How to use a trained model on new inputs? - python

I have created a CNN model that can be used to differentiate DOGS and CATS. During the training process my model was showing an training accuracy of 99% and testing accuracy of 81% by the end of 4/25 epoch.
Is this normal? or is there any problem that might occur after completion of all the epoch's?
So I need to use this CNN model to my new inputs that do not belong to my training of test set. How do I use my model to predict some new photos?
I have not used classifier.save( ), so after the training can I just use that command so that model gets saved? or do I have to recompile everything with clssifier.save() at the end?
# Part 1 - Building the CNN
# Importing the Keras libraries and packages
from keras.models import Sequential
from keras.layers import Conv2D
from keras.layers import MaxPooling2D
from keras.layers import Flatten
from keras.layers import Dense
# Initialising the CNN
classifier = Sequential()
# Step 1 - Convolution
classifier.add(Conv2D(32, (3, 3), input_shape = (64, 64, 3), activation = 'relu'))
# Step 2 - Pooling
classifier.add(MaxPooling2D(pool_size = (2, 2)))
# Adding a second convolutional layer
classifier.add(Conv2D(32, (3, 3), activation = 'relu'))
classifier.add(MaxPooling2D(pool_size = (2, 2)))
# Step 3 - Flattening
classifier.add(Flatten())
# Step 4 - Full connection
classifier.add(Dense(units = 128, activation = 'relu'))
classifier.add(Dense(units = 1, activation = 'sigmoid'))
# Compiling the CNN
classifier.compile(optimizer = 'adam', loss = 'binary_crossentropy', metrics = ['accuracy'])
# Part 2 - Fitting the CNN to the images
from keras.preprocessing.image import ImageDataGenerator
train_datagen = ImageDataGenerator(rescale = 1./255,
shear_range = 0.2,
zoom_range = 0.2,
horizontal_flip = True)
test_datagen = ImageDataGenerator(rescale = 1./255)
training_set = train_datagen.flow_from_directory('dataset/training_set',
target_size = (64, 64),
batch_size = 32,
class_mode = 'binary')
test_set = test_datagen.flow_from_directory('dataset/test_set',
target_size = (64, 64),
batch_size = 32,
class_mode = 'binary')
classifier.fit_generator(training_set,
steps_per_epoch = 8000,
epochs = 25,
validation_data = test_set,
validation_steps = 2000)

The model has a save method that exports the architecture and training configuration of the model to a file which can be later extracted and used. The documentation for the same can be found here.
After importing the model, you can use the model on any data sets that you want to. About the accuracy of the model, it is possible to achieve the same. There is still a huge difference between the train and test accuracy so at the moment it is over-fitting the data. Also, try to randomize the data and train using them to make sure it is not an exceptional case.

Related

Bounding box prediction on CNN multiple class image classification in python

I have the training set and test of 4 types of specific objects. I also have the bound box conditions / Area of interest coordinates (x,y,w,h) in csv format.
Main aim of the project is to predict the class of test image along with bounding box around the area of interest along with printing the name of the class on the image.
I have applied CNN model based on keras library. which classifies the given images of test set. what should i change in order to predict the bounding box coordinates of the given test image ?
from keras.models import Sequential
from keras.layers import Convolution2D
from keras.layers import MaxPooling2D
from keras.layers import Flatten
from keras.layers import Dense
#CNN initializing
classifier= Sequential()
#convolutional layer
classifier.add(Convolution2D(filters = 32, kernel_size=(3,3), data_format= "channels_last", input_shape=(64, 64, 3), activation="relu"))
#Pooling
classifier.add(MaxPooling2D(pool_size=(2,2)))
#addition of second convolutional layer
classifier.add(Convolution2D(filters = 32, kernel_size=(3,3), data_format= "channels_last", activation="relu"))
classifier.add(MaxPooling2D(pool_size=(2,2)))
#step 3 - FLatttening
classifier.add(Flatten())
#step 4 - Full connection layer
classifier.add(Dense(128, input_dim = 11, activation = 'relu'))
#output layer
classifier.add(Dense(units = 4, activation = 'sigmoid'))
#compiling the CNN
classifier.compile(optimizer='adam',loss="categorical_crossentropy",metrics =["accuracy"])
#part 2 -Fitting the CNN to the images
from keras.preprocessing.image import ImageDataGenerator
train_datagen = ImageDataGenerator(rescale = 1./255,
shear_range = 0.2,
zoom_range = 0.2,
horizontal_flip = True)
test_datagen = ImageDataGenerator(rescale = 1./255)
training_set = train_datagen.flow_from_directory('dataset/Train',
target_size = (64, 64),
batch_size = 32,
class_mode = 'categorical')
test_set = test_datagen.flow_from_directory('dataset/Test',
target_size = (64, 64),
batch_size = 32,
class_mode = 'categorical')
classifier.fit_generator(training_set,
steps_per_epoch =4286/32,
epochs = 25,
validation_data = test_set,
validation_steps = 44/32)
The task you described is object detection, which usually requires a more complicated CNN model. Check https://github.com/fizyr/keras-retinanet for one of the famous neural network architectures.

Inconsistent results in CNN using keras

I have done a prediction for car damages whether they are severe or not based on images in Keras using CNN. Predicted class and accuracy changes every time I run the code for the same dataset and with no other parameters changed. I have tried restarting the kernal and also setting seed for the model with a hope of getting consistent results. I am new to python, so kindly help me in the getting same results every time.
import random
random.seed(801)
# Importing the Keras libraries and packages
from keras.models import Sequential
from keras.layers import Conv2D
from keras.layers import MaxPooling2D
from keras.layers import Flatten
from keras.layers import Dense
from keras.layers import Dropout
# Initialising the CNN
classifier = Sequential()
# Step 1 - Convolution
classifier.add(Conv2D(64, (2, 2), input_shape = (64, 64, 3), activation = 'relu'))
# Step 2 - Pooling
classifier.add(MaxPooling2D(pool_size = (2, 2)))
# Adding a second convolutional layer
classifier.add(Conv2D(64, (2, 2), activation = 'relu'))
classifier.add(MaxPooling2D(pool_size = (2, 2)))
# Step 3 - Flattening
classifier.add(Flatten())
# Adding dropout
classifier.add(Dropout(0.2))
# Step 4 - Full connection
classifier.add(Dense(units = 128, activation = 'relu'))
# Adding dropout
classifier.add(Dropout(0.2))
classifier.add(Dense(units = 1, activation = 'sigmoid'))
# Compiling the CNN
classifier.compile(optimizer = 'adam', loss = 'binary_crossentropy', metrics = ['accuracy'])
# Part 2 - Fitting the CNN to the images
from keras.preprocessing.image import ImageDataGenerator
train_datagen = ImageDataGenerator(rescale = 1./255,
# shear_range = 0.2,
# zoom_range = 0.2,
horizontal_flip = True)
test_datagen = ImageDataGenerator(rescale = 1./255)
#train_labels = keras.utils.to_categorical(train_labels,num_classes)
#test_labels = keras.utils.to_categorical(test_labels,num_classes)
training_set = train_datagen.flow_from_directory('C:/Users/Allianz/Desktop/Image Processing/car-damage-detective-neokt/app/2 category/training',
target_size = (64, 64),
batch_size = 16,
class_mode = 'binary')
test_set = test_datagen.flow_from_directory('C:/Users/Allianz/Desktop/Image Processing/car-damage-detective-neokt/app/2 category/validation',
target_size = (64, 64),
batch_size = 16,
class_mode = 'binary')
batch_size=16
classifier.fit_generator(training_set,
steps_per_epoch = 605//batch_size,
epochs = 9,
validation_data = test_set,
validation_steps = 5//batch_size
)
#classifier.save('first_model.h5')
classifier.save('first.h5')
# finding the number associated classes
#classes=training_set.class_indices
#print(classes)
# extracting file names of images
import os
from PIL import Image
import numpy as np
path='C:/Users/Allianz/Desktop/Image Processing/car-damage-detective-neokt/app/data3a_full/validation/01-minor'
img_names = [f for f in os.listdir(path) if os.path.splitext(f)[-1] == '.JPEG']
#print(img_names[1])
img_names=np.asarray(img_names) #converting list to array
# predicting classes for multiple images
import numpy as np
from keras.models import load_model
from keras.preprocessing import image
#os.chdir('C:/Users/Allianz/Desktop/Image Processing/car-damage-detective-neokt/app/2nd check/pred')
os.chdir('C:/Users/Allianz/Desktop/Image Processing/car-damage-detective-neokt/app/data3a_full/validation/01-minor')
a=load_model('first.h5')
classes=[]
result=[]
for i in range(len(img_names)):
img=image.load_img(img_names[i],
target_size=(64,64))
test_image = image.img_to_array(img)
test_image = np.expand_dims(test_image, axis = 0)
result = a.predict(test_image)
#print(result)
if result[0] >= 0.5:
prediction = 'severe'
else:
prediction = 'not severe'
classes.append(prediction)
#print(classes)
#prediction2=print(classes)
import pandas as pd
dfn=pd.DataFrame({'image':img_names,
'prediction':classes
})
len(dfn.loc[dfn['prediction']=='not severe'])
len(dfn.loc[dfn['prediction']=='severe'])
It looks like you're training the model every time you classify! This is what's causing the inconsistency. The reason why this yields different results, despite you setting the seed, can be found (here)[Why can't I get reproducible results in Keras even though I set the random seeds?.
I suggest you separate the two files so that you train in one script and load then test in another. This way you will get more consistent results.
I had similar problems with loading weights. The problem is that when you load the weights keras radomly assigns the weights because of the model declaration. I switched to using checkpoints for storing my weights and model.load_weights(checkpoints_directory) to load the weights. You will have to use a callback for this. Here is a short code snippet for this task (Google has a nice video on his topic).
from keras.callbacks import ModelCheckpoint
callbacks = [ModelCheckpoint(checkpoints_directory, monitor='val_loss', save_weights_only=True, save_best_only=True, period=period)]
model.fit(..., callbacks=callbacks, ...)

Error on number of arguments for keras fit_generator

I am having difficulty debugging, running this training model and then saving the weights.
The code:
#Part 1 - Building the CNN
#Importing the Keras libraries and packages
from keras.models import Sequential
from keras.layers import Conv2D
from keras.layers import MaxPooling2D
from keras.layers import Flatten
from keras.layers import Dense
#Initialising the CNN
classifier = Sequential()
#Step 1 - Convolution
#classifier.add(Conv2D(32, (3, 3), input_shape = (64, 64, 3), activation = 'relu'))
classifier.add(Conv2D(32,3,3,input_shape = (64, 64, 3),activation = 'relu'))
#Step 2 - Pooling
classifier.add(MaxPooling2D(pool_size = (2, 2)))
#Adding a second convolutional layer
classifier.add(Conv2D(32, 3, 3, activation = 'relu'))
classifier.add(MaxPooling2D(pool_size = (2, 2)))
#Step 3 - Flattening
classifier.add(Flatten())
#Step 4 - Full connection
classifier.add(Dense(128, activation = 'relu'))
classifier.add(Dense(1, activation = 'sigmoid'))
#Compiling the CNN
classifier.compile(optimizer = 'adam', loss = 'binary_crossentropy', metrics = ['accuracy'])
#Part 2 - Fitting the CNN to the images
from keras.preprocessing.image import ImageDataGenerator
train_datagen = ImageDataGenerator(rescale = 1./255,
shear_range = 0.2,
zoom_range = 0.2,
horizontal_flip = True)
test_datagen = ImageDataGenerator(rescale = 1./255)
training_set = train_datagen.flow_from_directory('training_set',
target_size = (64, 64),
batch_size = 32,
class_mode = 'binary')
test_set = test_datagen.flow_from_directory('test_set',
target_size = (64, 64),
batch_size = 32,
class_mode = 'binary')
classifier.fit_generator(training_set,
validation_data = test_set,
validation_steps = 2000,
steps_per_epoch = 8000,
epochs = 25)
classifier.save("weights.h5")
Problem #1: I am getting the following error:
Found 8005 images belonging to 2 classes.
Found 2023 images belonging to 2 classes.
-----------------------------------------------------------------------TypeError Traceback (most recent call last) in ()
58 validation_steps = 2000,
59 steps_per_epoch = 8000,
---> 60 epochs = 25)
61
62
TypeError: fit_generator() takes at least 4 arguments (3 given)
Problem #2: I want to save the trained weights so that I don't need to keep running it over and over again.
I ran classifier.save("weights.h5") separately, and an empty file (since it's unable to train) was created with the below message. How can I save the model weights?
Error! /Users/xx/xx/xx/cnn_050518/model_weights.h5 is not UTF-8 encoded Saving disabled. See Console for more details.
versions of tools used (by entering print tool.version) keras: 1.1.1 tensorflow: 0.11.orc2 python:2.7 Macbook version 10.13.2

How to handle false predictions in a neural network built and trained with Keras?

I am very new to neural networks and I tried a typical first example with help of some Internet-Blogs: Image Classification of cats or dogs. After training the neural network below I tried to identify some random pictures of cats/dogs which I found on Google and which are neither in my training_set nor in my test_set… I found out, that sometimes the network gives a right prediction (recognizing a dog when showing a dog) and unfortunately sometimes a false prediction i.e. I showed a picture of a cat and the network predicts a ‘dog’. How do I handle such mistakes?
Adding all wrong pictures to the training_set or test_set and do the whole training process again? Or is there any other option to tell the network that it has made a false prediction and should adapt its weights?
#Part 1 - Import
from keras.models import Sequential
from keras.layers import Conv2D
from keras.layers import MaxPooling2D
from keras.layers import Flatten
from keras.layers import Dense
#Part 2 – Build Network
classifier = Sequential()
classifier.add(Conv2D(32, (3, 3), input_shape = (64, 64, 3), activation = 'relu'))
classifier.add(MaxPooling2D(pool_size = (2, 2)))
classifier.add(Conv2D(32, (3, 3), activation = 'relu'))
classifier.add(MaxPooling2D(pool_size = (2, 2)))
classifier.add(Flatten())
classifier.add(Dense(units = 128, activation = 'relu'))
classifier.add(Dense(units = 1, activation = 'sigmoid'))
classifier.compile(optimizer = 'adam', loss = 'binary_crossentropy', metrics = ['accuracy'])
#Part 3 - Training
from keras.preprocessing.image import ImageDataGenerator
train_datagen = ImageDataGenerator(rescale = 1./255, shear_range = 0.2, zoom_range = 0.2, horizontal_flip = True)
test_datagen = ImageDataGenerator(rescale = 1./255)
training_set = train_datagen.flow_from_directory('C:/…/KNNDaten/training_set', target_size = (64, 64), batch_size = 32, class_mode = 'binary')
test_set = test_datagen.flow_from_directory('C:/…/KNNDaten/test_set', target_size = (64, 64), batch_size = 32, class_mode = 'binary')
classifier.fit_generator(training_set, steps_per_epoch = 8000, epochs = 25, validation_data = test_set, validation_steps = 2000)
#Part 4 – Saving Model and weights
model_json = classifier.to_json()
with open("model1.json", "w") as json_file:
json_file.write(model_json)
classifier.save_weights("model1.h5")
# Part 5 - Making new predictions
import numpy as np
from keras.preprocessing import image
test_image = image.load_img('C:/… /KNNDaten/single_prediction/cat_or_dog_1.jpg', target_size = (64, 64))
test_image = image.img_to_array(test_image)
test_image = np.expand_dims(test_image, axis = 0)
result = classifier.predict(test_image)
training_set.class_indices
if result[0][0] == 1:
prediction = 'dog'
else:
prediction = 'cat'
print("Image contains: " + prediction);
At the moment my training process looks like:
Results of my training process: accuracy, ...
Thank you very much for your help!
The usual process is to add the incorrectly predicted images to the training data set and retrain the network with random weights or using the weights obtained previously with the new images and the old ones.
When training a network you don't need to initiate with random weitghs, you could use the previous weights, this is sometimes called Transfer Learning. It is important if you try to do this to also include the original images used to train the model, or at least a part of it, if you don't want to overfit the model.
As Dascienz comments using data augmentation techniques can also be very useful to get a better generalization, for example adding the new images and variation of them: rotations, translation, symmetries and rescaling.

cnn feature extraction from an image, python

I need to extract components of advertisement pages; first I need to detect and mark the buttons (little rectangles under the page where it's written 'click') of the web advertisement pages(I use these pages as images for my data.) and I've trained the data in order to detect buttons by CNN and it perfectly knows whether an image is a button or not. However, after I've trained the data, I have some troubles to label these detected buttons by CNN. I will be so glad for any suggestions. Here are the codes;
from keras.models import Sequential
from keras.layers import Convolution2D
from keras.layers import MaxPooling2D
from keras.layers import Flatten
from keras.layers import Dense
#Initialising the CNN
classifier = Sequential()
#Step 1: Convolution
classifier.add(Convolution2D(32, 3, 3, input_shape = (64, 64, 3), activation
= 'relu'))
#Step 2: Pooling
classifier.add(MaxPooling2D(pool_size= (2,2)))
#Step 3:Flatten
classifier.add(Flatten())
#Step 4: Full connection
classifier.add(Dense(output_dim = 128, activation = 'relu'))
classifier.add(Dense(output_dim = 1, activation = 'sigmoid'))
#Compiling the CNN
classifier.compile(optimizer = 'adam', loss = 'binary_crossentropy', metrics
= ['accuracy'])
#Fitting the CNN to the Images from keras.preprocessing.image import ImageDataGenerator
train_datagen = ImageDataGenerator(rescale=1./255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True)
test_datagen = ImageDataGenerator(rescale=1./255)
training_set = train_datagen.flow_from_directory('train_set1',
target_size=(64, 64),
batch_size=32,
class_mode='binary')
test_set = test_datagen.flow_from_directory('test_set1', target_size(64,64),
batch_size=32,class_mode='binary')
classifier.fit_generator(training_set, steps_per_epoch=2754, epochs=25,
validation_data=test_set, nb_val_samples=460)

Categories

Resources