Apply pd.Series by saving another column - python

My initial df is:
df =
ID location
0 141 [(45.1024, 7.7498), (45.1027, 7.75), (45.1072,...
1 403 [(45.0595, 7.6829), (45.0595, 7.6829), (45.056...
2 920 [(45.0695, 7.5454), (44.9727, 7.666), (44.9726..
after applying b = df['location'].apply(pd.Series) I get
1 2 3 4
(45.1024, 7.7498) (45.1027, 7.75) (45.1072, 7.7568) (45.1076, 7.7563)
...
I get partially what I want. But I'm loosing my column 'ID'. How I can save it and apply pd.Series?

df = pd.concat([df, b], axis=1)
df = df.drop(labels=['location'], axis=1)

Related

Pandas Apply returns a Series instead of a dataframe

The goal of following code is to go through each row in df_label, extract app1 and app2 names, filter df_all using those two names, concatenate the result and return it as a dataframe. Here is the code:
def create_dataset(se):
# extracting the names of applications
app1 = se.app1
app2 = se.app2
# extracting each application from df_all
df1 = df_all[df_all.workload == app1]
df1.columns = df1.columns + '_0'
df2 = df_all[df_all.workload == app2]
df2.columns = df2.columns + '_1'
# combining workloads to create the pairs dataframe
df3 = pd.concat([df1, df2], axis=1)
display(df3)
return df3
df_pairs = pd.DataFrame()
df_label.apply(create_dataset, axis=1)
#df_pairs = df_pairs.append(df_label.apply(create_dataset, axis=1))
I would like to append all dataframes returned from apply. However, while display(df3) shows the correct dataframe, when returned from function, it's not a dataframe anymore and it's a series. A series with one element and that element seems to be the whole dataframe. Any ideas what I am doing wrong?
When you select a single column, you'll get a Series instead of a DataFrame so df1 and df2 will both be series.
However, concatenating them on axis=1 should produce a DataFrame (whereas combining them on axis=0 would produce a series). For example:
df = pd.DataFrame({'a':[1,2],'b':[3,4]})
df1 = df['a']
df2 = df['b']
>>> pd.concat([df1,df2],axis=1)
a b
0 1 3
1 2 4
>>> pd.concat([df1,df2],axis=0)
0 1
1 2
0 3
1 4
dtype: int64

assignment with df.iloc() returns nan

I created a dataframe df = pd.DataFrame({'col':[1,2,3,4,5,6]}) and I would like to take some values and put them in another dataframe df2 = pd.DataFrame({'A':[0,0]})by creating new columns.
I created a new column 'B' df2['B'] = df.iloc[0:2,0] and everything was fine, but then i created another column C df2['C'] = df.iloc[2:4,0] and there were only NaN values. I don't know why and if I print print(df.iloc[2:4]) everything is normal.
full code:
import pandas as pd
df = pd.DataFrame({'col':[1,2,3,4,5,6]})
df2 = pd.DataFrame({'A':[0,0]})
df2['B'] = df.iloc[0:2,0]
df2['C'] = df.iloc[2:4,0]
print(df2)
print('\n',df.iloc[2:4])
output:
A B C
0 0 1 NaN
1 0 2 NaN
col
2 3
3 4
Assignement df2['C'] = df.iloc[2:4,0] does not work as expected, because index is not the same. You can skip this using .values attributes.
import pandas as pd
df = pd.DataFrame({'col':[1,2,3,4,5,6]})
df2 = pd.DataFrame({'A':[0,0]})
df2['B'] = df.iloc[0:2,0]
df2['C'] = df.iloc[2:4,0].values
print(df2)

Pandas Dataframe convert column of lists to multiple columns

I am trying to convert a dataframe that has list of various size for example something like this:
d={'A':[1,2,3],'B':[[1,2,3],[3,5],[4]]}
df = pd.DataFrame(data=d)
df
to something like this:
d1={'A':[1,2,3],'B-1':[1,0,0],'B-2':[1,0,0],'B-3':[1,1,0],'B-4':[0,0,1],'B-5':[0,1,0]}
df1 = pd.DataFrame(data=d1)
df1
Thank you for the help
explode the lists then get_dummies and sum over the original index. (max [credit to #JonClements] if you want true dummies and not counts in case there can be multiples). Then join the result back
dfB = pd.get_dummies(df['B'].explode()).sum(level=0).add_prefix('B-')
#dfB = pd.get_dummies(df['B'].explode()).max(level=0).add_prefix('B-')
df = pd.concat([df['A'], dfB], axis=1)
# A B-1 B-2 B-3 B-4 B-5
#0 1 1 1 1 0 0
#1 2 0 0 1 0 1
#2 3 0 0 0 1 0
You can use pop to remove the column you explode so you don't need to specify df[list_of_all_columns_except_B] in the concat:
df = pd.concat([df, pd.get_dummies(df.pop('B').explode()).sum(level=0).add_prefix('B-')],
axis=1)

pandas convert grouped rows into columns

I have a dataframe such as:
label column1
a 1
a 2
b 6
b 4
I would like to make a dataframe with a new column, with the opposite value from column1 where the labels match. Such as:
label column1 column2
a 1 2
a 2 1
b 6 4
b 4 6
I know this is probably very simple to do with a groupby command but I've been searching and can't find anything.
The following uses groupby and apply and seems to work okay:
x = pd.DataFrame({ 'label': ['a','a','b','b'],
'column1': [1,2,6,4] })
y = x.groupby('label').apply(
lambda g: g.assign(column2 = np.asarray(g.column1[::-1])))
y = y.reset_index(drop=True) # optional: drop weird index
print(y)
you can try the code block below:
#create the Dataframe
df = pd.DataFrame({'label':['a','a','b','b'],
'column1':[1,2,6,4]})
#Group by label
a = df.groupby('label').first().reset_index()
b = df.groupby('label').last().reset_index()
#Concat those groups to create columns2
df2 = (pd.concat([b,a])
.sort_values(by='label')
.rename(columns={'column1':'column2'})
.reset_index()
.drop('index',axis=1))
#Merge with the original Dataframe
df = df.merge(df2,left_index=True,right_index=True,on='label')[['label','column1','column2']]
Hope this helps
Assuming their are only pairs of labels, you could use the following as well:
# Create dataframe
df = pd.DataFrame(data = {'label' :['a', 'a', 'b', 'b'],
'column1' :[1,2, 6,4]})
# iterate over dataframe, identify matching label and opposite value
for index, row in df.iterrows():
newvalue = int(df[(df.label == row.label) & (df.column1 != row.column1)].column1.values[0])
# set value to new column
df.set_value(index, 'column2', newvalue)
df.head()
You can use groupby with apply where create new Series with back order:
df['column2'] = df.groupby('label')["column1"] \
.apply(lambda x: pd.Series(x[::-1].values)).reset_index(drop=True)
print (df)
column1 label column2
0 1 a 2
1 2 a 1
2 6 b 4
3 4 b 6

How to assign a value_count output to a dataframe

I am trying to assign the output from a value_count to a new df. My code follows.
import pandas as pd
import glob
df = pd.concat((pd.read_csv(f, names=['date','bill_id','sponsor_id']) for f in glob.glob('/home/jayaramdas/anaconda3/df/s11?_s_b')))
column_list = ['date', 'bill_id']
df = df.set_index(column_list, drop = True)
df = df['sponsor_id'].value_counts()
df.columns=['sponsor', 'num_bills']
print (df)
The value count is not being assigned the column headers specified 'sponsor', 'num_bills'. I'm getting the following output from print.head
1036 426
791 408
1332 401
1828 388
136 335
Name: sponsor_id, dtype: int64
your column length doesn't match, you read 3 columns from the csv and then set the index to 2 of them, you calculated value_counts which produces a Series with the column values as the index and the value_counts as the values, you need to reset_index and then overwrite the column names:
df = df.reset_index()
df.columns=['sponsor', 'num_bills']
Example:
In [276]:
df = pd.DataFrame({'col_name':['a','a','a','b','b']})
df
Out[276]:
col_name
0 a
1 a
2 a
3 b
4 b
In [277]:
df['col_name'].value_counts()
Out[277]:
a 3
b 2
Name: col_name, dtype: int64
In [278]:
type(df['col_name'].value_counts())
Out[278]:
pandas.core.series.Series
In [279]:
df = df['col_name'].value_counts().reset_index()
df.columns = ['col_name', 'count']
df
Out[279]:
col_name count
0 a 3
1 b 2
Appending value_counts() to multi-column dataframe:
df = pd.DataFrame({'C1':['A','B','A'],'C2':['A','B','A']})
vc_df = df.value_counts().to_frame('Count').reset_index()
display(df, vc_df)
C1 C2
0 A A
1 B B
2 A A
C1 C2 Count
0 A A 2
1 B B 1

Categories

Resources