDate'].fillna(method = 'bfill', inplace=True)
Alternatively you could iterate through the df from last row to first row, and fill in the EndDate where necessary:
d = df.loc[df.shape[0]-1, 'EndDate'] #initial condition
for i in range(df.shape[0]-1, -1, -1):
if df.loc[i, 'DocumentCode'] == 'RT':
d = df.loc[i, 'EndDate']
else:
df.loc[i, 'EndDate'] = d

Pandas and stocks: From daily values (in columns) to monthly values (in rows)

I am having trouble reformatting a dataframe.
My input is a day value rows by symbols columns (each symbol has different dates with it's values):
Input
code to generate input
data = [("01-01-2010", 15, 10), ("02-01-2010", 16, 11), ("03-01-2010", 16.5, 10.5)]
labels = ["date", "AAPL", "AMZN"]
df_input = pd.DataFrame.from_records(data, columns=labels)
The needed output is (month row with new row for each month):
Needed output
code to generate output
data = [("01-01-2010","29-01-2010", "AAPL", 15, 20), ("01-01-2010","29-01-2010", "AMZN", 10, 15),("02-02-2010","30-02-2010", "AAPL", 20, 32)]
labels = ['bd start month', 'bd end month','stock', 'start_month_value', "end_month_value"]
df = pd.DataFrame.from_records(data, columns=labels)
Meaning (Pseudo code)
1. for each row take only non nan values to create a new "row" (maybe dictionary with the date as the index and the [stock, value] as the value.
2. take only rows that are business start of month or business end of month.
3. write those rows to a new datatframe.
I have read several posts like this and this and several more.
All treat with dataframe of the same "type" and just resampling while I need to change to structure...
My code so far
# creating the new index with business days
df1 =pd.DataFrame(range(10000), index = pd.date_range(df.iloc[0].name, periods=10000, freq='D'))
from pandas.tseries.offsets import CustomBusinessMonthBegin
from pandas.tseries.holiday import USFederalHolidayCalendar
bmth_us = CustomBusinessMonthBegin(calendar=USFederalHolidayCalendar())
df2 = df1.resample(bmth_us).mean()
# creating the new index interseting my old one (daily) with the monthly index
new_index = df.index.intersection(df2.index)
# selecting only the rows I want
df = df.loc[new_index]
# creating a dict that will be my new dataset
new_dict = collections.OrderedDict()
# iterating over the rows and adding to dictionary
for index, row in df.iterrows():
# print index
date = df.loc[index].name
# values are the not none values
values = df.loc[index][~df.loc[index].isnull().values]
new_dict[date]=values
# from dict to list
data=[]
for key, values in new_dict.iteritems():
for i in range(0, len(values)):
date = key
stock_name = str(values.index[i])
stock_value = values.iloc[i]
row = (key, stock_name, stock_value)
data.append(row)
# from the list to df
labels = ['date','stock', 'value']
df = pd.DataFrame.from_records(data, columns=labels)
df.to_excel("migdal_format.xls")
Current output I get
One big problem:
I only get value of the stock on the start of month day.. I need start and end so I can calculate the stock gain on this month..
One smaller problem:
I am sure this is not the cleanest and fastest code :)
Thanks a lot!
So I have found a way.
looping through each column
groupby month
taking the first and last value I have in that month
calculate return
df_migdal = pd.DataFrame()
for col in df_input.columns[0:]:
stock_position = df_input.loc[:,col]
name = stock_position.name
name = re.sub('[^a-zA-Z]+', '', name)
name = name[0:-4]
stock_position=stock_position.groupby([pd.TimeGrouper('M')]).agg(['first', 'last'])
stock_position["name"] = name
stock_position["return"] = ((stock_position["last"] / stock_position["first"]) - 1) * 100
stock_position.dropna(inplace=True)
df_migdal=df_migdal.append(stock_position)
df_migdal=df_migdal.round(decimals=2)
I tried I way cooler way, but did not know how to handle the ,multi index I got... I needed that for each column, to take the two sub columns and create a third one from some lambda function.
df_input.groupby([pd.TimeGrouper('M')]).agg(['first', 'last'])

Text To Column Function

I am trying to write my own function in Python 3.5, but not having much luck.
I have a data frame that is 17 columns, 1,200 rows (tiny)
One of the columns is called "placement". Within this column, I have text contained in each row. The naming convention is as follows:
Campaign_Publisher_Site_AdType_AdSize_Device_Audience_Tactic_
The following code works perfectly and does exactly what i need it to do; I just don't want to do this for every data set i have:
df_detailed = df['Placement'].str[0:-1].str.split('_', expand=True).astype(str)
df_detailed = df.join(df_detailed)
new_columns = *["Then i rename the columns labelled 0,1,2 etc"]*
df_detailed.columns = new_columns
df_detailed.head()
What I'm trying to do is build a function, that takes any columns with _ as the delimitator and splits it across new columns.
I have tried the following (but unfortunately defining my own functions is something I'm horrible at.
def text_to_column(df):
df_detailed = df['Placement'].str[0:-1].str.split('_', expand=True).astype(str)
headings = df_detailed.columns
headings.replace(" ", "_")
df_detailed = df.join(df_detailed)
df_detailed.columns = headings
return (df)
and I get the following error "AttributeError: 'RangeIndex' object has no attribute 'replace'"
The end goal here is to write a function where I can pass the column name into the function, it separates the values contained within the column into new columns and then joins this back to my original Data Frame.
If I'm being ridiculous, please let me know. If someone can help me, it would be greatly appreciated.
Thanks,
Adrian
You need rename function for replace columns names:
headings = df_detailed.columns
headings.replace(" ", "_")
change to:
df_detailed = df_detailed.rename(columns=lambda x: x.replace(" ", "_"))
Or convert columns to_series because replace does not work with index (columns names):
headings.replace(" ", "_")
change to:
headings = headings.to_series().replace(" ", "_")
Also:
df_detailed = df['Placement'].str[0:-1].str.split('_', expand=True).astype(str)
is possible change to:
df_detailed = df['Placement'].str.rstrip('_').str.split('_', expand=True).astype(str)
EDIT:
Sample:
df = pd.DataFrame({'a': [1, 2], 'Placement': ['Campaign_Publisher_Site_AdType_AdSize_Device_Audience_Tactic_', 'a_b_c_d_f_g_h_i_']})
print (df)
Placement a
0 Campaign_Publisher_Site_AdType_AdSize_Device_A... 1
1 a_b_c_d_f_g_h_i_ 2
#input is DataFrame and column name
def text_to_column(df, col):
df_detailed = df[col].str.rstrip('_').str.split('_', expand=True).astype(str)
#replace columns names if necessary
df_detailed.columns = df_detailed.columns.to_series().replace(" ", "_")
#remove column and join new df
df_detailed = df.drop(col, axis=1).join(df_detailed)
return df_detailed
df = text_to_column(df, 'Placement')
print (df)
a 0 1 2 3 4 5 6 7
0 1 Campaign Publisher Site AdType AdSize Device Audience Tactic
1 2 a b c d f g h i

Categories

Resources