I have mongodb documents like this:
{
"_id" : ObjectId("5d35ba501545d248c383871f"),
"key1" : 1,
"currentTime" : ISODate("2019-07-18T19:41:54.000Z"),
"iState" : "START - 1",
"errGyro" : -4.0,
"states" : [
{
"ts" : 3,
"accY" : -165.877227783203,
"gyroZ" : 8.2994499206543,
},
{
"ts" : 4,
"accY" : -15.843573,
"gyroZ" : 12.434643,
},
{
"ts" : 3,
"accY" : 121.32667,
"gyroZ" : 98.45566,
}
]
}
I want to return all the states objects and the parent document where "ts" is 3 or 5.
I tried this query at first:
db.getCollection('logs').find(
{"states" :
{ "$elemMatch" : { "$or":[
{ "ts":
{ "$eq" : 3}
},
{ "ts":
{ "$eq" : 5}
}
]
}
}
},{"states.$":1 })
But this returns only the first "state" document where the "eq" occurred.
How can I return all the matching documents?
Thank you.
You can use aggregation pipelines
db.getCollection('logs').aggregate([
{
$unwind: "$states"
},
{
$match: {
$or: [
{ "states.ts": 3 },
{ "states.ts": 5 },
]
}
},
{
$group: {
_id: "$_id",
"key1": { $first: "key1" },
"currentTime": { $first: "currentTime" },
"iState": { $first: "$iState" },
"errGyro": { $first: "$errGyro" },
states: { $push: "$states" }
}
}
])
As $elemMatch returns only the first matching element of array, you have to use aggregation to achieve your goal. Here's the query :
db.collection.aggregate([
{
$match: {
$or: [
{
"states.ts": {
$eq: 3
}
},
{
"states.ts": {
$eq: 5
}
}
]
}
},
{
$project: {
states: 1
}
},
{
$unwind: "$states"
},
{
$match: {
$or: [
{
"states.ts": {
$eq: 3
}
},
{
"states.ts": {
$eq: 5
}
}
]
}
},
{
$group: {
_id: "$_id",
states: {
$push: "$states"
}
}
}
])
First $match and $project stages are here for query optimization and memory save, if many documents are returned.
Related
I'm new to elastic search and trying to do this query right.
So I'm having a document like this:
{
"id": 1,
"name": "Văn Hiến"
}
I want to get that document in 3 cases:
1/ User input is: "v" or "h" or "i",...
2/ User input is: "Văn" or "văn" or "hiến",...
3/ User input is: "va" or "van" or "van hi",...
I'm currently can search for case 1 and 2, but not case 3, where the user input don't have the 'tonal' of the Vietnamese language
This is my query, I'm using Python:
query = {
"bool": {
"should": [
{
"match": {
"name": name.lower()
}
},
{
"wildcard": {
"name": {
"value": f"*{name.lower()}*"
}
}
}
]
}
}
Can anyone help me with this? Any helps will be apperciated
Use the lowercase_filter and mapping_character_filter functions in your mapping.
the following mapping and query will work for all the three usecases you mentioned
Mapping Example:
{
"settings": {
"analysis": {
"analyzer": {
"my_analyzer": {
"type": "custom",
"tokenizer": "my_tokenizer",
"filter": [
"lowercase"
],
"char_filter": [
"my_mappings_char_filter"
]
}
},
"char_filter": {
"my_mappings_char_filter": {
"type": "mapping",
"mappings": [
"ă => a",
"ế => e"
]
}
},
"tokenizer": {
"my_tokenizer": {
"type": "ngram",
"min_gram": 1,
"max_gram": 10,
"token_chars": [
"letter"
]
}
}
},
"max_ngram_diff" : "9"
},
"mappings": {
"properties": {
"name": {
"type": "text",
"analyzer": "my_analyzer",
"fields": {
"facet": {
"type": "keyword",
"ignore_above": 256
}
}
}
}
}
}
Example Query:
{
"query" : {
"query_string" :{
"query":"van hi",
"type": "best_fields",
"default_field": "name"
}
}
}
{so, i want latest 30 document between 20/6 to 20/4 and perform the sum aggregation on field duration_seconds of those 30 latest doc. we had tried multiple aggregation on that like top_hits, terms for sorting but then we got the sum of all doc between 20/6 to 20/4}
"size": 1,
"query": {
"bool": {
"must": [
{
"range": {
"create_datetime": {
"gte": "2022-04-20",
"lte": "2022-06-20"
}
}
}
]
}
},
"sort": [
{
"create_datetime": {
"order": "desc"
}
}
],
"aggs": {
"videosession": {
"sampler": {
"shard_size":30
},
"aggs": {
"sum_duration_seconds": {
"sum": {
"field": "duration_seconds"
}
}
}
}
}
}```
I have elasticsearch configured for my django project.
Elasticsearch index has two fields user_id and address, my goal is to search a list of comma separated addresses on elasticsearch.
Example:
i have this list of addresses ["abc", "def","ghi","jkl","mno"] and i want to search them on elasticsearch in one hit, the result i'm expecting for the above list is ["abc", "def","ghi"] if these three addresses "abc", "def" and "ghi" (individually) exist on elasticsearch in address field.
Ingest data
POST test_foki/_doc
{
"user_id": 1,
"address": "abc"
}
POST test_foki/_doc
{
"user_id": 2,
"address": "def"
}
POST test_foki/_doc
{
"user_id": 3,
"address": "ghi"
}
If you want to do exact matches then you can use a terms query to filter up by an array of addresses.
Request
We use filter because we dont care about score on exact matches (it matches or not)
POST test_foki/_search
{
"query": {
"bool": {
"filter": [
{
"terms": {
"address.keyword": [
"abc",
"def",
"ghi",
"jkl",
"mno"
]
}
}
]
}
}
}
Response
{
"took" : 1,
"timed_out" : false,
"_shards" : {
"total" : 1,
"successful" : 1,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : {
"value" : 3,
"relation" : "eq"
},
"max_score" : 1.0,
"hits" : [
{
"_index" : "test_foki",
"_type" : "_doc",
"_id" : "YzkL4HcBv0SJscHMrZB8",
"_score" : 1.0,
"_source" : {
"user_id" : 1,
"address" : "abc"
}
},
{
"_index" : "test_foki",
"_type" : "_doc",
"_id" : "ZDkL4HcBv0SJscHMsZAx",
"_score" : 1.0,
"_source" : {
"user_id" : 2,
"address" : "def"
}
},
{
"_index" : "test_foki",
"_type" : "_doc",
"_id" : "ZTkL4HcBv0SJscHMtpAd",
"_score" : 1.0,
"_source" : {
"user_id" : 3,
"address" : "ghi"
}
}
]
}
}
If you want to do full text searches you will have to do a boolean query
POST test_foki/_search
{
"query": {
"bool": {
"should": [
{
"match": {
"address": "abc"
}
},
{
"match": {
"address": "def"
}
},
{
"match": {
"address": "ghi"
}
},
{
"match": {
"address": "jkl"
}
},
{
"match": {
"address": "mno"
}
}
]
}
}
}
This produces the same Lucene query address:abc address:def address:ghi address:jkl address:mno
POST test_foki/_search
{
"query": {
"match": {
"address": "abc def ghi jkl mno"
}
}
}
I'm trying to use data from ElasticSearch 6 results in setting up the scoring for my results.
Part of my mapping looks like:
{
"properties": {
"annotation_date": {
"type": "date"
},
"annotation_date_time": {
"type": "date"
},
"annotations": {
"properties": {
"details": {
"type": "nested",
"properties": {
"filter": {
"type": "text",
"fielddata": True,
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"bucket": {
"type": "text",
"fielddata": True,
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"keyword": {
"type": "text",
"fielddata": True,
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"frequency": {
"type": "long",
}
}
}
}
}
}
}
Example part of a document JSON:
"annotations": {
"details": [
{
"filter": "filter_A",
"bucket": "bucket_A",
"keyword": "keyword_A",
"frequency": 6
},
{
"filter": "filter_B",
"bucket": "bucket_B",
"keyword": "keyword_B",
"frequency": 7
}
]
I want to use the the frequency of my annotation.details if it hits a certain 'bucket', which I try to do with the following:
GET my_index/_search
{
"size": 10000,
"query": {
"function_score": {
"query": {
"match": { "title": "<search term>" }
},
"script_score": {
"script": {
"lang": "painless",
"source": """
int score = 0;
for (int i = 0; i < doc['annotations.details.filter'].length; i++){
if (doc['annotations.details.filter'][i].keyword == "bucket_A"){
score += doc['annotations.details.frequency'][i].value;
}
}
return score;
"""
}
}
}
}
}
Ultimately, this would mean that in this specific situation a score is expected of 6. If it would have hit on more buckets, the score is incremented with the frequency it hit on.
You should use bool,must with range and gt
example
GET /_search
{
"query": {
"nested" : {
"path" : "obj1",
"score_mode" : "avg",
"query" : {
"bool" : {
"must" : [
{ "match" : {"obj1.name" : "blue"} },
{ "range" : {"obj1.count" : {"gt" : 5}} }
]
}
}
}
}
}
i am a beginner , i wrote a line for my pipeline that works, but i wanna add other information to my output, like screen name , or number of tweets.I tried to add that under $group but gave me an syntax error everytime
here is my pipeline:
def make_pipeline():
# complete the aggregation pipeline
pipeline = [
{
'$match': {
"user.statuses_count": {"$gt":99 },
"user.time_zone": "Brasilia"
}
},
{
"$group": {
"_id": "$user.id",
"followers": { "$max": "$user.followers_count" }
}
},
{
"$sort": { "followers": -1 }
},
{
"$limit" : 1
}
];
I am using it on this example :
{
"_id" : ObjectId("5304e2e3cc9e684aa98bef97"),
"text" : "First week of school is over :P",
"in_reply_to_status_id" : null,
"retweet_count" : null,
"contributors" : null,
"created_at" : "Thu Sep 02 18:11:25 +0000 2010",
"geo" : null,
"source" : "web",
"coordinates" : null,
"in_reply_to_screen_name" : null,
"truncated" : false,
"entities" : {
"user_mentions" : [ ],
"urls" : [ ],
"hashtags" : [ ]
},
"retweeted" : false,
"place" : null,
"user" : {
"friends_count" : 145,
"profile_sidebar_fill_color" : "E5507E",
"location" : "Ireland :)",
"verified" : false,
"follow_request_sent" : null,
"favourites_count" : 1,
"profile_sidebar_border_color" : "CC3366",
"profile_image_url" : "http://a1.twimg.com/profile_images/1107778717/phpkHoxzmAM_normal.jpg",
"geo_enabled" : false,
"created_at" : "Sun May 03 19:51:04 +0000 2009",
"description" : "",
"time_zone" : null,
"url" : null,
"screen_name" : "Catherinemull",
"notifications" : null,
"profile_background_color" : "FF6699",
"listed_count" : 77,
"lang" : "en",
"profile_background_image_url" : "http://a3.twimg.com/profile_background_images/138228501/149174881-8cd806890274b828ed56598091c84e71_4c6fd4d8-full.jpg",
"statuses_count" : 2475,
"following" : null,
"profile_text_color" : "362720",
"protected" : false,
"show_all_inline_media" : false,
"profile_background_tile" : true,
"name" : "Catherine Mullane",
"contributors_enabled" : false,
"profile_link_color" : "B40B43",
"followers_count" : 169,
"id" : 37486277,
"profile_use_background_image" : true,
"utc_offset" : null
},
"favorited" : false,
"in_reply_to_user_id" : null,
"id" : NumberLong("22819398300")
}
Use $first and your aggregation pipeline query as below :
db.collectionName.aggregate({
"$match": {
"user.statuses_count": {
"$gt": 99
},
"user.time_zone": "Brasilia"
}
}, {
"$sort": {
"user.followers_count": -1 // sort followers_count first
}
}, {
"$group": {
"_id": "$user.id",
"followers": {
"$first": "$user.followers_count" //use mongo $first method to get followers count or max followers count
},
"screen_name": {
"$first": "$user.screen_name"
},
"retweet_count": {
"$first": "$retweet_count"
}
}
})
Or using $limit and $project as
db.collectionName.aggregate({
"$match": {
"user.statuses_count": {
"$gt": 99
},
"user.time_zone": "Brasilia"
}
}, {
"$sort": {
"user.followers_count": -1 // sort followers_count
}
}, {
"$limit": 1 // Set limit 1 so get max followers_count document first
}, {
"$project": { // user project here
"userId": "$user.id",
"screen_name": "$user.screen_name",
"retweet_count": "$retweet_count"
}
}).pretty()
The following aggregation pipeline uses the $$ROOT system variable which references the root document, i.e. the top-level document, currently being processed in the $group aggregation pipeline stage. This is added to an array using the $addToSet operator. In the following pipeline stage, you can then $unwind the array to get the desired fields through a $project operator modifies the form of the output document:
db.tweet.aggregate([
{
'$match': {
"user.statuses_count": { "$gte": 100 },
"user.time_zone": "Brasilia"
}
},
{
"$group": {
"_id": "$user.id",
"max_followers": { "$max": "$user.followers_count" },
"data": { "$addToSet": "$$ROOT" }
}
},
{
"$unwind": "$data"
},
{
"$project": {
"_id": "$data._id",
"followers": "$max_followers",
"screen_name": "$data.user.screen_name",
"tweets": "$data.user.statuses_count"
}
},
{
"$sort": { "followers": -1 }
},
{
"$limit" : 1
}
])
The following pipeline also achieves the same result but doesn't use the $group operator:
pipeline = [
{
"$match": {
"user.statuses_count": {
"$gte": 100
},
"user.time_zone": "Brasilia"
}
},
{
"$project": {
"followers": "$user.followers_count",
"screen_name": "$user.screen_name",
"tweets": "$user.statuses_count"
}
},
{
"$sort": {
"followers": -1
}
},
{"$limit" : 1}
]
Pymongo Output:
{u'ok': 1.0,
u'result': [{u'_id': ObjectId('5304e2d34149692bc5172729'),
u'followers': 17209,
u'screen_name': u'AndreHenning',
u'tweets': 8219}]}