Numba cuda: why the sum of the 1D array is not right? - python

I am practicing numba & cuda programming. I tried to sum with cuda an array of ones. The sum is not correct. I think that there must be something with synchronizing and collecting at the end the data correctly.
#cuda.jit
def my_kernel(const_array, res_array):
sbuf = cuda.shared.array(512, float32)
# Thread id in a 1D block
tx = cuda.threadIdx.x
# Block id in a 1D grid
ty = cuda.blockIdx.x
# Block width, i.e. number of threads per block
bw = cuda.blockDim.x
# Compute flattened index inside the array
pos = tx + ty * bw
sbuf[tx] = 0
if pos < const_array.shape[0]:
sbuf[tx] = const_array[pos] # do the computation
cuda.syncthreads()
if cuda.threadIdx.x == 0:
for i in range(bw):
res_array[0] += sbuf[i]
return
data_size = 10000000
res = numpy.zeros(1, dtype=numpy.float64)
const_array = numpy.ones(data_size, dtype=numpy.int8)
threadsperblock = 512
blockspergrid = math.ceil(data_size / threadsperblock)
my_kernel[blockspergrid, threadsperblock](const_array, res)
print(res)
Every time I run this code it retrieves different value , e.g. 28160.0, but of course it must be 10m.
And hint?

the problem seems to be that you are are not summing through the whole set of blocks. You have a vector dimension of 10000000 and 512 threads, which means you need to sum over all blocks the 19532 blocks. This is achieved in standard CUDA language by either launching multiple kernels ( mostly for older devices ) or by using atomic operations. Specifically, your problem is in this part of your code:
if pos < const_array.shape[0]:
sbuf[tx] = const_array[pos] # do the computation cuda.syncthreads()
if cuda.threadIdx.x == 0:
for i in range(bw):
res_array[0] += sbuf[i]
In the first two lines, you are copying the data from the global to the shared memory of array sbuf. But then, all threads in different blocks are simultaneously trying to add their local data into the global memory address at res_array, this is not sequential and different threads may just read the same data twice and give you wrong results. The solution is to first perform a partial sum in the shared memory, then perform an atomic sum to avoid asynchronous read-write operations
if cuda.threadIdx.x == 0:
sum = 0
for i in range(bw):
sum += sbuf[i]
cuda.atomic.add(res_array, 0, sum)
that should solve your problem.
Regards.

Firstly the summing logic doesn't make sense at all and is very inefficient. The problem is that you are trying to write to single memory location from different threads in different blocks and it results in a race condition. You should use cuda.atomic.add to avoid race condition. You can read more in CUDA programming guide : https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#atomic-functions

Related

Improve performance of combinations

Hey guys I have a script that compares each possible user and checks how similar their text is:
dictionary = {
t.id: (
t.text,
t.set,
t.compare_string
)
for t in dataframe.itertuples()
}
highly_similar = []
for a, b in itertools.combinations(dictionary.items(), 2):
if a[1][2] == b[1][2] and not a[1][1].isdisjoint(b[1][1]):
similarity_score = fuzz.ratio(a[1][0], b[1][0])
if (similarity_score >= 95 and len(a[1][0]) >= 10) or similarity_score == 100:
highly_similar.append([a[0], b[0], a[1][0], b[1][0], similarity_score])
This script takes around 15 minutes to run, the dataframe contains 120k users, so comparing each possible combination takes quite a bit of time, if I just write pass on the for loop it takes 2 minutes to loop through all values.
I tried using filter() and map() for the if statements and fuzzy score but the performance was worse. I tried improving the script as much as I could but I don't know how I can improve this further.
Would really appreciate some help!
It is slightly complicated to reason about the data since you have not attached it, but we can see multiple places that might provide an improvement:
First, let's rewrite the code in a way which is easier to reason about than using the indices:
dictionary = {
t.id: (
t.text,
t.set,
t.compare_string
)
for t in dataframe.itertuples()
}
highly_similar = []
for a, b in itertools.combinations(dictionary.items(), 2):
a_id, (a_text, a_set, a_compre_string) = a
b_id, (b_text, b_set, b_compre_string) = b
if (a_compre_string == b_compre_string
and not a_set.isdisjoint(b_set)):
similarity_score = fuzz.ratio(a_text, b_text)
if (similarity_score >= 95 and len(a_text) >= 10)
or similarity_score == 100):
highly_similar.append(
[a_id, b_id, a_text, b_text, similarity_score])
You seem to only care about pairs having the same compare_string values. Therefore, and assuming this is not something that all pairs share, we can key by whatever that value is to cover much less pairs.
To put some numbers into it, let's say you have 120K inputs, and 1K values for each value of val[1][2] - then instead of covering 120K * 120K = 14 * 10^9 combinations, you would have 120 bins of size 1K (where in each bin we'd need to check all pairs) = 120 * 1K * 1K = 120 * 10^6 which is about 1000 times faster. And it would be even faster if each bin has less than 1K elements.
import collections
# Create a dictionary from compare_string to all items
# with the same compare_string
items_by_compare_string = collections.defaultdict(list)
for item in dictionary.items():
compare_string = item[1][2]
items_by_compare_string[compare_string].append(items)
# Iterate over each group of items that have the same
# compare string
for item_group in items_by_compare_string.values():
# Check pairs only within that group
for a, b in itertools.combinations(item_group, 2):
# No need to compare the compare_strings!
if not a_set.isdisjoint(b_set):
similarity_score = fuzz.ratio(a_text, b_text)
if (similarity_score >= 95 and len(a_text) >= 10)
or similarity_score == 100):
highly_similar.append(
[a_id, b_id, a_text, b_text, similarity_score])
But, what if we want more speed? Let's look at the remaining operations:
We have a check to find if two sets share at least one item
This seems like an obvious candidate for optimization if we have any knowledge about these sets (to allow us to determine which pairs are even relevant to compare)
Without additional knowledge, and just looking at every two pairs and trying to speed this up, I doubt we can do much - this is probably highly optimized using internal details of Python sets, I don't think it's likely to optimize it further
We a fuzz.ratio computation which is some external function, and I'm going to assume is heavy
If you are using this from the FuzzyWuzzy package, make sure to install python-Levenshtein to get the speedups detailed here
We have some comparisons which we are unlikely to be able to speed up
We might be able to cache the length of a_text by nesting the two loops, but that's negligible
We have appends to a list, which runs on average ("amortized") constant time per operation, so we can't really speed that up
Therefore, I don't think we can reasonably suggest any more speedups without additional knowledge. If we know something about the sets that can help optimize which pairs are relevant we might be able to speed things up further, but I think this is about it.
EDIT: As pointed out in other answers, you can obviously run the code in multi-threading. I assumed you were looking for an algorithmic change that would possibly reduce the number of operations significantly, instead of just splitting these over more CPUs.
Essentially, from python programming side, i see two things that can improve your processing time:
Multi-threads and Vectorized operations
From the fuzzy score side, here is a list of tips you can use to improve your processing time (new anonymous tab to avoid paywall):
https://towardsdatascience.com/fuzzy-matching-at-scale-84f2bfd0c536
Using multi thread you can speed you operation up to N times, being N the number of threads in you CPU. You can check it with:
import multiprocessing
multiprocessing.cpu_count()
Using vectorized operations you can parallel process your operations in low level with SIMD (single instruction / multiple data) operations, or with gpu tensor operations (like those in tensorflow/pytorch).
Here is a small comparison of results for each case:
import numpy as np
import time
A = [np.random.rand(512) for i in range(2000)]
B = [np.random.rand(512) for i in range(2000)]
high_similarity = []
def measure(i,j,a,b,high_similarity):
d = ((a-b)**2).sum()
if d>12:
high_similarity.append((i,j,d))
start_single_thread = time.time()
for i in range(len(A)):
for j in range(len(B)):
if i<j:
measure(i,j,A[i],B[j],high_similarity)
finis_single_thread = time.time()
print("single thread time:",finis_single_thread-start_single_thread)
out[0] single thread time: 147.64517450332642
running on multi thread:
from threading import Thread
high_similarity = []
def measure(a = None,b= None,high_similarity = None):
d = ((a-b)**2).sum()
if d > 12:
high_similarity.append(d)
start_multi_thread = time.time()
for i in range(len(A)):
for j in range(len(B)):
if i<j:
thread = Thread(target=measure,kwargs= {'a':A[i],'b':B[j],'high_similarity':high_similarity} )
thread.start()
thread.join()
finish_multi_thread = time.time()
print("time to run on multi threads:",finish_multi_thread - start_multi_thread)
out[1] time to run on multi-threads: 11.946279764175415
A_array = np.array(A)
B_array = np.array(B)
start_vectorized = time.time()
for i in range(len(A_array)):
#vectorized distance operation
dists = (A_array-B_array)**2
high_similarity+= dists[dists>12].tolist()
aux = B_array[-1]
np.delete(B_array,-1)
np.insert(B_array, 0, aux)
finish_vectorized = time.time()
print("time to run vectorized operations:",finish_vectorized-start_vectorized)
out[2] time to run vectorized operations: 2.302949905395508
Note that you can't guarantee any order of execution, so will you also need to store the index of results. The snippet of code is just to illustrate that you can use parallel process, but i highly recommend to use a pool of threads and divide your dataset in N subsets for each worker and join the final result (instead of create a thread for each function call like i did).

Python for loop: Proper implementation of multiprocessing

The following for loop is part of a iterative simulation process and is the main bottleneck regarding computational time:
import numpy as np
class Simulation(object):
def __init__(self,n_int):
self.n_int = n_int
def loop(self):
for itr in range(self.n_int):
#some preceeding code which updates rows_list and diff with every itr
cols_red_list = []
rows_list = list(range(2500)) #row idx for diff where negative element is known to appear
diff = np.random.uniform(-1.323, 3.780, (2500, 300)) #np.random.uniform is just used as toy example
for row in rows_list:
col = next(idx for idx, val in enumerate(diff[row,:]) if val < 0)
cols_red_list.append(col)
# some subsequent code which uses the cols_red_list data
sim1 = Simulation(n_int=10)
sim1.loop()
Hence, I tried to parallelize it by using the multiprocessing package in hope to reduce computation time:
import numpy as np
from multiprocessing import Pool, cpu_count
from functools import partial
def crossings(row, diff):
return next(idx for idx, val in enumerate(diff[row,:]) if val < 0)
class Simulation(object):
def __init__(self,n_int):
self.n_int = n_int
def loop(self):
for itr in range(self.n_int):
#some preceeding code which updates rows_list and diff with every
rows_list = list(range(2500))
diff = np.random.uniform(-1, 1, (2500, 300))
if __name__ == '__main__':
num_of_workers = cpu_count()
print('number of CPUs : ', num_of_workers)
pool = Pool(num_of_workers)
cols_red_list = pool.map(partial(crossings,diff = diff), rows_list)
pool.close()
print(len(cols_red_list))
# some subsequent code which uses the cols_red_list data
sim1 = Simulation(n_int=10)
sim1.loop()
Unfortunately, the parallelization turns out to be much slower compared to the sequential piece of code.
Hence my question: Did I use the multiprocessing package properly in that particular example? Are there alternative ways to parallelize the above mentioned for loop ?
Disclaimer: As you're trying to reduce the runtime of your code through parallelisation, this doesn't strictly answer your question but it might still be a good learning opportunity.
As a golden rule, before moving to multiprocessing to improve
performance (execution time), one should first optimise the
single-threaded case.
Your
rows_list = list(range(2500))
Generates the numbers 0 to 2499 (that's the range) and stores them in memory (list), which requires time to do the allocation of the required memory and the actual write. You then only use these predictable values once each, by reading them from memory (which also takes time), in a predictable order:
for row in rows_list:
This is particularly relevant to the runtime of your loop function as you do it repeatedly (for itr in range(n_int):).
Instead, consider generating the number only when you need it, without an intermediate store (which conceptually removes any need to access RAM):
for row in range(2500):
Secondly, on top of sharing the same issue (unnecessary accesses to memory), the following:
diff = np.random.uniform(-1, 1, (2500, 300))
# ...
col = next(idx for idx, val in enumerate(diff[row,:]) if val < 0)
seems to me to be optimisable at the level of math (or logic).
What you're trying to do is get a random variable (that col index) by defining it as "the first time I encounter a random variable in [-1;1] that is lower than 0". But notice that figuring out if a random variable with a uniform distribution over [-α;α] is negative, is the same as having a random variable over {0,1} (i.e. a bool).
Therefore, you're now working with bools instead of floats and you don't even have to do the comparison (val < 0) as you already have a bool. This potentially makes the code much faster. Using the same idea as for rows_list, you can generate that bool only when you need it; testing it until it is True (or False, choose one, it doesn't matter obviously). By doing so, you only generate as many random bools as you need, not more and not less (BTW, what happens in your code if all 300 elements in the row are negative? ;) ):
for _ in range(n_int):
cols_red_list = []
for row in range(2500):
col = next(i for i in itertools.count() if random.getrandbits(1))
cols_red_list.append(col)
or, with list comprehension:
cols_red_list = [next(i for i in count() if getrandbits(1))
for _ in range(2500)]
I'm sure that, through proper statistical analysis, you even can express that col random variable as a non-uniform variable over [0;limit[, allowing you to compute it much faster.
Please test the performance of an "optimized" version of your single-threaded implementation first. If the runtime is still not acceptable, you should then look into multithreading.
multiprocessing uses system processes (not threads!) for parallelization, which require expensive IPC (inter-process communication) to share data.
This bites you in two spots:
diff = np.random.uniform(-1, 1, (2500, 300)) creates a large matrix which is expensive to pickle/copy to another process
rows_list = list(range(2500)) creates a smaller list, but the same applies here.
To avoid this expensive IPC, you have one and a half choices:
If on a POSIX-compliant system, initialize your variables on the module level, that way each process gets a quick-and-dirty copy of the required data. This is not scalable as it requires POSIX, weird architecture (you probably don't want to put everything on the module level), and doesn't support sharing changes to that data.
Use shared memory. This only supports mostly primitive data types, but mp.Array should cover your needs.
The second problem is that setting up a pool is expensive, as num_cpu processes need to be started. Your workload is small enough to be negligible compared to this overhead. A good practice is to only create one pool and reuse it.
Here is a quick-and-dirty example of the POSIX only solution:
import numpy as np
from multiprocessing import Pool, cpu_count
from functools import partial
n_int = 10
rows_list = np.array(range(2500))
diff = np.random.uniform(-1, 1, (2500, 300))
def crossings(row, diff):
return next(idx for idx, val in enumerate(diff[row,:]) if val < 0)
def workload(_):
cols_red_list = [crossings(row, diff) for row in rows_list]
print(len(cols_red_list))
class Simulation(object):
def loop(self):
num_of_workers = cpu_count()
with Pool(num_of_workers) as pool:
pool.map(workload, range(10))
pool.close()
sim1 = Simulation()
sim1.loop()
For me (and my two cores) this is roughly twice as fast as the sequential version.
Update with shared memory:
import numpy as np
from multiprocessing import Pool, cpu_count, Array
from functools import partial
n_int = 10
ROW_COUNT = 2500
### WORKER
diff = None
result = None
def init_worker(*args):
global diff, result
(diff, result) = args
def crossings(i):
result[i] = next(idx for idx, val in enumerate(diff[i*300:(i+1)*300]) if val < 0)
### MAIN
class Simulation():
def loop(self):
num_of_workers = cpu_count()
diff = Array('d', range(ROW_COUNT*300), lock=False)
result = Array('i', ROW_COUNT, lock=False)
# Shared memory needs to be passed when workers are spawned
pool = Pool(num_of_workers, initializer=init_worker, initargs=(diff, result))
for i in range(n_int):
# SLOW, I assume you use a different source of values anyway.
diff[:] = np.random.uniform(-1, 1, ROW_COUNT*300)
pool.map(partial(crossings), range(ROW_COUNT))
print(len(result))
pool.close()
sim1 = Simulation()
sim1.loop()
A few notes:
Shared memory needs to be set up at worker creation, so it's global anyway.
This still isn't faster than the sequential version, but that's mainly due to random.uniform needing to be copied entirely into shared memory. I assume that are just values for testing, and in reality you'd fill it differently anyway.
I only pass indices to the worker, and use them to read and write values to the shared memory.

High Memory Usage when python multiprocessing run in Windows

The code down below is a contrived example that simulates an actual problem I have that uses multiprocessing to speed up the code. The code is run on Windows 10 64-bit OS, python 3.7.5, and ipython 7.9.0
the transformation functions(these functions will be used to transform arrays in main())
from itertools import product
from functools import partial
from numba import njit, prange
import multiprocessing as mp
import numpy as np
#njit(parallel= True)
def transform_array_c(data, n):
ar_len= len(data)
sec_max1= np.empty(ar_len, dtype = data.dtype)
sec_max2= np.empty(ar_len, dtype = data.dtype)
for i in prange(n-1):
sec_max1[i]= np.nan
for sec in prange(ar_len//n):
s2_max= data[n*sec+ n-1]
s1_max= data[n*sec+ n]
for i in range(n-1,-1,-1):
if data[n*sec+i] > s2_max:
s2_max= data[n*sec+i]
sec_max2[n*sec+i]= s2_max
sec_max1[n*sec+ n-1]= sec_max2[n*sec]
for i in range(n-1):
if n*sec+n+i < ar_len:
if data[n*sec+n+i] > s1_max:
s1_max= data[n*sec+n+i]
sec_max1[n*sec+n+i]= max(s1_max, sec_max2[n*sec+i+1])
else:
break
return sec_max1
#njit(error_model= 'numpy', cache= True)
def rt_mean_sq_dev(array1, array2, n):
msd_temp = np.empty(array1.shape[0])
K = array2[n-1]
rs_x= array1[0] - K
rs_xsq = rs_x *rs_x
msd_temp[0] = np.nan
for i in range(1,n):
rs_x += array1[i] - K
rs_xsq += np.square(array1[i] - K)
msd_temp[i] = np.nan
y_i = array2[n-1] - K
msd_temp[n-1] = np.sqrt(max(y_i*y_i + (rs_xsq - 2*y_i*rs_x)/n, 0))
for i in range(n, array1.shape[0]):
rs_x = array1[i] - array1[i-n]+ rs_x
rs_xsq = np.square(array1[i] - K) - np.square(array1[i-n] - K) + rs_xsq
y_i = array2[i] - K
msd_temp[i] = np.sqrt(max(y_i*y_i + (rs_xsq - 2*y_i*rs_x)/n, 0))
return msd_temp
#njit(cache= True)
def transform_array_a(data, n):
result = np.empty(data.shape[0], dtype= data.dtype)
alpharev = 1. - 2 / (n + 1)
alpharev_exp = alpharev
e = data[0]
w = 1.
if n == 2: result[0] = e
else:result[0] = np.nan
for i in range(1, data.shape[0]):
w += alpharev_exp
e = e*alpharev + data[i]
if i > n -3:result[i] = e / w
else:result[i] = np.nan
if alpharev_exp > 3e-307:alpharev_exp*= alpharev
else:alpharev_exp=0.
return result
The multiprocessing part
def func(tup, data): #<-------------the function to be run among all
a_temp= a[tup[2][0]]
idx1 = a_temp > a[tup[2][1]]
idx2= a_temp < b[(tup[2][1], tup[1][1])]
c_final = c[tup[0][1]][idx1 | idx2]
data_final= data[idx1 | idx2]
return (tup[0][0], tup[1][0], *tup[2]), c_final[-1] - data_final[-1]
def setup(a_dict, b_dict, c_dict): #initialize the shared dictionaries
global a,b,c
a,b,c = a_dict, b_dict, c_dict
def main(a_arr, b_arr, c_arr, common_len):
np.random.seed(0)
data_array= np.random.normal(loc= 24004, scale=500, size= common_len)
a_size = a_arr[-1] + 1
b_size = len(b_arr)
c_size = len(c_arr)
loop_combo = product(enumerate(c_arr),
enumerate(b_arr),
(n_tup for n_tup in product(np.arange(1,a_arr[-1]), a_arr) if n_tup[1] > n_tup[0])
)
result = np.zeros((c_size, b_size, a_size -1 ,a_size), dtype = np.float32)
###################################################
#This part simulates the heavy-computation in the actual problem
a= {}
b= {}
c= {}
for i in range(1, a_arr[-1]+1):
a[i]= transform_array_a(data_array, i)
if i in a_arr:
for j in b_arr:
b[(i,j)]= rt_mean_sq_dev(data_array, a[i], i)/data_array *j
for i in c_arr:
c[i]= transform_array_c(data_array, i)
###################################################
with mp.Pool(processes= mp.cpu_count() - 1,
initializer= setup,
initargs= [a,b,c]
) as pool:
mp_res= pool.imap_unordered(partial(func, data= data_array),
loop_combo
)
for item in mp_res:
result[item[0]] =item[1]
return result
if __name__ == '__main__':
mp.freeze_support()
a_arr= np.arange(2,44,2)
b_arr= np.arange(0.4,0.8, 0.20)
c_arr= np.arange(2,42,10)
common_len= 440000
final_res= main(a_arr, b_arr, c_arr, common_len)
For performance reasons, multiple shared "read only" dictionaries are used among all processes to reduce the redundant computations(in the actual problem, the total computation time is reduced by 40% after using shared dictionaries among all the processes). However, The ram usage becomes absurdly higher after using shared dictionaries in my actual problem; memory usage in my 6C/12T Windows computer goes from (8.2GB peak, 5.0GB idle) to (23.9GB peak, 5.0GB idle), a little too high of a cost to pay in order to gain 40% speed up.
Is the high ram usage unavoidable when using multiple shared data among processes is a must? What can be done to my code in order to make it as fast as possible while using as low memory as possible?
Thank you in advance
Note: I tried using imap_unordered() instead of map because I heard it is supposed to reduce the memory usage when the input iterable is large, but I honestly can't see an improvement in the ram usage. Maybe I have done something wrong here?
EDIT: Due to the feedback in the answers, I have already changed the heavy computation part of the code such that it looks less dummy and resembles the computation in the actual problem.
High Memory Usage when manipulating shared dictionaries in python multiprocessing run in Windows
It is fair to demystify a bit the problem, before we move into details - there are no shared dictionaries in the original code, the less they get manipulated ( yes, each of the a,b,c did get "assigned" to a reference to the dict_a, dict_b, dict_c yet none of them is shared, but just get replicated as the multiprocessing does in Windows-class O/S-es. No writes "into" dict-s ( just non-destructive reads-from either of their replicas )
Similarly, the np.memmap()-s are possible to put some part of the originally proposed data onto disk-space ( at a cost of doing so + bearing some ( latency-masked ) random-reads latency of ~ 10 [ms] instead of ~ 0.5 [ns] if smart-aligned vectorised memory-patterns were designed into the performance hot-spot ) yet no dramatic change-of-paradigm ought be expected here, as the "external iterator" almost avoids any smart-aligned cache re-uses
Q : What can be done to my code in order to make it as fast as possible while using as low memory as possible?
The first sin was in using an 8B-int64 to store one plain Bbit ( no Qbits here yet ~ All salutes to Burnaby Quantum R&D Teams )
for i in c_arr: # ~~ np.arange( 2, 42, 10 )
np.random.seed( i ) # ~ yields a deterministic state
c[i] = np.random.poisson( size = common_len ) # ~ 440.000 int64-s with {0|1}
This took 6 (processes) x 440000 x 8B ~ 0.021 GB "smuggled" in all copies of dictionary c, whereas each and every such value is deterministically known and could be generated ALAP inside a respective target process, by just knowing the value of i ( indeed no need to pre-generate and many-times replicate ~ 0.021 GB of data )
So far, the Windows-class O/S lack an os.fork() and thus do a python full-copy ( yes, RAM ..., yes, TIME ) of as many replicated python-interpreter sessions ( plus importing the main module ) as was requested, in multiprocessing for process-based separation ( doing that for avoiding a GIL-lock ordered, pure-[SERIAL], code execution )
The Best Next Step:re-factor the codefor both efficiency and performance
The best next step - refactor the code, so as to minimise a "shallow" ( and expensive ) use of the 6-processes but "externally"-commanded by a central iterator ( the loop_combo "dictator" with ~ 18522 items to repeat the call to a "remotely-dispatched" func( tup, data ) so as to fetch a simple "DMA-tuple"-( (x,y,z), value ) to store one value into a central process result-float32-array ).
Try to increase the computing "density" - so try to re-factor the code by a divide-and-conquer manner ( i.e., that each of the mp.pool-processes computes in one smooth block some remarkably sized, dedicated sub-space of the parameter-space covered ( here iteratively "from ouside" ) and may easily reduce the returned blocks of results. Performance will only improve by doing this ( best without any form of expensive sharing ).
This re-factoring will avoid parameter pickle/unpickle-costs ( add-on overheads - both the one-time ( in passing the unique parameter-set values ) and the repetitive ( in about a ~ 18522-times executed repetitive memory-allocation, buildup and pickle/unpickle-costs of an np.arange( 440000 ) due to a poor call-signature design / engineering )
All these steps will improve your processing efficiency and reduce the there unnecessary RAM-allocations.

"Processes" or "Threads" strategy to fill independant blocks into global array?

In python2, I would like to fill a global array by filling with parallel processes (or threads) different sub-arrays (there is a total 16 blocks). I must precise that each block doesn't depend of the others, I mean when I perfom the assignement of each cells of the current block.
1) From what I have found, I would have a great benefit from a CPU multi-cores by using different "processes" but it seems a little bit complicated to share the global array by all others processes.
2) From another point of view, I can use "threads" instead of "processes" since the implementation is less hard. I have found out the libray "ThreadPool" from "multiprocessing.dummy" allows to share this global array by all others concurrent threads.
For example, with python2.7, the following code works :
from multiprocessing.dummy import Pool as ThreadPool
## discretization along x-axis and y-axis for each block
arrayCross_k = np.linspace(kMIN, kMAX, dimPoints)
arrayCross_mu = np.linspace(-1, 1, dimPoints)
# Build all big matrix with N total blocks = dimBlock*dimBlock = 16 here
arrayFullCross = np.zeros((dimBlocks, dimBlocks, arrayCross_k.size, arrayCross_mu.size))
dimBlocks = 4
# Size of dimension along k and mu axis
dimPoints = 100
# dimension along one dimension of global arrayFullCross
dimMatCovCross = dimBlocks*dimPoints
# Build cross-correlation matrix
def buildCrossMatrix_loop(params_array):
# rows indices
xb = params_array[0]
# columns indices
yb = params_array[1]
# Current redshift
z = zrange[params_array[2]]
# Loop inside block
for ub in range(dimPoints):
for vb in range(dimPoints):
# Diagonal blocs
if (xb == yb):
# Fill the (xb,yb) su-block of global array by
arrayFullCross[xb][xb][ub][vb] = 2*P_obs_cross(arrayCross_k[ub], arrayCross_mu[vb] , z, 10**P_m(np.log10(arrayCross_k[ub])),
...
...
# End of function buildCrossMatrix_loop
# Main loop
while i < len(zrange):
def generatorCrossMatrix(index):
for igen in range(dimBlocks):
for lgen in range(dimBlocks):
yield igen, lgen, index
if __name__ == '__main__':
# Use 20 threads
pool = ThreadPool(20)
pool.map(buildCrossMatrix_loop, generatorCrossMatrix(i))
# Increment index "i"
i = i+1
But unfortunately, even by using 20 threads, I realize that the cores of my CPU are not fully running (actually, with 'top' or 'htop' command, I only see a single process at 100%).
3) What is the strategy that I have to chose if I want to full exploit the 16 cores of my CPU (like this is the case with pool.map(function, generator)) but with also the sharing of global array ?
4) some people told me to do I/O for each sub-array (basically, write each block in a file and gather all sub-arrays by reading them and get the full array filled). This solution is handy but I would like to avoid I/O (unless there is really not other solutions).
5) I have practised MPI library with C language and the operation of filling sub-array and finally gather them to build a big array, is not very complicated. However, I wouldn't like to use MPI with Python language (I don't know even if it exists).
6) I tried also to use Process with target equal to my filling function (buildCrossMatrix_loop) like this into while Main loop above :
from multiprocessing import Process
# Main loop on z range
while i < len(zrange):
params_p = []
for ip in range(4):
for jp in range(4):
params_p.append(ip)
params_p.append(jp)
params_p.append(i)
p = Process(target=buildCrossMatrix_loop, args=(params_p,))
params_p = []
p.start()
# Finished : wait everybody
p.join()
...
...
i = i+1
# End of main while loop
But the final 2D global array is filled only of zeros. So I must deduce that Process function doesn't share the array to fill ?
7) So which strategy I have to look for ? :
1. The using of "pool processes" and find a way to share the global array knowing all my 16-cores will be running
2. The using of "Threads" and share the global array but performances, at first sight, seems to be less good than with "pool processes". Maybe there is a way to increase the power of each "Threads", I mean like with "pool processes" ?
I tried to follow the different examples on https://docs.python.org/2/library/multiprocessing.html but without success, this is to say, without relevant performances from a speed-up point of view.
I think that in my case, the major issue is the gathering of all sub-arrays OR the fact that the global array arrayFullCross is not shared by other processes or threads.
If someone had a simple example of the sharing of global variable in a multi-threading context (here an array), this would nice to put it here.
UPDATE 1: I made test with the Threading (and not multiprocessing) but performances remain rather bad. GIL is not apparently unlocked, i.e only one process appears in htop command (maybe the version of Threading library is not the right one).
So I am going to try to handle my issue with using the "return" method.
Naively, I tried to return the whole array at the end of the function on which I apply the map function, like this :
# Build cross-correlation matrix
def buildCrossMatrix_loop(params_array):
# rows indices
xb = params_array[0]
# columns indices
yb = params_array[1]
# Current redshift
z = zrange[params_array[2]]
# Loop inside block
for ub in range(dimPoints):
for vb in range(dimPoints):
# Diagonal blocs
if (xb == yb):
arrayFullCross[xb][xb][ub][vb] = 2*P_obs_cross(arrayCross_k[ub], arrayCross_mu[vb])
...
... #others assignments on arrayFullCross elements
# Return global array to main process
return arrayFullCross
Then, I tried to receive this global array from map like this :
if __name__ == '__main__':
pool = Pool(16)
outputArray = pool.map(buildCrossMatrix_loop, generatorCrossMatrix(i))
pool.terminate()
## Print outputArray
print 'outputArray = ', outputArray
## Reshape 4D outputArray to 2D array
arrayFullCross2D_swap = np.array(outputArray).swapaxes(1,2).reshape(dimMatCovCross,dimMatCovCross)
Unfortunately, when I print the outputArray, I get :
outputArray = [None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None]
This is not the 4D outputArray expected, just a list of 16 None (I think that number of 16 correspond to the number of processes provided by generatorCrossMatrix(i)).
How could I get back the whole 4D array once map is launched and when it has finished ?
First of all I believe multiprocessing.ThreadPool is a private API so you should avoid it. Now multiprocessing.dummy is a useless module. It does not do any multithreading/processing that's why you don't see any benefit. You should use the "plain" multiprocessing module.
The second code does not work because it is using multiple processes. Processes do not share memory, so the changes you do in a subprocess are not reflected in the other subprocesses or the main process. You either want to:
Return the value and combine them together in the main process, for example using multiprocessing.Pool.map
Use threading instead of multiprocessing: just replaceimport multiprocessingwithimport threadingandmultiprocessing.Processwiththreading.Thread` and the code should work.
Note that the threading version will work only because numpy releases the GIL during computations, otherwise it would be stuck at 1 CPU.
You may want to look at this similar question which I answered a couple of minutes ago.

How do I vectorize the following loop in Numpy?

"""Some simulations to predict the future portfolio value based on past distribution. x is
a numpy array that contains past returns.The interpolated_returns are the returns
generated from the cdf of the past returns to simulate future returns. The portfolio
starts with a value of 100. portfolio_value is filled up progressively as
the program goes through every loop. The value is multiplied by the returns in that
period and a dollar is removed."""
portfolio_final = []
for i in range(10000):
portfolio_value = [100]
rand_values = np.random.rand(600)
interpolated_returns = np.interp(rand_values,cdf_values,x)
interpolated_returns = np.add(interpolated_returns,1)
for j in range(1,len(interpolated_returns)+1):
portfolio_value.append(interpolated_returns[j-1]*portfolio_value[j-1])
portfolio_value[j] = portfolio_value[j]-1
portfolio_final.append(portfolio_value[-1])
print (np.mean(portfolio_final))
I couldn't find a way to write this code using numpy. I was having a look at iterations using nditer but I was unable to move ahead with that.
I guess the easiest way to figure out how you can vectorize your stuff would be to look at the equations that govern your evolution and see how your portfolio actually iterates, finding patterns that could be vectorized instead of trying to vectorize the code you already have. You would have noticed that the cumprod actually appears quite often in your iterations.
Nevertheless you can find the semi-vectorized code below. I included your code as well such that you can compare the results. I also included a simple loop version of your code which is much easier to read and translatable into mathematical equations. So if you share this code with somebody else I would definitely use the simple loop option. If you want some fancy-pants vectorizing you can use the vector version. In case you need to keep track of your single steps you can also add an array to the simple loop option and append the pv at every step.
Hope that helps.
Edit: I have not tested anything for speed. That's something you can easily do yourself with timeit.
import numpy as np
from scipy.special import erf
# Prepare simple return model - Normal distributed with mu &sigma = 0.01
x = np.linspace(-10,10,100)
cdf_values = 0.5*(1+erf((x-0.01)/(0.01*np.sqrt(2))))
# Prepare setup such that every code snippet uses the same number of steps
# and the same random numbers
nSteps = 600
nIterations = 1
rnd = np.random.rand(nSteps)
# Your code - Gives the (supposedly) correct results
portfolio_final = []
for i in range(nIterations):
portfolio_value = [100]
rand_values = rnd
interpolated_returns = np.interp(rand_values,cdf_values,x)
interpolated_returns = np.add(interpolated_returns,1)
for j in range(1,len(interpolated_returns)+1):
portfolio_value.append(interpolated_returns[j-1]*portfolio_value[j-1])
portfolio_value[j] = portfolio_value[j]-1
portfolio_final.append(portfolio_value[-1])
print (np.mean(portfolio_final))
# Using vectors
portfolio_final = []
for i in range(nIterations):
portfolio_values = np.ones(nSteps)*100.0
rcp = np.cumprod(np.interp(rnd,cdf_values,x) + 1)
portfolio_values = rcp * (portfolio_values - np.cumsum(1.0/rcp))
portfolio_final.append(portfolio_values[-1])
print (np.mean(portfolio_final))
# Simple loop
portfolio_final = []
for i in range(nIterations):
pv = 100
rets = np.interp(rnd,cdf_values,x) + 1
for i in range(nSteps):
pv = pv * rets[i] - 1
portfolio_final.append(pv)
print (np.mean(portfolio_final))
Forget about np.nditer. It does not improve the speed of iterations. Only use if you intend to go one and use the C version (via cython).
I'm puzzled about that inner loop. What is it supposed to be doing special? Why the loop?
In tests with simulated values these 2 blocks of code produce the same thing:
interpolated_returns = np.add(interpolated_returns,1)
for j in range(1,len(interpolated_returns)+1):
portfolio_value.append(interpolated_returns[j-1]*portfolio[j-1])
portfolio_value[j] = portfolio_value[j]-1
interpolated_returns = (interpolated_returns+1)*portfolio - 1
portfolio_value = portfolio_value + interpolated_returns.tolist()
I assuming that interpolated_returns and portfolio are 1d arrays of the same length.

Categories

Resources