By making a node to be deleted from the tree, the node (case 1) can be a node with a single arm (right or left), or a node with both branches. In case the node to be deleted is an intermediate node with two branches, there are 2 different methods.
Method 1: the largest knot on the left arm or the smallest knot on the right arm, and
Method 2: The node in the branch with more depth (or the number of elements) is fulfilled so that the right or left arm is balanced.
Both methods have to be coded with separate functions.
How can I do these two methods?
class Node:
def __init__(self, data):
self.left = None
self.right = None
self.parent = None # new
self.data = data
def insert(self, data):
if self.data: # add by comparison
if data < self.data: # left if small
if self.left is None: # add left if left is blank
self.left = Node(data)
self.left.parent = self # new
else:
self.left.insert(data) # if left is not empty add to left sub-tree
elif data > self.data: # right if greater
if self.right is None: # add right if right is blank
self.right = Node(data)
self.right.parent = self # new
else: # if right is not empty add to sub-tree right
self.right.insert(data)
else:
self.data = data # the first dream of the tree
# print Tree
def PrintTree(self):
print( self.data,end='-')
if self.left:
self.left.PrintTree()
if self.right:
self.right.PrintTree()
def sizeTree(self):
if self.left and self.right:
return 1 + self.left.sizeTree() + self.right.sizeTree()
elif self.left:
return 1 + self.left.sizeTree()
elif self.right:
return 1 + self.right.sizeTree()
else:
return 1
def depth(self):
if self.left and self.right:
l = self.left.depth()
r = self.right.depth()
return 1 + max(l,r)
elif self.left:
return 1 + self.left.depth()
elif self.right:
return 1 + self.right.depth()
else:
return 1
# Use the insert method to add nodes
root = Node(25)
root.insert(12)
root.insert(10)
root.insert(22)
root.insert(5)
root.insert(36)
root.insert(30)
root.insert(40)
root.insert(28)
root.insert(38)
root.insert(48)
root.PrintTree()
"""
# 25,36,20,10,5,22,40,48,38,30,22,12,28
root = Node(25)
root.insert(36)
root.insert(20)
root.insert(10)
root.insert(5)
root.insert(22)
root.insert(40)
root.insert(48)
root.insert(38)
root.insert(30)
root.insert(12)
root.insert(28)
print("\n",root.sizeTree(),root.depth())
"""
Some time ago I was playing with this and came up with this code:
def search(self, value):
"""
Recursively looks to the left and right of Tree depending on the provided value
and returns it if it is present within Tree.
Args:
value (int): value to be searched for within Tree
Returns:
value if value exists in Tree otherwise None
"""
if value < self.data:
if self.left is None:
return None
return self.left.search(value)
elif value > self.data:
if self.right is None:
return None
return self.right.search(value)
else:
return self.data
def _findNodeToDelete(self, value, previous=None):
"""
Recursively looks to the left and right of Tree depending on the provided value
and returns it if it is present within Tree.
Args:
value (int): value to be searched for within Tree
Returns:
value if value exists in Tree otherwise None
"""
if value < self.data:
if self.left is None:
return None
return self.left._findNodeToDelete(value, self)
elif value > self.data:
if self.right is None:
return None
return self.right._findNodeToDelete(value, self)
else:
return self, previous
def _mergeNodes(self, target):
self.data = target.data
self.left = target.left
self.right = target.right
def deleteNode(self, value, start=None):
if self.search(value):
to_delete, parent = self._findNodeToDelete(value, start)
if to_delete.right and to_delete.left:
new_value = to_delete.right.min
to_delete.data = new_value
to_delete.right.deleteNode(new_value, to_delete)
elif to_delete.left:
to_delete._mergeNodes(to_delete.left)
elif to_delete.right:
to_delete._mergeNodes(to_delete.right)
else:
if parent:
if parent.data > value:
parent.left = None
else:
parent.right = None
else:
self.data = None
Note, I don't use parent attribute, rather calculate it while deleting.
I have written a class called Node with certain functions to create a binary search tree. All of the functions work correctly except the function height() that is supposed to calculate the height of the BST. It returns a very small number compared to what I was expecting it too given that I haven't balanced the tree. The number I was expecting was close to N where N is the amount of numbers I have entered in the tree. Here is the code:
from __future__ import print_function
import random
class Node(object):
def __init__(self, data):
self.left = None
self.right = None
self.data = data
def insert(self, data):
if self.data:
if data < self.data:
if self.left is None:
self.left = Node(data)
else:
self.left.insert(data)
elif data > self.data:
if self.right is None:
self.right = Node(data)
else:
self.right.insert(data)
else:
self.data = data
def lookup(self, data, parent=None):
if data < self.data:
if self.left is None:
return None, None
return self.left.lookup(data, self)
elif data > self.data:
if self.right is None:
return None, None
return self.right.lookup(data, self)
else:
return self, parent
def delete(self, data):
node, parent = self.lookup(data)
if node is not None:
children_count = node.children_count()
if children_count == 0:
if parent:
if parent.left is node:
parent.left = None
else:
parent.right = None
else:
self.data = None
elif children_count == 1:
if node.left:
n = node.left
else:
n = node.right
if parent:
if parent.left is node:
parent.left = n
else:
parent.right = n
else:
self.left = n.left
self.right = n.right
self.data = n.data
else:
parent = node
successor = node.right
while successor.left:
parent = successor
successor = successor.left
node.data = successor.data
if parent.left == successor:
parent.left = successor.right
else:
parent.right = successor.right
def compare_trees(self, node):
if node is None:
return False
if self.data != node.data:
return False
res = True
if self.left is None:
if node.left:
return False
else:
res = self.left.compare_trees(node.left)
if res is False:
return False
if self.right is None:
if node.right:
return False
else:
res = self.right.compare_trees(node.right)
return res
def print_tree(self):
if self.left:
self.left.print_tree()
print(self.data, end=" ")
if self.right:
self.right.print_tree()
def height(self, root):
if root is None:
return 0
else:
return max(self.height(root.left), self.height(root.right)) + 1
random.seed(3)
bst = Node(random.randint(1,1000))
for i in range(1,80000,1):
bst.insert(random.randint(1,1000))
print(bst.height(bst))
You are getting low answer because you are always inserting number from 1 to 1000 only so the numbers existing are always remains same and you are thinking you are inserting 1,80000 numbers but actually because of generating randomly the same numbers from 1 to 1000 you are actually inserting just 1000 values from 1 to 1000 maximum.
Wrong Code
bst = Node(random.randint(1,1000))
for i in range(1,80000,1):
bst.insert(random.randint(1,1000))
print(bst.height(bst))
Modification
bst = Node(random.randint(1,80000))
for i in range(1,80000,1):
bst.insert(random.randint(1,80000))
print(bst.height(bst))
Your code is working fine you can execute below code and check it with the image below
bst = Node(7)
list1 = [3,11,1,5,9,13,4,6,8,12,14,8.5]
for i in list1:
bst.insert(i)
print(bst.height(bst))
bst.print_tree()
Ouput
5
1 3 4 5 6 7 8 8.5 9 11 12 13 14
You should declare as sorted array to get maximum height for binary search tree.
but this may not work for larger numbers as 1000 or 10,000 . It will work fine for 500 elements because of your recursion for insertion may exceed the maximum recursion depth in python
UPTO 500
bst = Node(0)
list1 = list(range(1,500,1))
for i in list1:
bst.insert(i)
print(bst.height(bst))
OUTPUT
499
1000 elements
bst = Node(0)
list1 = list(range(1,500,1))
for i in list1:
bst.insert(i)
print(bst.height(bst))
OUTPUT
self.right.insert(data)
self.right = Node(data)
RecursionError: maximum recursion depth exceeded
This is what I've got so far but it is not working:
class Node:
rChild,lChild,data = None,None,None
def __init__(self,key):
self.rChild = None
self.lChild = None
self.data = key
class Tree:
root,size = None,0
def __init__(self):
self.root = None
self.size = 0
def insert(self,node,someNumber):
if node is None:
node = Node(someNumber)
else:
if node.data > someNumber:
self.insert(node.rchild,someNumber)
else:
self.insert(node.rchild, someNumber)
return
def main():
t = Tree()
t.root = Node(4)
t.root.rchild = Node(5)
print t.root.data #this works
print t.root.rchild.data #this works too
t = Tree()
t.insert(t.root,4)
t.insert(t.root,5)
print t.root.data #this fails
print t.root.rchild.data #this fails too
if __name__ == '__main__':
main()
Here is a quick example of a binary insert:
class Node:
def __init__(self, val):
self.l_child = None
self.r_child = None
self.data = val
def binary_insert(root, node):
if root is None:
root = node
else:
if root.data > node.data:
if root.l_child is None:
root.l_child = node
else:
binary_insert(root.l_child, node)
else:
if root.r_child is None:
root.r_child = node
else:
binary_insert(root.r_child, node)
def in_order_print(root):
if not root:
return
in_order_print(root.l_child)
print root.data
in_order_print(root.r_child)
def pre_order_print(root):
if not root:
return
print root.data
pre_order_print(root.l_child)
pre_order_print(root.r_child)
r = Node(3)
binary_insert(r, Node(7))
binary_insert(r, Node(1))
binary_insert(r, Node(5))
3
/ \
1 7
/
5
print "in order:"
in_order_print(r)
print "pre order"
pre_order_print(r)
in order:
1
3
5
7
pre order
3
1
7
5
class Node:
rChild,lChild,data = None,None,None
This is wrong - it makes your variables class variables - that is, every instance of Node uses the same values (changing rChild of any node changes it for all nodes!). This is clearly not what you want; try
class Node:
def __init__(self, key):
self.rChild = None
self.lChild = None
self.data = key
now each node has its own set of variables. The same applies to your definition of Tree,
class Tree:
root,size = None,0 # <- lose this line!
def __init__(self):
self.root = None
self.size = 0
Further, each class should be a "new-style" class derived from the "object" class and should chain back to object.__init__():
class Node(object):
def __init__(self, data, rChild=None, lChild=None):
super(Node,self).__init__()
self.data = data
self.rChild = rChild
self.lChild = lChild
class Tree(object):
def __init__(self):
super(Tree,self).__init__()
self.root = None
self.size = 0
Also, main() is indented too far - as shown, it is a method of Tree which is uncallable because it does not accept a self argument.
Also, you are modifying the object's data directly (t.root = Node(4)) which kind of destroys encapsulation (the whole point of having classes in the first place); you should be doing something more like
def main():
t = Tree()
t.add(4) # <- let the tree create a data Node and insert it
t.add(5)
class Node:
rChild,lChild,parent,data = None,None,None,0
def __init__(self,key):
self.rChild = None
self.lChild = None
self.parent = None
self.data = key
class Tree:
root,size = None,0
def __init__(self):
self.root = None
self.size = 0
def insert(self,someNumber):
self.size = self.size+1
if self.root is None:
self.root = Node(someNumber)
else:
self.insertWithNode(self.root, someNumber)
def insertWithNode(self,node,someNumber):
if node.lChild is None and node.rChild is None:#external node
if someNumber > node.data:
newNode = Node(someNumber)
node.rChild = newNode
newNode.parent = node
else:
newNode = Node(someNumber)
node.lChild = newNode
newNode.parent = node
else: #not external
if someNumber > node.data:
if node.rChild is not None:
self.insertWithNode(node.rChild, someNumber)
else: #if empty node
newNode = Node(someNumber)
node.rChild = newNode
newNode.parent = node
else:
if node.lChild is not None:
self.insertWithNode(node.lChild, someNumber)
else:
newNode = Node(someNumber)
node.lChild = newNode
newNode.parent = node
def printTree(self,someNode):
if someNode is None:
pass
else:
self.printTree(someNode.lChild)
print someNode.data
self.printTree(someNode.rChild)
def main():
t = Tree()
t.insert(5)
t.insert(3)
t.insert(7)
t.insert(4)
t.insert(2)
t.insert(1)
t.insert(6)
t.printTree(t.root)
if __name__ == '__main__':
main()
My solution.
class BST:
def __init__(self, val=None):
self.left = None
self.right = None
self.val = val
def __str__(self):
return "[%s, %s, %s]" % (self.left, str(self.val), self.right)
def isEmpty(self):
return self.left == self.right == self.val == None
def insert(self, val):
if self.isEmpty():
self.val = val
elif val < self.val:
if self.left is None:
self.left = BST(val)
else:
self.left.insert(val)
else:
if self.right is None:
self.right = BST(val)
else:
self.right.insert(val)
a = BST(1)
a.insert(2)
a.insert(3)
a.insert(0)
print a
The Op's Tree.insert method qualifies for the "Gross Misnomer of the Week" award -- it doesn't insert anything. It creates a node which is not attached to any other node (not that there are any nodes to attach it to) and then the created node is trashed when the method returns.
For the edification of #Hugh Bothwell:
>>> class Foo(object):
... bar = None
...
>>> a = Foo()
>>> b = Foo()
>>> a.bar
>>> a.bar = 42
>>> b.bar
>>> b.bar = 666
>>> a.bar
42
>>> b.bar
666
>>>
The accepted answer neglects to set a parent attribute for each node inserted, without which one cannot implement a successor method which finds the successor in an in-order tree walk in O(h) time, where h is the height of the tree (as opposed to the O(n) time needed for the walk).
Here is an implementation based on the pseudocode given in Cormen et al., Introduction to Algorithms, including assignment of a parent attribute and a successor method:
class Node(object):
def __init__(self, key):
self.key = key
self.left = None
self.right = None
self.parent = None
class Tree(object):
def __init__(self, root=None):
self.root = root
def insert(self, z):
y = None
x = self.root
while x is not None:
y = x
if z.key < x.key:
x = x.left
else:
x = x.right
z.parent = y
if y is None:
self.root = z # Tree was empty
elif z.key < y.key:
y.left = z
else:
y.right = z
#staticmethod
def minimum(x):
while x.left is not None:
x = x.left
return x
#staticmethod
def successor(x):
if x.right is not None:
return Tree.minimum(x.right)
y = x.parent
while y is not None and x == y.right:
x = y
y = y.parent
return y
Here are some tests to show that the tree behaves as expected for the example given by DTing:
import pytest
#pytest.fixture
def tree():
t = Tree()
t.insert(Node(3))
t.insert(Node(1))
t.insert(Node(7))
t.insert(Node(5))
return t
def test_tree_insert(tree):
assert tree.root.key == 3
assert tree.root.left.key == 1
assert tree.root.right.key == 7
assert tree.root.right.left.key == 5
def test_tree_successor(tree):
assert Tree.successor(tree.root.left).key == 3
assert Tree.successor(tree.root.right.left).key == 7
if __name__ == "__main__":
pytest.main([__file__])
Just something to help you to start on.
A (simple idea of) binary tree search would be quite likely be implement in python according the lines:
def search(node, key):
if node is None: return None # key not found
if key< node.key: return search(node.left, key)
elif key> node.key: return search(node.right, key)
else: return node.value # found key
Now you just need to implement the scaffolding (tree creation and value inserts) and you are done.
I find the solutions a bit clumsy on the insert part. You could return the root reference and simplify it a bit:
def binary_insert(root, node):
if root is None:
return node
if root.data > node.data:
root.l_child = binary_insert(root.l_child, node)
else:
root.r_child = binary_insert(root.r_child, node)
return root
its easy to implement a BST using two classes, 1. Node and 2. Tree
Tree class will be just for user interface, and actual methods will be implemented in Node class.
class Node():
def __init__(self,val):
self.value = val
self.left = None
self.right = None
def _insert(self,data):
if data == self.value:
return False
elif data < self.value:
if self.left:
return self.left._insert(data)
else:
self.left = Node(data)
return True
else:
if self.right:
return self.right._insert(data)
else:
self.right = Node(data)
return True
def _inorder(self):
if self:
if self.left:
self.left._inorder()
print(self.value)
if self.right:
self.right._inorder()
class Tree():
def __init__(self):
self.root = None
def insert(self,data):
if self.root:
return self.root._insert(data)
else:
self.root = Node(data)
return True
def inorder(self):
if self.root is not None:
return self.root._inorder()
else:
return False
if __name__=="__main__":
a = Tree()
a.insert(16)
a.insert(8)
a.insert(24)
a.insert(6)
a.insert(12)
a.insert(19)
a.insert(29)
a.inorder()
Inorder function for checking whether BST is properly implemented.
Another Python BST with sort key (defaulting to value)
LEFT = 0
RIGHT = 1
VALUE = 2
SORT_KEY = -1
class BinarySearchTree(object):
def __init__(self, sort_key=None):
self._root = []
self._sort_key = sort_key
self._len = 0
def insert(self, val):
if self._sort_key is None:
sort_key = val // if no sort key, sort key is value
else:
sort_key = self._sort_key(val)
node = self._root
while node:
if sort_key < node[_SORT_KEY]:
node = node[LEFT]
else:
node = node[RIGHT]
if sort_key is val:
node[:] = [[], [], val]
else:
node[:] = [[], [], val, sort_key]
self._len += 1
def minimum(self):
return self._extreme_node(LEFT)[VALUE]
def maximum(self):
return self._extreme_node(RIGHT)[VALUE]
def find(self, sort_key):
return self._find(sort_key)[VALUE]
def _extreme_node(self, side):
if not self._root:
raise IndexError('Empty')
node = self._root
while node[side]:
node = node[side]
return node
def _find(self, sort_key):
node = self._root
while node:
node_key = node[SORT_KEY]
if sort_key < node_key:
node = node[LEFT]
elif sort_key > node_key:
node = node[RIGHT]
else:
return node
raise KeyError("%r not found" % sort_key)
Here is a compact, object oriented, recursive implementation:
class BTreeNode(object):
def __init__(self, data):
self.data = data
self.rChild = None
self.lChild = None
def __str__(self):
return (self.lChild.__str__() + '<-' if self.lChild != None else '') + self.data.__str__() + ('->' + self.rChild.__str__() if self.rChild != None else '')
def insert(self, btreeNode):
if self.data > btreeNode.data: #insert left
if self.lChild == None:
self.lChild = btreeNode
else:
self.lChild.insert(btreeNode)
else: #insert right
if self.rChild == None:
self.rChild = btreeNode
else:
self.rChild.insert(btreeNode)
def main():
btreeRoot = BTreeNode(5)
print 'inserted %s:' %5, btreeRoot
btreeRoot.insert(BTreeNode(7))
print 'inserted %s:' %7, btreeRoot
btreeRoot.insert(BTreeNode(3))
print 'inserted %s:' %3, btreeRoot
btreeRoot.insert(BTreeNode(1))
print 'inserted %s:' %1, btreeRoot
btreeRoot.insert(BTreeNode(2))
print 'inserted %s:' %2, btreeRoot
btreeRoot.insert(BTreeNode(4))
print 'inserted %s:' %4, btreeRoot
btreeRoot.insert(BTreeNode(6))
print 'inserted %s:' %6, btreeRoot
The output of the above main() is:
inserted 5: 5
inserted 7: 5->7
inserted 3: 3<-5->7
inserted 1: 1<-3<-5->7
inserted 2: 1->2<-3<-5->7
inserted 4: 1->2<-3->4<-5->7
inserted 6: 1->2<-3->4<-5->6<-7
Here is a working solution.
class BST:
def __init__(self,data):
self.root = data
self.left = None
self.right = None
def insert(self,data):
if self.root == None:
self.root = BST(data)
elif data > self.root:
if self.right == None:
self.right = BST(data)
else:
self.right.insert(data)
elif data < self.root:
if self.left == None:
self.left = BST(data)
else:
self.left.insert(data)
def inordertraversal(self):
if self.left != None:
self.left.inordertraversal()
print (self.root),
if self.right != None:
self.right.inordertraversal()
t = BST(4)
t.insert(1)
t.insert(7)
t.insert(3)
t.insert(6)
t.insert(2)
t.insert(5)
t.inordertraversal()
A simple, recursive method with only 1 function and using an array of values:
class TreeNode(object):
def __init__(self, value: int, left=None, right=None):
super().__init__()
self.value = value
self.left = left
self.right = right
def __str__(self):
return str(self.value)
def create_node(values, lower, upper) -> TreeNode:
if lower > upper:
return None
index = (lower + upper) // 2
value = values[index]
node = TreeNode(value=value)
node.left = create_node(values, lower, index - 1)
node.right = create_node(values, index + 1, upper)
return node
def print_bst(node: TreeNode):
if node:
# Simple pre-order traversal when printing the tree
print("node: {}".format(node))
print_bst(node.left)
print_bst(node.right)
if __name__ == '__main__':
vals = [0, 1, 2, 3, 4, 5, 6]
bst = create_node(vals, lower=0, upper=len(vals) - 1)
print_bst(bst)
As you can see, we really only need 1 method, which is recursive: create_node. We pass in the full values array in each create_node method call, however, we update the lower and upper index values every time that we make the recursive call.
Then, using the lower and upper index values, we calculate the index value of the current node and capture it in value. This value is the value for the current node, which we use to create a node.
From there, we set the values of left and right by recursively calling the function, until we reach the end state of the recursion call when lower is greater than upper.
Important: we update the value of upper when creating the left side of the tree. Conversely, we update the value of lower when creating the right side of the tree.
Hopefully this helps!
The following code is basic on #DTing‘s answer and what I learn from class, which uses a while loop to insert (indicated in the code).
class Node:
def __init__(self, val):
self.l_child = None
self.r_child = None
self.data = val
def binary_insert(root, node):
y = None
x = root
z = node
#while loop here
while x is not None:
y = x
if z.data < x.data:
x = x.l_child
else:
x = x.r_child
z.parent = y
if y == None:
root = z
elif z.data < y.data:
y.l_child = z
else:
y.r_child = z
def in_order_print(root):
if not root:
return
in_order_print(root.l_child)
print(root.data)
in_order_print(root.r_child)
r = Node(3)
binary_insert(r, Node(7))
binary_insert(r, Node(1))
binary_insert(r, Node(5))
in_order_print(r)
The problem, or at least one problem with your code is here:-
def insert(self,node,someNumber):
if node is None:
node = Node(someNumber)
else:
if node.data > someNumber:
self.insert(node.rchild,someNumber)
else:
self.insert(node.rchild, someNumber)
return
You see the statement "if node.data > someNumber:" and the associated "else:" statement both have the same code after them. i.e you do the same thing whether the if statement is true or false.
I'd suggest you probably intended to do different things here, perhaps one of these should say self.insert(node.lchild, someNumber) ?
Another Python BST solution
class Node(object):
def __init__(self, value):
self.left_node = None
self.right_node = None
self.value = value
def __str__(self):
return "[%s, %s, %s]" % (self.left_node, self.value, self.right_node)
def insertValue(self, new_value):
"""
1. if current Node doesnt have value then assign to self
2. new_value lower than current Node's value then go left
2. new_value greater than current Node's value then go right
:return:
"""
if self.value:
if new_value < self.value:
# add to left
if self.left_node is None: # reached start add value to start
self.left_node = Node(new_value)
else:
self.left_node.insertValue(new_value) # search
elif new_value > self.value:
# add to right
if self.right_node is None: # reached end add value to end
self.right_node = Node(new_value)
else:
self.right_node.insertValue(new_value) # search
else:
self.value = new_value
def findValue(self, value_to_find):
"""
1. value_to_find is equal to current Node's value then found
2. if value_to_find is lower than Node's value then go to left
3. if value_to_find is greater than Node's value then go to right
"""
if value_to_find == self.value:
return "Found"
elif value_to_find < self.value and self.left_node:
return self.left_node.findValue(value_to_find)
elif value_to_find > self.value and self.right_node:
return self.right_node.findValue(value_to_find)
return "Not Found"
def printTree(self):
"""
Nodes will be in sequence
1. Print LHS items
2. Print value of node
3. Print RHS items
"""
if self.left_node:
self.left_node.printTree()
print(self.value),
if self.right_node:
self.right_node.printTree()
def isEmpty(self):
return self.left_node == self.right_node == self.value == None
def main():
root_node = Node(12)
root_node.insertValue(6)
root_node.insertValue(3)
root_node.insertValue(7)
# should return 3 6 7 12
root_node.printTree()
# should return found
root_node.findValue(7)
# should return found
root_node.findValue(3)
# should return Not found
root_node.findValue(24)
if __name__ == '__main__':
main()
def BinaryST(list1,key):
start = 0
end = len(list1)
print("Length of List: ",end)
for i in range(end):
for j in range(0, end-i-1):
if(list1[j] > list1[j+1]):
temp = list1[j]
list1[j] = list1[j+1]
list1[j+1] = temp
print("Order List: ",list1)
mid = int((start+end)/2)
print("Mid Index: ",mid)
if(key == list1[mid]):
print(key," is on ",mid," Index")
elif(key > list1[mid]):
for rindex in range(mid+1,end):
if(key == list1[rindex]):
print(key," is on ",rindex," Index")
break
elif(rindex == end-1):
print("Given key: ",key," is not in List")
break
else:
continue
elif(key < list1[mid]):
for lindex in range(0,mid):
if(key == list1[lindex]):
print(key," is on ",lindex," Index")
break
elif(lindex == mid-1):
print("Given key: ",key," is not in List")
break
else:
continue
size = int(input("Enter Size of List: "))
list1 = []
for e in range(size):
ele = int(input("Enter Element in List: "))
list1.append(ele)
key = int(input("\nEnter Key for Search: "))
print("\nUnorder List: ",list1)
BinaryST(list1,key)
class TreeNode:
def __init__(self, value):
self.value = value
self.left = None
self.right = None
class BinaryTree:
def __init__(self, root=None):
self.root = root
def add_node(self, node, value):
"""
Node points to the left of value if node > value; right otherwise,
BST cannot have duplicate values
"""
if node is not None:
if value < node.value:
if node.left is None:
node.left = TreeNode(value)
else:
self.add_node(node.left, value)
else:
if node.right is None:
node.right = TreeNode(value)
else:
self.add_node(node.right, value)
else:
self.root = TreeNode(value)
def search(self, value):
"""
Value will be to the left of node if node > value; right otherwise.
"""
node = self.root
while node is not None:
if node.value == value:
return True # node.value
if node.value > value:
node = node.left
else:
node = node.right
return False
def traverse_inorder(self, node):
"""
Traverse the left subtree of a node as much as possible, then traverse
the right subtree, followed by the parent/root node.
"""
if node is not None:
self.traverse_inorder(node.left)
print(node.value)
self.traverse_inorder(node.right)
def main():
binary_tree = BinaryTree()
binary_tree.add_node(binary_tree.root, 200)
binary_tree.add_node(binary_tree.root, 300)
binary_tree.add_node(binary_tree.root, 100)
binary_tree.add_node(binary_tree.root, 30)
binary_tree.traverse_inorder(binary_tree.root)
print(binary_tree.search(200))
if __name__ == '__main__':
main()