Related
'''
I am trying to generate points in a circle that should be uniformly distributed but I get a weird pattern. If I increase the radius R to a very large value, the distribution appears normal but with smaller R values it generates spirals. Any suggestions to improve the code?
'''
from numpy.random import uniform
#from scipy.stats import uniform
import matplotlib.pyplot as plt
import numpy as np
import math
R = 5
# Generate uniformly distributed random numbers.
rand_num = []
for i in range(30000):
rand_num.append(np.random.uniform(0,1))
# Use these generated numbers to obtain the CDF of the radius which is the true radius i.e. r = R*sqrt(random()).
radius = []
for n,data in enumerate(rand_num):
radius.append(R*math.sqrt(data))
# Generate the angle using the same uniformly distributed random numbers.
theta2 = []
for n, k in enumerate(radius):
theta2.append(2*math.pi*radius[n])
# Calculate the corresponding x-coordinate.
x = []
for j,v in enumerate(radius):
x.append(radius[j]*math.cos(theta2[j]))
x = np.array(x)
# Calculate the correspoding y-coordinate.
y = []
for j,v in enumerate(radius):
y.append(radius[j]*math.sin(theta2[j]))
y = np.array(y)
# Finally plot the coordinates.
plt.figure(figsize=(10,10))
plt.scatter(x, y, marker='o')
Yes, the code should give you a spiral since both theta and radius are proportional to rand_num. Instead, you should generate theta and radius independently. Also, use numpy's vectorized operators instead of math's
R = 5
num_points = 10000
np.random.seed(1)
theta = np.random.uniform(0,2*np.pi, num_points)
radius = np.random.uniform(0,R, num_points) ** 0.5
x = radius * np.cos(theta)
y = radius * np.sin(theta)
# visualize the points:
plt.scatter(x,y, s=1)
Output:
Let's say I have a blank canvas with 2 red points in it.
Is there an algorithm to randomly add a point in the canvas but in a way where it's more bias to the red points with a supplied radius?
Here's a crude image as an example:
Even though this question is for Python it really applies for any language.
Sure. Select first point or second point randomly, then generate some distribution with single scale parameter in polar coordinates, then shift by
center point position. Select some reasonable radial distribution (gaussian in the code below, exponential or Cauchy might work as well)
import math
import random
import matplotlib.pyplot as plt
def select_point():
p = random.random()
if p < 0.5:
return 0
return 1
def sample_point(R):
"""
Sample point inpolar coordinates
"""
phi = 2.0 * math.pi * random.random() # angle
r = R * random.gauss(0.0, 1.0) # might try different radial distribution, R*random.expovariate(1.0)
return (r * math.cos(phi), r * math.sin(phi))
def sample(R, points):
idx = select_point()
x, y = sample_point(R)
return (x + points[idx][0], y + points[idx][1])
R = 1.0
points = [(7.1, 3.3), (4.8, -1.4)]
random.seed(12345)
xx = []
yy = []
cc = []
xx.append(points[0][0])
xx.append(points[1][0])
yy.append(points[0][1])
yy.append(points[1][1])
cc.append(0.8)
cc.append(0.8)
for k in range(0, 50):
x, y = sample(R, points)
xx.append(x)
yy.append(y)
cc.append(0.3)
plt.scatter(xx, yy, c=cc)
plt.show()
Picture
I'm currently working on a pygame game and I need to place objects randomly on the screen, except they cannot be within a designated rectangle. Is there an easy way to do this rather than continuously generating a random pair of coordinates until it's outside of the rectangle?
Here's a rough example of what the screen and the rectangle look like.
______________
| __ |
| |__| |
| |
| |
|______________|
Where the screen size is 1000x800 and the rectangle is [x: 500, y: 250, width: 100, height: 75]
A more code oriented way of looking at it would be
x = random_int
0 <= x <= 1000
and
500 > x or 600 < x
y = random_int
0 <= y <= 800
and
250 > y or 325 < y
Partition the box into a set of sub-boxes.
Among the valid sub-boxes, choose which one to place your point in with probability proportional to their areas
Pick a random point uniformly at random from within the chosen sub-box.
This will generate samples from the uniform probability distribution on the valid region, based on the chain rule of conditional probability.
This offers an O(1) approach in terms of both time and memory.
Rationale
The accepted answer along with some other answers seem to hinge on the necessity to generate lists of all possible coordinates, or recalculate until there is an acceptable solution. Both approaches take more time and memory than necessary.
Note that depending on the requirements for uniformity of coordinate generation, there are different solutions as is shown below.
First attempt
My approach is to randomly choose only valid coordinates around the designated box (think left/right, top/bottom), then select at random which side to choose:
import random
# set bounding boxes
maxx=1000
maxy=800
blocked_box = [(500, 250), (100, 75)]
# generate left/right, top/bottom and choose as you like
def gen_rand_limit(p1, dim):
x1, y1 = p1
w, h = dim
x2, y2 = x1 + w, y1 + h
left = random.randrange(0, x1)
right = random.randrange(x2+1, maxx-1)
top = random.randrange(0, y1)
bottom = random.randrange(y2, maxy-1)
return random.choice([left, right]), random.choice([top, bottom])
# check boundary conditions are met
def check(x, y, p1, dim):
x1, y1 = p1
w, h = dim
x2, y2 = x1 + w, y1 + h
assert 0 <= x <= maxx, "0 <= x(%s) <= maxx(%s)" % (x, maxx)
assert x1 > x or x2 < x, "x1(%s) > x(%s) or x2(%s) < x(%s)" % (x1, x, x2, x)
assert 0 <= y <= maxy, "0 <= y(%s) <= maxy(%s)" %(y, maxy)
assert y1 > y or y2 < y, "y1(%s) > y(%s) or y2(%s) < y(%s)" % (y1, y, y2, y)
# sample
points = []
for i in xrange(1000):
x,y = gen_rand_limit(*blocked_box)
check(x, y, *blocked_box)
points.append((x,y))
Results
Given the constraints as outlined in the OP, this actually produces random coordinates (blue) around the designated rectangle (red) as desired, however leaves out any of the valid points that are outside the rectangle but fall within the respective x or y dimensions of the rectangle:
# visual proof via matplotlib
import matplotlib
from matplotlib import pyplot as plt
from matplotlib.patches import Rectangle
X,Y = zip(*points)
fig = plt.figure()
ax = plt.scatter(X, Y)
p1 = blocked_box[0]
w,h = blocked_box[1]
rectangle = Rectangle(p1, w, h, fc='red', zorder=2)
ax = plt.gca()
plt.axis((0, maxx, 0, maxy))
ax.add_patch(rectangle)
Improved
This is easily fixed by limiting only either x or y coordinates (note that check is no longer valid, comment to run this part):
def gen_rand_limit(p1, dim):
x1, y1 = p1
w, h = dim
x2, y2 = x1 + w, y1 + h
# should we limit x or y?
limitx = random.choice([0,1])
limity = not limitx
# generate x, y O(1)
if limitx:
left = random.randrange(0, x1)
right = random.randrange(x2+1, maxx-1)
x = random.choice([left, right])
y = random.randrange(0, maxy)
else:
x = random.randrange(0, maxx)
top = random.randrange(0, y1)
bottom = random.randrange(y2, maxy-1)
y = random.choice([top, bottom])
return x, y
Adjusting the random bias
As pointed out in the comments this solution suffers from a bias given to points outside the rows/columns of the rectangle. The following fixes that in principle by giving each coordinate the same probability:
def gen_rand_limit(p1, dim):
x1, y1 = p1Final solution -
w, h = dim
x2, y2 = x1 + w, y1 + h
# generate x, y O(1)
# --x
left = random.randrange(0, x1)
right = random.randrange(x2+1, maxx)
withinx = random.randrange(x1, x2+1)
# adjust probability of a point outside the box columns
# a point outside has probability (1/(maxx-w)) v.s. a point inside has 1/w
# the same is true for rows. adjupx/y adjust for this probability
adjpx = ((maxx - w)/w/2)
x = random.choice([left, right] * adjpx + [withinx])
# --y
top = random.randrange(0, y1)
bottom = random.randrange(y2+1, maxy)
withiny = random.randrange(y1, y2+1)
if x == left or x == right:
adjpy = ((maxy- h)/h/2)
y = random.choice([top, bottom] * adjpy + [withiny])
else:
y = random.choice([top, bottom])
return x, y
The following plot has 10'000 points to illustrate the uniform placement of points (the points overlaying the box' border are due to point size).
Disclaimer: Note that this plot places the red box in the very middle such thattop/bottom, left/right have the same probability among each other. The adjustment thus is relative to the blocking box, but not for all areas of the graph. A final solution requires to adjust the probabilities for each of these separately.
Simpler solution, yet slightly modified problem
It turns out that adjusting the probabilities for different areas of the coordinate system is quite tricky. After some thinking I came up with a slightly modified approach:
Realizing that on any 2D coordinate system blocking out a rectangle divides the area into N sub-areas (N=8 in the case of the question) where a valid coordinate can be chosen. Looking at it this way, we can define the valid sub-areas as boxes of coordinates. Then we can choose a box at random and a coordinate at random from within that box:
def gen_rand_limit(p1, dim):
x1, y1 = p1
w, h = dim
x2, y2 = x1 + w, y1 + h
# generate x, y O(1)
boxes = (
((0,0),(x1,y1)), ((x1,0),(x2,y1)), ((x2,0),(maxx,y1)),
((0,y1),(x1,y2)), ((x2,y1),(maxx,y2)),
((0,y2),(x1,maxy)), ((x1,y2),(x2,maxy)), ((x2,y2),(maxx,maxy)),
)
box = boxes[random.randrange(len(boxes))]
x = random.randrange(box[0][0], box[1][0])
y = random.randrange(box[0][1], box[1][1])
return x, y
Note this is not generalized as the blocked box may not be in the middle hence boxes would look different. As this results in each box chosen with the same probability, we get the same number of points in each box. Obviously the densitiy is higher in smaller boxes:
If the requirement is to generate a uniform distribution among all possible coordinates, the solution is to calculate boxes such that each box is about the same size as the blocking box. YMMV
I've already posted a different answer that I still like, as it is simple and
clear, and not necessarily slow... at any rate it's not exactly what the OP asked for.
I thought about it and I devised an algorithm for solving the OP's problem within their constraints:
partition the screen in 9 rectangles around and comprising the "hole".
consider the 8 rectangles ("tiles") around the central hole"
for each tile, compute the origin (x, y), the height and the area in pixels
compute the cumulative sum of the areas of the tiles, as well as the total area of the tiles
for each extraction, choose a random number between 0 and the total area of the tiles (inclusive and exclusive)
using the cumulative sums determine in which tile the random pixel lies
using divmod determine the column and the row (dx, dy) in the tile
using the origins of the tile in the screen coordinates, compute the random pixel in screen coordinates.
To implement the ideas above, in which there is an initialization phase in which we compute static data and a phase in which we repeatedly use those data, the natural data structure is a class, and here it is my implementation
from random import randrange
class make_a_hole_in_the_screen():
def __init__(self, screen, hole_orig, hole_sizes):
xs, ys = screen
x, y = hole_orig
wx, wy = hole_sizes
tiles = [(_y,_x*_y) for _x in [x,wx,xs-x-wx] for _y in [y,wy,ys-y-wy]]
self.tiles = tiles[:4] + tiles[5:]
self.pixels = [tile[1] for tile in self.tiles]
self.total = sum(self.pixels)
self.boundaries = [sum(self.pixels[:i+1]) for i in range(8)]
self.x = [0, 0, 0,
x, x,
x+wx, x+wx, x+wx]
self.y = [0, y, y+wy,
0, y+wy,
0, y, y+wy]
def choose(self):
n = randrange(self.total)
for i, tile in enumerate(self.tiles):
if n < self.boundaries[i]: break
n1 = n - ([0]+self.boundaries)[i]
dx, dy = divmod(n1,self.tiles[i][0])
return self.x[i]+dx, self.y[i]+dy
To test the correctness of the implementation, here it is a rough check that I
run on python 2.7,
drilled_screen = make_a_hole_in_the_screen((200,100),(30,50),(20,30))
for i in range(1000000):
x, y = drilled_screen.choose()
if 30<=x<50 and 50<=y<80: print "***", x, y
if x<0 or x>=200 or y<0 or y>=100: print "+++", x, y
A possible optimization consists in using a bisection algorithm to find the relevant tile in place of the simpler linear search that I've implemented.
It requires a bit of thought to generate a uniformly random point with these constraints. The simplest brute force way I can think of is to generate a list of all valid points and use random.choice() to select from this list. This uses a few MB of memory for the list, but generating a point is very fast:
import random
screen_width = 1000
screen_height = 800
rect_x = 500
rect_y = 250
rect_width = 100
rect_height = 75
valid_points = []
for x in range(screen_width):
if rect_x <= x < (rect_x + rect_width):
for y in range(rect_y):
valid_points.append( (x, y) )
for y in range(rect_y + rect_height, screen_height):
valid_points.append( (x, y) )
else:
for y in range(screen_height):
valid_points.append( (x, y) )
for i in range(10):
rand_point = random.choice(valid_points)
print(rand_point)
It is possible to generate a random number and map it to a valid point on the screen, which uses less memory, but it is a bit messy and takes more time to generate the point. There might be a cleaner way to do this, but one approach using the same screen size variables as above is here:
rand_max = (screen_width * screen_height) - (rect_width * rect_height)
def rand_point():
rand_raw = random.randint(0, rand_max-1)
x = rand_raw % screen_width
y = rand_raw // screen_width
if rect_y <= y < rect_y+rect_height and rect_x <= x < rect_x+rect_width:
rand_raw = rand_max + (y-rect_y) * rect_width + (x-rect_x)
x = rand_raw % screen_width
y = rand_raw // screen_width
return (x, y)
The logic here is similar to the inverse of the way that screen addresses are calculated from x and y coordinates on old 8 and 16 bit microprocessors. The variable rand_max is equal to the number of valid screen coordinates. The x and y co-ordinates of the pixel are calculated, and if it is within the rectangle the pixel is pushed above rand_max, into the region that couldn't be generated with the first call.
If you don't care too much about the point being uniformly random, this solution is easy to implement and very quick. The x values are random, but the Y value is constrained if the chosen X is in the column with the rectangle, so the pixels above and below the rectangle will have a higher probability of being chosen than pizels to the left and right of the rectangle:
def pseudo_rand_point():
x = random.randint(0, screen_width-1)
if rect_x <= x < rect_x + rect_width:
y = random.randint(0, screen_height-rect_height-1)
if y >= rect_y:
y += rect_height
else:
y = random.randint(0, screen_height-1)
return (x, y)
Another answer was calculating the probability that the pixel is in certain regions of the screen, but their answer isn't quite correct yet. Here's a version using a similar idea, calculate the probability that the pixel is in a given region and then calculate where it is within that region:
valid_screen_pixels = screen_width*screen_height - rect_width * rect_height
prob_left = float(rect_x * screen_height) / valid_screen_pixels
prob_right = float((screen_width - rect_x - rect_width) * screen_height) / valid_screen_pixels
prob_above_rect = float(rect_y) / (screen_height-rect_height)
def generate_rand():
ymin, ymax = 0, screen_height-1
xrand = random.random()
if xrand < prob_left:
xmin, xmax = 0, rect_x-1
elif xrand > (1-prob_right):
xmin, xmax = rect_x+rect_width, screen_width-1
else:
xmin, xmax = rect_x, rect_x+rect_width-1
yrand = random.random()
if yrand < prob_above_rect:
ymax = rect_y-1
else:
ymin=rect_y+rect_height
x = random.randrange(xmin, xmax)
y = random.randrange(ymin, ymax)
return (x, y)
If it's the generation of random you want to avoid, rather than the loop, you can do the following:
Generate a pair of random floating point coordinates in [0,1]
Scale the coordinates to give a point in the outer rectangle.
If your point is outside the inner rectangle, return it
Rescale to map the inner rectangle to the outer rectangle
Goto step 3
This will work best if the inner rectangle is small as compared to the outer rectangle. And it should probably be limited to only going through the loop some maximum number of times before generating new random and trying again.
I have an application that requires a disk populated with 'n' points in a quasi-random fashion. I want the points to be somewhat random, but still have a more or less regular density over the disk.
My current method is to place a point, check if it's inside the disk, and then check if it is also far enough away from all other points already kept. My code is below:
import os
import random
import math
# ------------------------------------------------ #
# geometric constants
center_x = -1188.2
center_y = -576.9
center_z = -3638.3
disk_distance = 2.0*5465.6
disk_diam = 5465.6
# ------------------------------------------------ #
pts_per_disk = 256
closeness_criteria = 200.0
min_closeness_criteria = disk_diam/closeness_criteria
disk_center = [(center_x-disk_distance),center_y,center_z]
pts_in_disk = []
while len(pts_in_disk) < (pts_per_disk):
potential_pt_x = disk_center[0]
potential_pt_dy = random.uniform(-disk_diam/2.0, disk_diam/2.0)
potential_pt_y = disk_center[1]+potential_pt_dy
potential_pt_dz = random.uniform(-disk_diam/2.0, disk_diam/2.0)
potential_pt_z = disk_center[2]+potential_pt_dz
potential_pt_rad = math.sqrt((potential_pt_dy)**2+(potential_pt_dz)**2)
if potential_pt_rad < (disk_diam/2.0):
far_enough_away = True
for pt in pts_in_disk:
if math.sqrt((potential_pt_x - pt[0])**2+(potential_pt_y - pt[1])**2+(potential_pt_z - pt[2])**2) > min_closeness_criteria:
pass
else:
far_enough_away = False
break
if far_enough_away:
pts_in_disk.append([potential_pt_x,potential_pt_y,potential_pt_z])
outfile_name = "pt_locs_x_lo_"+str(pts_per_disk)+"_pts.txt"
outfile = open(outfile_name,'w')
for pt in pts_in_disk:
outfile.write(" ".join([("%.5f" % (pt[0]/1000.0)),("%.5f" % (pt[1]/1000.0)),("%.5f" % (pt[2]/1000.0))])+'\n')
outfile.close()
In order to get the most even point density, what I do is basically iteratively run this script using another script, with the 'closeness' criteria reduced for each successive iteration. At some point, the script can not finish, and I just use the points of the last successful iteration.
So my question is rather broad: is there a better way to do this? My method is ok for now, but my gut says that there is a better way to generate such a field of points.
An illustration of the output is graphed below, one with a high closeness criteria, and another with a 'lowest found' closeness criteria (what I want).
A simple solution based on Disk Point Picking from MathWorld:
import numpy as np
import matplotlib.pyplot as plt
n = 1000
r = np.random.uniform(low=0, high=1, size=n) # radius
theta = np.random.uniform(low=0, high=2*np.pi, size=n) # angle
x = np.sqrt(r) * np.cos(theta)
y = np.sqrt(r) * np.sin(theta)
# for plotting circle line:
a = np.linspace(0, 2*np.pi, 500)
cx,cy = np.cos(a), np.sin(a)
fg, ax = plt.subplots(1, 1)
ax.plot(cx, cy,'-', alpha=.5) # draw unit circle line
ax.plot(x, y, '.') # plot random points
ax.axis('equal')
ax.grid(True)
fg.canvas.draw()
plt.show()
It gives.
Alternatively, you also could create a regular grid and distort it randomly:
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.tri as tri
n = 20
tt = np.linspace(-1, 1, n)
xx, yy = np.meshgrid(tt, tt) # create unit square grid
s_x, s_y = xx.ravel(), yy.ravel()
ii = np.argwhere(s_x**2 + s_y**2 <= 1).ravel() # mask off unwanted points
x, y = s_x[ii], s_y[ii]
triang = tri.Triangulation(x, y) # create triangluar grid
# distort the grid
g = .5 # distortion factor
rx = x + np.random.uniform(low=-g/n, high=g/n, size=x.shape)
ry = y + np.random.uniform(low=-g/n, high=g/n, size=y.shape)
rtri = tri.Triangulation(rx, ry, triang.triangles) # distorted grid
# for circle:
a = np.linspace(0, 2*np.pi, 500)
cx,cy = np.cos(a), np.sin(a)
fg, ax = plt.subplots(1, 1)
ax.plot(cx, cy,'k-', alpha=.2) # circle line
ax.triplot(triang, "g-", alpha=.4)
ax.triplot(rtri, 'b-', alpha=.5)
ax.axis('equal')
ax.grid(True)
fg.canvas.draw()
plt.show()
It gives
The triangles are just there for visualization. The obvious disadvantage is that depending on your choice of grid, either in the middle or on the borders (as shown here), there will be more or less large "holes" due to the grid discretization.
If you have a defined area like a disc (circle) that you wish to generate random points within you are better off using an equation for a circle and limiting on the radius:
x^2 + y^2 = r^2 (0 < r < R)
or parametrized to two variables
cos(a) = x/r
sin(a) = y/r
sin^2(a) + cos^2(a) = 1
To generate something like the pseudo-random distribution with low density you should take the following approach:
For randomly distributed ranges of r and a choose n points.
This allows you to generate your distribution to roughly meet your density criteria.
To understand why this works imagine your circle first divided into small rings of length dr, now imagine your circle divided into pie slices of angle da. Your randomness now has equal probability over the whole boxed area arou d the circle. If you divide the areas of allowed randomness throughout your circle you will get a more even distribution around the overall circle and small random variation for the individual areas giving you the psudo-random look and feel you are after.
Now your job is just to generate n points for each given area. You will want to have n be dependant on r as the area of each division changes as you move out of the circle. You can proportion this to the exact change in area each space brings:
for the n-th to n+1-th ring:
d(Area,n,n-1) = Area(n) - Area(n-1)
The area of any given ring is:
Area = pi*(dr*n)^2 - pi*(dr*(n-1))
So the difference becomes:
d(Area,n,n-1) = [pi*(dr*n)^2 - pi*(dr*(n-1))^2] - [pi*(dr*(n-1))^2 - pi*(dr*(n-2))^2]
d(Area,n,n-1) = pi*[(dr*n)^2 - 2*(dr*(n-1))^2 + (dr*(n-2))^2]
You could expound this to gain some insight on how much n should increase but it may be faster to just guess at some percentage increase (30%) or something.
The example I have provided is a small subset and decreasing da and dr will dramatically improve your results.
Here is some rough code for generating such points:
import random
import math
R = 10.
n_rings = 10.
n_angles = 10.
dr = 10./n_rings
da = 2*math.pi/n_angles
base_points_per_division = 3
increase_per_level = 1.1
points = []
ring = 0
while ring < n_rings:
angle = 0
while angle < n_angles:
for i in xrange(int(base_points_per_division)):
ra = angle*da + da*math.random()
rr = r*dr + dr*random.random()
x = rr*math.cos(ra)
y = rr*math.sin(ra)
points.append((x,y))
angle += 1
base_points_per_division = base_points_per_division*increase_per_level
ring += 1
I tested it with the parameters:
n_rings = 20
n_angles = 20
base_points = .9
increase_per_level = 1.1
And got the following results:
It looks more dense than your provided image, but I imagine further tweaking of those variables could be beneficial.
You can add an additional part to scale the density properly by calculating the number of points per ring.
points_per_ring = densitymath.pi(dr**2)*(2*n+1)
points_per_division = points_per_ring/n_angles
This will provide a an even better scaled distribution.
density = .03
points = []
ring = 0
while ring < n_rings:
angle = 0
base_points_per_division = density*math.pi*(dr**2)*(2*ring+1)/n_angles
while angle < n_angles:
for i in xrange(int(base_points_per_division)):
ra = angle*da + min(da,da*random.random())
rr = ring*dr + dr*random.random()
x = rr*math.cos(ra)
y = rr*math.sin(ra)
points.append((x,y))
angle += 1
ring += 1
Giving better results using the following parameters
R = 1.
n_rings = 10.
n_angles = 10.
density = 10/(dr*da) # ~ ten points per unit area
With a graph...
and for fun you can graph the divisions to see how well it is matching your distriubtion and adjust.
Depending on how random the points need to be, it may be simple enough to just make a grid of points within the disk, and then displace each point by some small but random amount.
It may be that you want more randomness, but if you just want to fill your disc with an even-looking distribution of points that aren't on an obvious grid, you could try a spiral with a random phase.
import math
import random
import pylab
n = 300
alpha = math.pi * (3 - math.sqrt(5)) # the "golden angle"
phase = random.random() * 2 * math.pi
points = []
for k in xrange(n):
theta = k * alpha + phase
r = math.sqrt(float(k)/n)
points.append((r * math.cos(theta), r * math.sin(theta)))
pylab.scatter(*zip(*points))
pylab.show()
Probability theory ensures that the rejection method is an appropriate method
to generate uniformly distributed points within the disk, D(0,r), centered at origin and of radius r. Namely, one generates points within the square [-r,r] x [-r,r], until a point falls within the disk:
do{
generate P in [-r,r]x[-r,r];
}while(P[0]**2+P[1]**2>r);
return P;
unif_rnd_disk is a generator function implementing this rejection method:
import matplotlib.pyplot as plt
import numpy as np
import itertools
def unif_rnd_disk(r=1.0):
pt=np.zeros(2)
while True:
yield pt
while True:
pt=-r+2*r*np.random.random(2)
if (pt[0]**2+pt[1]**2<=r):
break
G=unif_rnd_disk()# generator of points in disk D(0,r=1)
X,Y=zip(*[pt for pt in itertools.islice(G, 1, 1000)])
plt.scatter(X, Y, color='r', s=3)
plt.axis('equal')
If we want to generate points in a disk centered at C(a,b), we have to apply a translation to the points in the disk D(0,r):
C=[2.0, -3.5]
plt.scatter(C[0]+np.array(X), C[1]+np.array(Y), color='r', s=3)
plt.axis('equal')
I'm trying to work out how best to locate the centroid of an arbitrary shape draped over a unit sphere, with the input being ordered (clockwise or anti-cw) vertices for the shape boundary. The density of vertices is irregular along the boundary, so the arc-lengths between them are not generally equal. Because the shapes may be very large (half a hemisphere) it is generally not possible to simply project the vertices to a plane and use planar methods, as detailed on Wikipedia (sorry I'm not allowed more than 2 hyperlinks as a newcomer). A slightly better approach involves the use of planar geometry manipulated in spherical coordinates, but again, with large polygons this method fails, as nicely illustrated here. On that same page, 'Cffk' highlighted this paper which describes a method for calculating the centroid of spherical triangles. I've tried to implement this method, but without success, and I'm hoping someone can spot the problem?
I have kept the variable definitions similar to those in the paper to make it easier to compare. The input (data) is a list of longitude/latitude coordinates, converted to [x,y,z] coordinates by the code. For each of the triangles I have arbitrarily fixed one point to be the +z-pole, the other two vertices being composed of a pair of neighboring points along the polygon boundary. The code steps along the boundary (starting at an arbitrary point), using each boundary segment of the polygon as a triangle side in turn. A sub-centroid is determined for each of these individual spherical triangles and they are weighted according to triangle area and added to calculate the total polygon centroid. I don't get any errors when running the code, but the total centroids returned are clearly wrong (I have run some very basic shapes where the centroid location is unambiguous). I haven't found any sensible pattern in the location of the centroids returned...so at the moment I'm not sure what is going wrong, either in the math or code (although, the suspicion is the math).
The code below should work copy-paste as is if you would like to try it. If you have matplotlib and numpy installed, it will plot the results (it will ignore plotting if you don't). You just have to put the longitude/latitude data below the code into a text file called example.txt.
from math import *
try:
import matplotlib as mpl
import matplotlib.pyplot
from mpl_toolkits.mplot3d import Axes3D
import numpy
plotting_enabled = True
except ImportError:
plotting_enabled = False
def sph_car(point):
if len(point) == 2:
point.append(1.0)
rlon = radians(float(point[0]))
rlat = radians(float(point[1]))
x = cos(rlat) * cos(rlon) * point[2]
y = cos(rlat) * sin(rlon) * point[2]
z = sin(rlat) * point[2]
return [x, y, z]
def xprod(v1, v2):
x = v1[1] * v2[2] - v1[2] * v2[1]
y = v1[2] * v2[0] - v1[0] * v2[2]
z = v1[0] * v2[1] - v1[1] * v2[0]
return [x, y, z]
def dprod(v1, v2):
dot = 0
for i in range(3):
dot += v1[i] * v2[i]
return dot
def plot(poly_xyz, g_xyz):
fig = mpl.pyplot.figure()
ax = fig.add_subplot(111, projection='3d')
# plot the unit sphere
u = numpy.linspace(0, 2 * numpy.pi, 100)
v = numpy.linspace(-1 * numpy.pi / 2, numpy.pi / 2, 100)
x = numpy.outer(numpy.cos(u), numpy.sin(v))
y = numpy.outer(numpy.sin(u), numpy.sin(v))
z = numpy.outer(numpy.ones(numpy.size(u)), numpy.cos(v))
ax.plot_surface(x, y, z, rstride=4, cstride=4, color='w', linewidth=0,
alpha=0.3)
# plot 3d and flattened polygon
x, y, z = zip(*poly_xyz)
ax.plot(x, y, z)
ax.plot(x, y, zs=0)
# plot the alleged 3d and flattened centroid
x, y, z = g_xyz
ax.scatter(x, y, z, c='r')
ax.scatter(x, y, 0, c='r')
# display
ax.set_xlim3d(-1, 1)
ax.set_ylim3d(-1, 1)
ax.set_zlim3d(0, 1)
mpl.pyplot.show()
lons, lats, v = list(), list(), list()
# put the two-column data at the bottom of the question into a file called
# example.txt in the same directory as this script
with open('example.txt') as f:
for line in f.readlines():
sep = line.split()
lons.append(float(sep[0]))
lats.append(float(sep[1]))
# convert spherical coordinates to cartesian
for lon, lat in zip(lons, lats):
v.append(sph_car([lon, lat, 1.0]))
# z unit vector/pole ('north pole'). This is an arbitrary point selected to act as one
#(fixed) vertex of the summed spherical triangles. The other two vertices of any
#triangle are composed of neighboring vertices from the polygon boundary.
np = [0.0, 0.0, 1.0]
# Gx,Gy,Gz are the cartesian coordinates of the calculated centroid
Gx, Gy, Gz = 0.0, 0.0, 0.0
for i in range(-1, len(v) - 1):
# cycle through the boundary vertices of the polygon, from 0 to n
if all((v[i][0] != v[i+1][0],
v[i][1] != v[i+1][1],
v[i][2] != v[i+1][2])):
# this just ignores redundant points which are common in my larger input files
# A,B,C are the internal angles in the triangle: 'np-v[i]-v[i+1]-np'
A = asin(sqrt((dprod(np, xprod(v[i], v[i+1])))**2
/ ((1 - (dprod(v[i+1], np))**2) * (1 - (dprod(np, v[i]))**2))))
B = asin(sqrt((dprod(v[i], xprod(v[i+1], np)))**2
/ ((1 - (dprod(np , v[i]))**2) * (1 - (dprod(v[i], v[i+1]))**2))))
C = asin(sqrt((dprod(v[i + 1], xprod(np, v[i])))**2
/ ((1 - (dprod(v[i], v[i+1]))**2) * (1 - (dprod(v[i+1], np))**2))))
# A/B/Cbar are the vertex angles, such that if 'O' is the sphere center, Abar
# is the angle (v[i]-O-v[i+1])
Abar = acos(dprod(v[i], v[i+1]))
Bbar = acos(dprod(v[i+1], np))
Cbar = acos(dprod(np, v[i]))
# e is the 'spherical excess', as defined on wikipedia
e = A + B + C - pi
# mag1/2/3 are the magnitudes of vectors np,v[i] and v[i+1].
mag1 = 1.0
mag2 = float(sqrt(v[i][0]**2 + v[i][1]**2 + v[i][2]**2))
mag3 = float(sqrt(v[i+1][0]**2 + v[i+1][1]**2 + v[i+1][2]**2))
# vec1/2/3 are cross products, defined here to simplify the equation below.
vec1 = xprod(np, v[i])
vec2 = xprod(v[i], v[i+1])
vec3 = xprod(v[i+1], np)
# multiplying vec1/2/3 by e and respective internal angles, according to the
#posted paper
for x in range(3):
vec1[x] *= Cbar / (2 * e * mag1 * mag2
* sqrt(1 - (dprod(np, v[i])**2)))
vec2[x] *= Abar / (2 * e * mag2 * mag3
* sqrt(1 - (dprod(v[i], v[i+1])**2)))
vec3[x] *= Bbar / (2 * e * mag3 * mag1
* sqrt(1 - (dprod(v[i+1], np)**2)))
Gx += vec1[0] + vec2[0] + vec3[0]
Gy += vec1[1] + vec2[1] + vec3[1]
Gz += vec1[2] + vec2[2] + vec3[2]
approx_expected_Gxyz = (0.78, -0.56, 0.27)
print('Approximate Expected Gxyz: {0}\n'
' Actual Gxyz: {1}'
''.format(approx_expected_Gxyz, (Gx, Gy, Gz)))
if plotting_enabled:
plot(v, (Gx, Gy, Gz))
Thanks in advance for any suggestions or insight.
EDIT: Here is a figure that shows a projection of the unit sphere with a polygon and the resulting centroid I calculate from the code. Clearly, the centroid is wrong as the polygon is rather small and convex but yet the centroid falls outside its perimeter.
EDIT: Here is a highly-similar set of coordinates to those above, but in the original [lon,lat] format I normally use (which is now converted to [x,y,z] by the updated code).
-39.366295 -1.633460
-47.282630 -0.740433
-53.912136 0.741380
-59.004217 2.759183
-63.489005 5.426812
-68.566001 8.712068
-71.394853 11.659135
-66.629580 15.362600
-67.632276 16.827507
-66.459524 19.069327
-63.819523 21.446736
-61.672712 23.532143
-57.538431 25.947815
-52.519889 28.691766
-48.606227 30.646295
-45.000447 31.089437
-41.549866 32.139873
-36.605156 32.956277
-32.010080 34.156692
-29.730629 33.756566
-26.158767 33.714080
-25.821513 34.179648
-23.614658 36.173719
-20.896869 36.977645
-17.991994 35.600074
-13.375742 32.581447
-9.554027 28.675497
-7.825604 26.535234
-7.825604 26.535234
-9.094304 23.363132
-9.564002 22.527385
-9.713885 22.217165
-9.948596 20.367878
-10.496531 16.486580
-11.151919 12.666850
-12.350144 8.800367
-15.446347 4.993373
-20.366139 1.132118
-24.784805 -0.927448
-31.532135 -1.910227
-39.366295 -1.633460
EDIT: A couple more examples...with 4 vertices defining a perfect square centered at [1,0,0] I get the expected result:
However, from a non-symmetric triangle I get a centroid that is nowhere close...the centroid actually falls on the far side of the sphere (here projected onto the front side as the antipode):
Interestingly, the centroid estimation appears 'stable' in the sense that if I invert the list (go from clockwise to counterclockwise order or vice-versa) the centroid correspondingly inverts exactly.
Anybody finding this, make sure to check Don Hatch's answer which is probably better.
I think this will do it. You should be able to reproduce this result by just copy-pasting the code below.
You will need to have the latitude and longitude data in a file called longitude and latitude.txt. You can copy-paste the original sample data which is included below the code.
If you have mplotlib it will additionally produce the plot below
For non-obvious calculations, I included a link that explains what is going on
In the graph below, the reference vector is very short (r = 1/10) so that the 3d-centroids are easier to see. You can easily remove the scaling to maximize accuracy.
Note to op: I rewrote almost everything so I'm not sure exactly where the original code was not working. However, at least I think it was not taking into consideration the need to handle clockwise / counterclockwise triangle vertices.
Legend:
(black line) reference vector
(small red dots) spherical triangle 3d-centroids
(large red / blue / green dot) 3d-centroid / projected to the surface / projected to the xy plane
(blue / green lines) the spherical polygon and the projection onto the xy plane
from math import *
try:
import matplotlib as mpl
import matplotlib.pyplot
from mpl_toolkits.mplot3d import Axes3D
import numpy
plotting_enabled = True
except ImportError:
plotting_enabled = False
def main():
# get base polygon data based on unit sphere
r = 1.0
polygon = get_cartesian_polygon_data(r)
point_count = len(polygon)
reference = ok_reference_for_polygon(polygon)
# decompose the polygon into triangles and record each area and 3d centroid
areas, subcentroids = list(), list()
for ia, a in enumerate(polygon):
# build an a-b-c point set
ib = (ia + 1) % point_count
b, c = polygon[ib], reference
if points_are_equivalent(a, b, 0.001):
continue # skip nearly identical points
# store the area and 3d centroid
areas.append(area_of_spherical_triangle(r, a, b, c))
tx, ty, tz = zip(a, b, c)
subcentroids.append((sum(tx)/3.0,
sum(ty)/3.0,
sum(tz)/3.0))
# combine all the centroids, weighted by their areas
total_area = sum(areas)
subxs, subys, subzs = zip(*subcentroids)
_3d_centroid = (sum(a*subx for a, subx in zip(areas, subxs))/total_area,
sum(a*suby for a, suby in zip(areas, subys))/total_area,
sum(a*subz for a, subz in zip(areas, subzs))/total_area)
# shift the final centroid to the surface
surface_centroid = scale_v(1.0 / mag(_3d_centroid), _3d_centroid)
plot(polygon, reference, _3d_centroid, surface_centroid, subcentroids)
def get_cartesian_polygon_data(fixed_radius):
cartesians = list()
with open('longitude and latitude.txt') as f:
for line in f.readlines():
spherical_point = [float(v) for v in line.split()]
if len(spherical_point) == 2:
spherical_point.append(fixed_radius)
cartesians.append(degree_spherical_to_cartesian(spherical_point))
return cartesians
def ok_reference_for_polygon(polygon):
point_count = len(polygon)
# fix the average of all vectors to minimize float skew
polyx, polyy, polyz = zip(*polygon)
# /10 is for visualization. Remove it to maximize accuracy
return (sum(polyx)/(point_count*10.0),
sum(polyy)/(point_count*10.0),
sum(polyz)/(point_count*10.0))
def points_are_equivalent(a, b, vague_tolerance):
# vague tolerance is something like a percentage tolerance (1% = 0.01)
(ax, ay, az), (bx, by, bz) = a, b
return all(((ax-bx)/ax < vague_tolerance,
(ay-by)/ay < vague_tolerance,
(az-bz)/az < vague_tolerance))
def degree_spherical_to_cartesian(point):
rad_lon, rad_lat, r = radians(point[0]), radians(point[1]), point[2]
x = r * cos(rad_lat) * cos(rad_lon)
y = r * cos(rad_lat) * sin(rad_lon)
z = r * sin(rad_lat)
return x, y, z
def area_of_spherical_triangle(r, a, b, c):
# points abc
# build an angle set: A(CAB), B(ABC), C(BCA)
# http://math.stackexchange.com/a/66731/25581
A, B, C = surface_points_to_surface_radians(a, b, c)
E = A + B + C - pi # E is called the spherical excess
area = r**2 * E
# add or subtract area based on clockwise-ness of a-b-c
# http://stackoverflow.com/a/10032657/377366
if clockwise_or_counter(a, b, c) == 'counter':
area *= -1.0
return area
def surface_points_to_surface_radians(a, b, c):
"""build an angle set: A(cab), B(abc), C(bca)"""
points = a, b, c
angles = list()
for i, mid in enumerate(points):
start, end = points[(i - 1) % 3], points[(i + 1) % 3]
x_startmid, x_endmid = xprod(start, mid), xprod(end, mid)
ratio = (dprod(x_startmid, x_endmid)
/ ((mag(x_startmid) * mag(x_endmid))))
angles.append(acos(ratio))
return angles
def clockwise_or_counter(a, b, c):
ab = diff_cartesians(b, a)
bc = diff_cartesians(c, b)
x = xprod(ab, bc)
if x < 0:
return 'clockwise'
elif x > 0:
return 'counter'
else:
raise RuntimeError('The reference point is in the polygon.')
def diff_cartesians(positive, negative):
return tuple(p - n for p, n in zip(positive, negative))
def xprod(v1, v2):
x = v1[1] * v2[2] - v1[2] * v2[1]
y = v1[2] * v2[0] - v1[0] * v2[2]
z = v1[0] * v2[1] - v1[1] * v2[0]
return [x, y, z]
def dprod(v1, v2):
dot = 0
for i in range(3):
dot += v1[i] * v2[i]
return dot
def mag(v1):
return sqrt(v1[0]**2 + v1[1]**2 + v1[2]**2)
def scale_v(scalar, v):
return tuple(scalar * vi for vi in v)
def plot(polygon, reference, _3d_centroid, surface_centroid, subcentroids):
fig = mpl.pyplot.figure()
ax = fig.add_subplot(111, projection='3d')
# plot the unit sphere
u = numpy.linspace(0, 2 * numpy.pi, 100)
v = numpy.linspace(-1 * numpy.pi / 2, numpy.pi / 2, 100)
x = numpy.outer(numpy.cos(u), numpy.sin(v))
y = numpy.outer(numpy.sin(u), numpy.sin(v))
z = numpy.outer(numpy.ones(numpy.size(u)), numpy.cos(v))
ax.plot_surface(x, y, z, rstride=4, cstride=4, color='w', linewidth=0,
alpha=0.3)
# plot 3d and flattened polygon
x, y, z = zip(*polygon)
ax.plot(x, y, z, c='b')
ax.plot(x, y, zs=0, c='g')
# plot the 3d centroid
x, y, z = _3d_centroid
ax.scatter(x, y, z, c='r', s=20)
# plot the spherical surface centroid and flattened centroid
x, y, z = surface_centroid
ax.scatter(x, y, z, c='b', s=20)
ax.scatter(x, y, 0, c='g', s=20)
# plot the full set of triangular centroids
x, y, z = zip(*subcentroids)
ax.scatter(x, y, z, c='r', s=4)
# plot the reference vector used to findsub centroids
x, y, z = reference
ax.plot((0, x), (0, y), (0, z), c='k')
ax.scatter(x, y, z, c='k', marker='^')
# display
ax.set_xlim3d(-1, 1)
ax.set_ylim3d(-1, 1)
ax.set_zlim3d(0, 1)
mpl.pyplot.show()
# run it in a function so the main code can appear at the top
main()
Here is the longitude and latitude data you can paste into longitude and latitude.txt
-39.366295 -1.633460
-47.282630 -0.740433
-53.912136 0.741380
-59.004217 2.759183
-63.489005 5.426812
-68.566001 8.712068
-71.394853 11.659135
-66.629580 15.362600
-67.632276 16.827507
-66.459524 19.069327
-63.819523 21.446736
-61.672712 23.532143
-57.538431 25.947815
-52.519889 28.691766
-48.606227 30.646295
-45.000447 31.089437
-41.549866 32.139873
-36.605156 32.956277
-32.010080 34.156692
-29.730629 33.756566
-26.158767 33.714080
-25.821513 34.179648
-23.614658 36.173719
-20.896869 36.977645
-17.991994 35.600074
-13.375742 32.581447
-9.554027 28.675497
-7.825604 26.535234
-7.825604 26.535234
-9.094304 23.363132
-9.564002 22.527385
-9.713885 22.217165
-9.948596 20.367878
-10.496531 16.486580
-11.151919 12.666850
-12.350144 8.800367
-15.446347 4.993373
-20.366139 1.132118
-24.784805 -0.927448
-31.532135 -1.910227
-39.366295 -1.633460
To clarify: the quantity of interest is the projection of the true 3d centroid
(i.e. 3d center-of-mass, i.e. 3d center-of-area) onto the unit sphere.
Since all you care about is the direction from the origin to the 3d centroid,
you don't need to bother with areas at all;
it's easier to just compute the moment (i.e. 3d centroid times area).
The moment of the region to the left of a closed path on the unit sphere
is half the integral of the leftward unit vector as you walk around the path.
This follows from a non-obvious application of Stokes' theorem; see Frank Jones's vector calculus book, chapter 13 Problem 13-12.
In particular, for a spherical polygon, the moment is half the sum of
(a x b) / ||a x b|| * (angle between a and b) for each pair of consecutive vertices a,b.
(That's for the region to the left of the path;
negate it for the region to the right of the path.)
(And if you really did want the 3d centroid, just compute the area and divide the moment by it. Comparing areas might also be useful in choosing which of the two regions to call "the polygon".)
Here's some code; it's really simple:
#!/usr/bin/python
import math
def plus(a,b): return [x+y for x,y in zip(a,b)]
def minus(a,b): return [x-y for x,y in zip(a,b)]
def cross(a,b): return [a[1]*b[2]-a[2]*b[1], a[2]*b[0]-a[0]*b[2], a[0]*b[1]-a[1]*b[0]]
def dot(a,b): return sum([x*y for x,y in zip(a,b)])
def length(v): return math.sqrt(dot(v,v))
def normalized(v): l = length(v); return [1,0,0] if l==0 else [x/l for x in v]
def addVectorTimesScalar(accumulator, vector, scalar):
for i in xrange(len(accumulator)): accumulator[i] += vector[i] * scalar
def angleBetweenUnitVectors(a,b):
# https://www.plunk.org/~hatch/rightway.html
if dot(a,b) < 0:
return math.pi - 2*math.asin(length(plus(a,b))/2.)
else:
return 2*math.asin(length(minus(a,b))/2.)
def sphericalPolygonMoment(verts):
moment = [0.,0.,0.]
for i in xrange(len(verts)):
a = verts[i]
b = verts[(i+1)%len(verts)]
addVectorTimesScalar(moment, normalized(cross(a,b)),
angleBetweenUnitVectors(a,b) / 2.)
return moment
if __name__ == '__main__':
import sys
def lonlat_degrees_to_xyz(lon_degrees,lat_degrees):
lon = lon_degrees*(math.pi/180)
lat = lat_degrees*(math.pi/180)
coslat = math.cos(lat)
return [coslat*math.cos(lon), coslat*math.sin(lon), math.sin(lat)]
verts = [lonlat_degrees_to_xyz(*[float(v) for v in line.split()])
for line in sys.stdin.readlines()]
#print "verts = "+`verts`
moment = sphericalPolygonMoment(verts)
print "moment = "+`moment`
print "centroid unit direction = "+`normalized(moment)`
For the example polygon, this gives the answer (unit vector):
[-0.7644875430808217, 0.579935445918147, -0.2814847687566214]
This is roughly the same as, but more accurate than, the answer computed by #KobeJohn's code, which uses rough tolerances and planar approximations to the sub-centroids:
[0.7628095787179151, -0.5977153368303585, 0.24669398601094406]
The directions of the two answers are roughly opposite (so I guess KobeJohn's code
decided to take the region to the right of the path in this case).
I think a good approximation would be to compute the center of mass using weighted cartesian coordinates and projecting the result onto the sphere (supposing the origin of coordinates is (0, 0, 0)^T).
Let be (p[0], p[1], ... p[n-1]) the n points of the polygon. The approximative (cartesian) centroid can be computed by:
c = 1 / w * (sum of w[i] * p[i])
whereas w is the sum of all weights and whereas p[i] is a polygon point and w[i] is a weight for that point, e.g.
w[i] = |p[i] - p[(i - 1 + n) % n]| / 2 + |p[i] - p[(i + 1) % n]| / 2
whereas |x| is the length of a vector x.
I.e. a point is weighted with half the length to the previous and half the length to the next polygon point.
This centroid c can now projected onto the sphere by:
c' = r * c / |c|
whereas r is the radius of the sphere.
To consider orientation of polygon (ccw, cw) the result may be
c' = - r * c / |c|.
Sorry I (as a newly registered user) had to write a new post instead of just voting/commenting on the above answer by Don Hatch. Don's answer, I think, is the best and most elegant. It is mathematically rigorous in computing the center of mass (first moment of mass) in a simple way when applying to the spherical polygon.
Kobe John's answer is a good approximation but only satisfactory for smaller areas. I also noticed a few glitches in the code. Firstly, the reference point should be projected to the spherical surface to compute the actual spherical area. Secondly, function points_are_equivalent() might need to be refined to avoid divided-by-zero.
The approximation error in Kobe's method lies in the calculation of the centroid of spherical triangles. The sub-centroid is NOT the center of mass of the spherical triangle but the planar one. This is not an issue if one is to determine that single triangle (sign may flip, see below). It is also not an issue if triangles are small (e.g. a dense triangulation of the polygon).
A few simple tests could illustrate the approximation error. For example if we use just four points:
10 -20
10 20
-10 20
-10 -20
The exact answer is (1,0,0) and both methods are good. But if you throw in a few more points along one edge (e.g. add {10,-15},{10,-10}... to the first edge), you'll see the results from Kobe's method start to shift. Further more, if you increase the longitude from [10,-10] to [100,-100], you'll see Kobe's result flips the direction. A possible improvement might be to add another level(s) for sub-centroid calculation (basically refine/reduce sizes of triangles).
For our application, the spherical area boundary is composed of multiple arcs and thus not polygon (i.e. the arc is not part of great circle). But this will just be a little more work to find the n-vector in the curve integration.
EDIT: Replacing the subcentroid calculation with the one given in Brock's paper should fix Kobe's method. But I did not try though.