Dirac delta Source Term in Fipy - python

I would like to know how to represent the Dirac delta function as source term in Fipy. I want to solve the following equation
I have tried the following code
from fipy import *
nx = 50
ny = 1
dx = dy = 0.025 # grid spacing
L = dx * nx
mesh = Grid2D(dx=dx, dy=dy, nx=nx, ny=ny)
phi = CellVariable(name="solution variable", mesh=mesh, value=0.)
Gamma=1
delta=1 # I want knowing how to make this right.
eqG = TransientTerm() == DiffusionTerm(coeff=Gamma)+delta
valueTopLeft = 0
valueBottomRight = 1
X, Y = mesh.faceCenters
facesTopLeft = ((mesh.facesLeft & (Y > L / 2)) | (mesh.facesTop & (X < L / 2)))
facesBottomRight = ((mesh.facesRight & (Y < L / 2)) |
(mesh.facesBottom & (X > L / 2)))
phi.constrain(valueTopLeft, facesTopLeft)
phi.constrain(valueBottomRight, facesBottomRight)
timeStepDuration = 10 * 0.9 * dx ** 2 / (2 * 0.8)
steps = 100
results=[]
for step in range(steps):
eqG.solve(var=phi, dt=timeStepDuration)
results.append(phi.value)
The code is working but I want the exact Dirac delta function. I looked up the numerix module but couldnt find such function. Sx1 and Sy1 are constants. Am using python 2.7

It's probably a good idea to smooth the Dirac delta function as is done with diffusion interface methods (see equations 11, 12 and 13 here). So, this is one choice
def delta_func(x, epsilon):
return ((x < epsilon) & (x > -epsilon)) * \
(1 + numerix.cos(numerix.pi * x / epsilon)) / 2 / epsilon
2 * epsilon is the width of the Dirac delta function and is chosen to be a few grid spacings wide. You could also just use 1 / dx and choose the closest grid point to the Dirac delta function's location. However, I think that becomes more grid dependent. Here is a working code in 1D.
from fipy import *
nx = 50
dx = dy = 0.025 # grid spacing
L = dx * nx
mesh = Grid1D(dx=dx, nx=nx)
phi = CellVariable(name="solution variable", mesh=mesh, value=0.)
Gamma=1
def delta_func(x, epsilon):
return ((x < epsilon) & (x > -epsilon)) * \
(1 + numerix.cos(numerix.pi * x / epsilon)) / 2 / epsilon
x0 = L / 2.
eqG = TransientTerm() == DiffusionTerm(coeff=Gamma)+ delta_func(mesh.x - x0, 2 * dx)
valueTopLeft = 0
valueBottomRight = 1
timeStepDuration = 10 * 0.9 * dx ** 2 / (2 * 0.8)
steps = 100
viewer = Viewer(phi)
for step in range(steps):
res = eqG.solve(var=phi, dt=timeStepDuration)
print(step)
viewer.plot()
input('stopped')
Here, epsilon = 2 * dx, an arbitrary choice, and the delta function is centered around L / 2. 2D just required multiplying the functions.

Related

Calculate eccentricity vector of planetary ring particles

I wish to set-up an initially circular (e=0) system of planetary rings which I can later perturb over time and see how the eccentricity changes. However, my calculation of the eccentricity vector returns -1 as the value of my initial ring, rather than zero.
The eccentricity vector equation takes this form
import numpy as np
import matplotlib.pyplot as plt
G = 6.674e-20 # km^3 kg^-1 s^-2
day = 60.0 * 60.0 * 24.0
dt = day / 10.0
Mass = 5.683e26
N = 30000
delta = np.random.random(1) * 2.0 * np.pi / N
angles = np.linspace(0.0, 2.0 * np.pi, N) + delta
radius = np.random.uniform(low = 1e6, high = 2e6, size = (N)) # ring radius
xrings, yrings = radius * np.cos(angles), radius * np.sin(angles) # positions
vxrings, vyrings = np.sqrt((G * Mass) / radius) * -np.sin(angles), np.sqrt((G * Mass) / radius) * np.cos(angles) # velocities
dist = np.hypot(xrings, yrings) # distance between particles
# update positions
xrings += (vxrings * dt)
yrings += (vyrings * dt)
#update velocities
vxrings -= (G * Mass * xrings / (dist ** 3.0 + 1.0e6) * dt)
vyrings -= (G * Mass * yrings / (dist ** 3.0 + 1.0e6) * dt)
v = np.hypot(vxrings, vyrings)
mu = G*Mass
e = (((abs(v)**2) / mu) - (1/abs(dist)))*radius - (((radius*v) / mu)*v)
plt.plot(e, radius)
plt.show()
I have tried interchanging dist and radius in various ways within the equation as I know the radius needs to be with respect to the central mass, but to no avail.
I think the problem is arising due to the fact that it is a vector equation and when you have implemented it, you've used the magnitudes of radius and velocity when you should have used their vectors.
Implementing either equation from the wiki (with the vectors for r and v) gives the expected result of e being 0 when dt is 0:
import numpy as np
import matplotlib.pyplot as plt
G = 6.674e-20 # km^3 kg^-1 s^-2
day = 60.0 * 60.0 * 24.0
dt = day / 10.0
Mass = 5.683e26
mu = G*Mass
dt = 0
N = 30000
delta = np.random.random(1) * 2.0 * np.pi / N
angles = np.linspace(0.0, 2.0 * np.pi, N) + delta
radius = np.random.uniform(low = 1e6, high = 2e6, size = (N)) # ring radius
xrings, yrings = radius * np.cos(angles), radius * np.sin(angles) # positions
vxrings, vyrings = np.sqrt((G * Mass) / radius) * -np.sin(angles), np.sqrt((G * Mass) / radius) * np.cos(angles) # velocities
dist = np.hypot(xrings, yrings) # distance between particles
# update positions
xrings += (vxrings * dt)
yrings += (vyrings * dt)
# #update velocities
vxrings -= (G * Mass * xrings / (dist ** 3.0 + 1.0e6) * dt)
vyrings -= (G * Mass * yrings / (dist ** 3.0 + 1.0e6) * dt)
# Convert to array of vectors assuming there is no motion out of the plane
r_vector = np.array([[i, j, 0 ] for i, j in zip(xrings, yrings)])
v_vector = np.array([[i, j, 0] for i, j in zip(vxrings, vyrings)])
# Implement the equation as given in the wiki page
# Cross product method
h = [np.cross(i, j) for i, j in zip(r_vector, v_vector)] # r cross v
v_h = [np.cross(i, j)/mu for i, j in zip(v_vector, h)] # v cross h over mu
r_normalised = [i/np.linalg.norm(i) for i in r_vector]
e_vector_cross = [i-j for i,j in zip(v_h, r_normalised)]
absolute_e_cross = [np.linalg.norm(i) for i in e_vector_cross]
plt.figure()
plt.title('Cross product method')
plt.xlabel('Eccentricity')
plt.ylabel('Radius')
plt.plot(absolute_e_cross, radius)
# Dot product method
first_factor = [np.linalg.norm(i)**2/mu -1/np.linalg.norm(j) for i, j in zip(v_vector, r_vector)]
first = [i*j for i, j in zip(first_factor, r_vector)]
second_factor = [np.dot(i, j)/mu for i, j in zip(r_vector, v_vector)]
second = [i*j for i, j in zip(second_factor, v_vector)]
e_vector_dot = [i-j for i, j in zip(first, second)]
absolute_e_dot = [np.linalg.norm(i) for i in e_vector_dot]
plt.figure()
plt.title('Dot product method')
plt.xlabel('Eccentricity')
plt.ylabel('Radius')
plt.plot(absolute_e_dot, radius)
Output:

Using the timing of the event in the ODE

(This is a follow up question related to Scipy ODE time steps going backward)
I have a system of equations that I am trying to solve with scipy's solve_ivp. Here's a minimal working code:
import numpy as np
from scipy.integrate import solve_ivp
def synapse(t, t0):
tau_1 = 5.3
tau_2 = 0.05
tau_rise = (tau_1 * tau_2) / (tau_1 - tau_2)
B = ((tau_2 / tau_1)**(tau_rise / tau_1) - (tau_2 / tau_1)**(tau_rise / tau_2)) ** -1
return B*(np.exp(-(t - t0) / tau_1) - np.exp(-(t - t0) / tau_2))
def alpha_m(v, vt):
return -0.32*(v - vt -13)/(np.exp(-1*(v-vt-13)/4)-1)
def beta_m(v, vt):
return 0.28 * (v - vt - 40) / (np.exp((v- vt - 40) / 5) - 1)
def alpha_h(v, vt):
return 0.128 * np.exp(-1 * (v - vt - 17) / 18)
def beta_h(v, vt):
return 4 / (np.exp(-1 * (v - vt - 40) / 5) + 1)
def alpha_n(v, vt):
return -0.032*(v - vt - 15)/(np.exp(-1*(v-vt-15)/5) - 1)
def beta_n(v, vt):
return 0.5* np.exp(-1*(v-vt-10)/40)
def event(t,X):
return X[0] + 20
event.terminal = False
event.direction = +1
def f(t, X):
V = X[0]
m = X[1]
h = X[2]
n = X[3]
last_inputspike = inputspike[inputspike.searchsorted(t, side='right') - 1 ]
last_t_event = -100 #Not sure what to put here
g_syn_in = synapse(t, last_inputspike)
g_syn_spike = synapse(t, last_t_event)
syn = 0.5 * g_syn_in * (V - 0) + 0.2 * g_syn_spike * (V + 70)
dVdt = - 50*m**3*h*(V-60) - 10*n**4*(V+100) - syn - 0.1*(V + 70)
dmdt = alpha_m(V, -45)*(1-m) - beta_m(V, -45)*m
dhdt = alpha_h(V, -45)*(1-h) - beta_h(V, -45)*h
dndt = alpha_n(V, -45)*(1-n) - beta_n(V, -45)*n
return [dVdt, dmdt, dhdt, dndt]
# Define the spike events:
nbr_spike = 20
beta = 100
first_spike_date = 500
np.random.seed(0)
inputspike = np.cumsum( np.random.exponential(beta, size=nbr_spike) ) + first_spike_date
inputspike = np.insert(inputspike, 0, -1e4) # set a very old spike at t=-1e4
# it is a hack in order to set a t0 for t<first_spike_date (model settle time)
# so that `synapse(t, t0)` can be called regardless of t
# synapse(t, -1e4) = 0 for t>0
# Solve:
t_start = 0.0
t_end = 2000
X_start = [-70, 0, 1,0]
sol = solve_ivp(f, [t_start, t_end], X_start, method='BDF', max_step=1, vectorized=True, events=event)
print(sol.message)
I want to detect when there is a spike (defined as V > 20), and have the timing of the spike affect the syn in the ODE via the changing g_syn_spike, in a similar way that the random input affects it.
In essence, I was wondering if it is possible and how I could go about accessing the last value of the sol.t_events at the given iteration of the solver?
I have been looking for a way to simulate discrete events in continuous systems of differential equations as well. Modeling such discontinuities is not trivial, and two (recent) packages out there that can help you coop with this are:
assimulo - https://pypi.org/project/Assimulo/
simupy - https://pypi.org/project/simpy/
(and not simpy, this is only for discrete systems)
I hope this helps, in case you found a different solution already I'd like to hear what that is as well

multithreaded mandelbrot set

Is it possible to change the formula of the mandelbrot set (which is f(z) = z^2 + c by default) to a different one ( f(z) = z^2 + c * e^(-z) is what i need) when using the escape time algorithm and if possible how?
I'm currently using this code by FB36
# Multi-threaded Mandelbrot Fractal (Do not run using IDLE!)
# FB - 201104306
import threading
from PIL import Image
w = 512 # image width
h = 512 # image height
image = Image.new("RGB", (w, h))
wh = w * h
maxIt = 256 # max number of iterations allowed
# drawing region (xa < xb & ya < yb)
xa = -2.0
xb = 1.0
ya = -1.5
yb = 1.5
xd = xb - xa
yd = yb - ya
numThr = 5 # number of threads to run
# lock = threading.Lock()
class ManFrThread(threading.Thread):
def __init__ (self, k):
self.k = k
threading.Thread.__init__(self)
def run(self):
# each thread only calculates its own share of pixels
for i in range(k, wh, numThr):
kx = i % w
ky = int(i / w)
a = xa + xd * kx / (w - 1.0)
b = ya + yd * ky / (h - 1.0)
x = a
y = b
for kc in range(maxIt):
x0 = x * x - y * y + a
y = 2.0 * x * y + b
x = x0
if x * x + y * y > 4:
# various color palettes can be created here
red = (kc % 8) * 32
green = (16 - kc % 16) * 16
blue = (kc % 16) * 16
# lock.acquire()
global image
image.putpixel((kx, ky), (red, green, blue))
# lock.release()
break
if __name__ == "__main__":
tArr = []
for k in range(numThr): # create all threads
tArr.append(ManFrThread(k))
for k in range(numThr): # start all threads
tArr[k].start()
for k in range(numThr): # wait until all threads finished
tArr[k].join()
image.save("MandelbrotFractal.png", "PNG")
From the code I infer that z = x + y * i and c = a + b * i. That corresponds f(z) - z ^2 + c. You want f(z) = z ^2 + c * e^(-z).
Recall that e^(-z) = e^-(x + yi) = e^(-x) * e^i(-y) = e^(-x)(cos(y) - i*sin(y)) = e^(-x)cos(y) - i (e^(-x)sin(y)). Thus you should update your lines to be the following:
x0 = x * x - y * y + a * exp(-x) * cos(y) + b * exp(-x) * sin(y);
y = 2.0 * x * y + a * exp(-x) * sin(y) - b * exp(-x) * cos(y)
x = x0
You might need to adjust maxIt if you don't get the level of feature differentiation you're after (it might take more or fewer iterations to escape now, on average) but this should be the mathematical expression you're after.
As pointed out in the comments, you might need to adjust the criterion itself and not just the maximum iterations in order to get the desired level of differentiation: changing the max doesn't help for ones that never escape.
You can try deriving a good escape condition or just try out some things and see what you get.

Chaotic billiards simulation

I came to ask for some help with maths and programming.
What am I trying to do? I'm trying to implement a simulation of a chaotic billiard system, following the algorithm in this excerpt.
How am I trying it? Using numpy and matplotlib, I implemented the following code
def boundaryFunction(parameter):
return 1 + 0.1 * np.cos(parameter)
def boundaryDerivative(parameter):
return -0.1 * np.sin(parameter)
def trajectoryFunction(parameter):
aux = np.sin(beta - phi) / np.sin(beta - parameter)
return boundaryFunction(phi) * aux
def difference(parameter):
return trajectoryFunction(parameter) - boundaryFunction(parameter)
def integrand(parameter):
rr = boundaryFunction(parameter)
dd = boundaryDerivative (parameter)
return np.sqrt(rr ** 2 + dd ** 2)
##### Main #####
length_vals = np.array([], dtype=np.float64)
alpha_vals = np.array([], dtype=np.float64)
# nof initial phi angles, alpha angles, and nof collisions for each.
n_phi, n_alpha, n_cols, count = 10, 10, 10, 0
# Length of the boundary
total_length, err = integrate.quad(integrand, 0, 2 * np.pi)
for phi in np.linspace(0, 2 * np.pi, n_phi):
for alpha in np.linspace(0, 2 * np.pi, n_alpha):
for n in np.arange(1, n_cols):
nu = np.arctan(boundaryFunction(phi) / boundaryDerivative(phi))
beta = np.pi + phi + alpha - nu
# Determines next impact coordinate.
bnds = (0, 2 * np.pi)
phi_new = optimize.minimize_scalar(difference, bounds=bnds, method='bounded').x
nu_new = np.arctan(boundaryFunction(phi_new) / boundaryDerivative(phi_new))
# Reflection angle with relation to tangent.
alpha_new = phi_new - phi + nu - nu_new - alpha
# Arc length for current phi value.
arc_length, err = integrate.quad(integrand, 0, phi_new)
# Append values to list
length_vals = np.append(length_vals, arc_length / total_length)
alpha_vals = np.append(alpha_vals, alpha)
count += 1
print "{}%" .format(100 * count / (n_phi * n_alpha))
What is the problem? When calculating phi_new, the equation has two solutions (assuming the boundary is convex, which is.) I must enforce that phi_new is the solution which is different from phi, but I don't know how to do that. Are there more issues with the code?
What should the output be? A phase space diagram of S x Alpha, looking like this.
Any help is very appreciated! Thanks in advance.
One way you could try would be (given there really are only two solutions) would be
epsilon = 1e-7 # tune this
delta = 1e-4 # tune this
# ...
bnds = (0, 2 * np.pi)
phi_new = optimize.minimize_scalar(difference, bounds=bnds, method='bounded').x
if abs(phi_new - phi) < epsilon:
bnds_1 = (0, phi - delta)
phi_new_1 = optimize.minimize_scalar(difference, bounds=bnds_1, method='bounded').x
bnds_2 = (phi + delta, 2 * np.pi)
phi_new_2 = optimize.minimize_scalar(difference, bounds=bnds_2, method='bounded').x
if difference(phi_new_1) < difference(phi_new_2):
phi_new = phi_new_1
else:
phi_new = phi_new_2
Alternatively, you could introduce a penalty-term, e.g. delta*exp(eps/(x-phi)^2) with appropriate choices of epsilon and delta.

Intersections between Geodesics (shortest distance paths) on the surface of a sphere

I've searched far and wide but have yet to find a suitable answer to this problem. Given two lines on a sphere, each defined by their start and end points, determine whether or not and where they intersect. I've found this site (http://mathforum.org/library/drmath/view/62205.html) which runs through a good algorithm for the intersections of two great circles, although I'm stuck on determining whether the given point lies along the finite section of the great circles.
I've found several sites which claim they've implemented this, Including some questions here and on stackexchange, but they always seem to reduce back to the intersections of two great circles.
The python class I'm writing is as follows and seems to almost work:
class Geodesic(Boundary):
def _SecondaryInitialization(self):
self.theta_1 = self.point1.theta
self.theta_2 = self.point2.theta
self.phi_1 = self.point1.phi
self.phi_2 = self.point2.phi
sines = math.sin(self.phi_1) * math.sin(self.phi_2)
cosines = math.cos(self.phi_1) * math.cos(self.phi_2)
self.d = math.acos(sines - cosines * math.cos(self.theta_2 - self.theta_1))
self.x_1 = math.cos(self.theta_1) * math.cos(self.phi_1)
self.x_2 = math.cos(self.theta_2) * math.cos(self.phi_2)
self.y_1 = math.sin(self.theta_1) * math.cos(self.phi_1)
self.y_2 = math.sin(self.theta_2) * math.cos(self.phi_2)
self.z_1 = math.sin(self.phi_1)
self.z_2 = math.sin(self.phi_2)
self.theta_wraps = (self.theta_2 - self.theta_1 > PI)
self.phi_wraps = ((self.phi_1 < self.GetParametrizedCoords(0.01).phi and
self.phi_2 < self.GetParametrizedCoords(0.99).phi) or (
self.phi_1 > self.GetParametrizedCoords(0.01).phi) and
self.phi_2 > self.GetParametrizedCoords(0.99))
def Intersects(self, boundary):
A = self.y_1 * self.z_2 - self.z_1 * self.y_2
B = self.z_1 * self.x_2 - self.x_1 * self.z_2
C = self.x_1 * self.y_2 - self.y_1 * self.x_2
D = boundary.y_1 * boundary.z_2 - boundary.z_1 * boundary.y_2
E = boundary.z_1 * boundary.x_2 - boundary.x_1 * boundary.z_2
F = boundary.x_1 * boundary.y_2 - boundary.y_1 * boundary.x_2
try:
z = 1 / math.sqrt(((B * F - C * E) ** 2 / (A * E - B * D) ** 2)
+ ((A * F - C * D) ** 2 / (B * D - A * E) ** 2) + 1)
except ZeroDivisionError:
return self._DealWithZeroZ(A, B, C, D, E, F, boundary)
x = ((B * F - C * E) / (A * E - B * D)) * z
y = ((A * F - C * D) / (B * D - A * E)) * z
theta = math.atan2(y, x)
phi = math.atan2(z, math.sqrt(x ** 2 + y ** 2))
if self._Contains(theta, phi):
return point.SPoint(theta, phi)
theta = (theta + 2* PI) % (2 * PI) - PI
phi = -phi
if self._Contains(theta, phi):
return spoint.SPoint(theta, phi)
return None
def _Contains(self, theta, phi):
contains_theta = False
contains_phi = False
if self.theta_wraps:
contains_theta = theta > self.theta_2 or theta < self.theta_1
else:
contains_theta = theta > self.theta_1 and theta < self.theta_2
phi_wrap_param = self._PhiWrapParam()
if phi_wrap_param <= 1.0 and phi_wrap_param >= 0.0:
extreme_phi = self.GetParametrizedCoords(phi_wrap_param).phi
if extreme_phi < self.phi_1:
contains_phi = (phi < max(self.phi_1, self.phi_2) and
phi > extreme_phi)
else:
contains_phi = (phi > min(self.phi_1, self.phi_2) and
phi < extreme_phi)
else:
contains_phi = (phi > min(self.phi_1, self.phi_2) and
phi < max(self.phi_1, self.phi_2))
return contains_phi and contains_theta
def _PhiWrapParam(self):
a = math.sin(self.d)
b = math.cos(self.d)
c = math.sin(self.phi_2) / math.sin(self.phi_1)
param = math.atan2(c - b, a) / self.d
return param
def _DealWithZeroZ(self, A, B, C, D, E, F, boundary):
if (A - D) is 0:
y = 0
x = 1
elif (E - B) is 0:
y = 1
x = 0
else:
y = 1 / math.sqrt(((E - B) / (A - D)) ** 2 + 1)
x = ((E - B) / (A - D)) * y
theta = (math.atan2(y, x) + PI) % (2 * PI) - PI
return point.SPoint(theta, 0)
def GetParametrizedCoords(self, param_value):
A = math.sin((1 - param_value) * self.d) / math.sin(self.d)
B = math.sin(param_value * self.d) / math.sin(self.d)
x = A * math.cos(self.phi_1) * math.cos(self.theta_1) + (
B * math.cos(self.phi_2) * math.cos(self.theta_2))
y = A * math.cos(self.phi_1) * math.sin(self.theta_1) + (
B * math.cos(self.phi_2) * math.sin(self.theta_2))
z = A * math.sin(self.phi_1) + B * math.sin(self.phi_2)
new_phi = math.atan2(z, math.sqrt(x**2 + y**2))
new_theta = math.atan2(y, x)
return point.SPoint(new_theta, new_phi)
EDIT: I forgot to specify that if two curves are determined to intersect, I then need to have the point of intersection.
A simpler approach is to express the problem in terms of geometric primitive operations like the dot product, the cross product, and the triple product. The sign of the determinant of u, v, and w tells you which side of the plane spanned by v and w contains u. This enables us to detect when two points are on opposite sites of a plane. That's equivalent to testing whether a great circle segment crosses another great circle. Performing this test twice tells us whether two great circle segments cross each other.
The implementation requires no trigonometric functions, no division, no comparisons with pi, and no special behavior around the poles!
class Vector:
def __init__(self, x, y, z):
self.x = x
self.y = y
self.z = z
def dot(v1, v2):
return v1.x * v2.x + v1.y * v2.y + v1.z * v2.z
def cross(v1, v2):
return Vector(v1.y * v2.z - v1.z * v2.y,
v1.z * v2.x - v1.x * v2.z,
v1.x * v2.y - v1.y * v2.x)
def det(v1, v2, v3):
return dot(v1, cross(v2, v3))
class Pair:
def __init__(self, v1, v2):
self.v1 = v1
self.v2 = v2
# Returns True if the great circle segment determined by s
# straddles the great circle determined by l
def straddles(s, l):
return det(s.v1, l.v1, l.v2) * det(s.v2, l.v1, l.v2) < 0
# Returns True if the great circle segments determined by a and b
# cross each other
def intersects(a, b):
return straddles(a, b) and straddles(b, a)
# Test. Note that we don't need to normalize the vectors.
print(intersects(Pair(Vector(1, 0, 1), Vector(-1, 0, 1)),
Pair(Vector(0, 1, 1), Vector(0, -1, 1))))
If you want to initialize unit vectors in terms of angles theta and phi, you can do that, but I recommend immediately converting to Cartesian (x, y, z) coordinates to perform all subsequent calculations.
Intersection using plane trig can be calculated using the below code in UBasic.
5 'interx.ub adapted from code at
6 'https://rosettacode.org
7 '/wiki/Find_the_intersection_of_two_linesSinclair_ZX81_BASIC
8 'In U Basic by yuji kida https://en.wikipedia.org/wiki/UBASIC
10 XA=48.7815144526:'669595.708
20 YA=-117.2847245001:'2495736.332
30 XB=48.7815093807:'669533.412
40 YB=-117.2901673467:'2494425.458
50 XC=48.7824947147:'669595.708
60 YC=-117.28751374:'2495736.332
70 XD=48.77996737:'669331.214
80 YD=-117.2922957:'2494260.804
90 print "THE TWO LINES ARE:"
100 print "YAB=";YA-XA*((YB-YA)/(XB-XA));"+X*";((YB-YA)/(XB-XA))
110 print "YCD=";YC-XC*((YD-YC)/(XD-XC));"+X*";((YD-YC)/(XD-XC))
120 X=((YC-XC*((YD-YC)/(XD-XC)))-(YA-XA*((YB-YA)/(XB-XA))))/(((YB-YA)/(XB-XA))-((YD-YC)/(XD-XC)))
130 print "Lat = ";X
140 Y=YA-XA*((YB-YA)/(XB-XA))+X*((YB-YA)/(XB-XA))
150 print "Lon = ";Y
160 'print "YCD=";YC-XC*((YD-YC)/(XD-XC))+X*((YD-YC)/(XD-XC))

Categories

Resources