plotting boxplot with sns - python

I would like to depict the value of my variables found in a dataset in the form of a boxplot. The dataset is the following:
https://archive.ics.uci.edu/ml/datasets/breast+cancer+wisconsin+(original)
So far my code is the following:
import pandas as pd
import numpy as np
from sklearn.impute import SimpleImputer
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn import preprocessing
df=pd.read_csv(file,names=['id', 'clump_thickness','unif_cell_size',
'unif_cell_shape', 'marg_adhesion', 'single_epith_cell_size',
'bare_nuclei', 'bland_chromatin', 'normal_nucleoli','mitoses','Class'])
#boxplot
plt.figure(figsize=(15,10))
names=list(df.columns)
names=names[:-1]
min_max_scaler=preprocessing.MinMaxScaler()
X = df.drop(["Class"],axis=1)
columnsN=list(X.columns)
x_scaled=min_max_scaler.fit_transform(X) #normalization
X[columnsN]=x_scaled
y = df['Class']
sns.set_context('notebook', font_scale=1.5)
sns.boxplot(x=X['unif_cell_size'],y=y,data=df.iloc[:, :-1],orient="h")
My boxplot returns the following figure:
but I would like to display my information like the following graph:
I know that is from a different dataset, but I can see that they have displayed the diagnosis, at the same time, for each feature with their values. I have tried to do it in different ways, but I am not able to do that graph.
I have tried the following:
data_st = pd.concat([y,X],axis=1)
data_st = pd.melt(data_st,id_vars=columnsN,
var_name="X",
value_name='value')
sns.boxplot(x='value', y="X", data=data_st,hue=y,palette='Set1')
plt.legend(loc='best')
but still no results. Any help?
Thanks

Reshape the data with pandas.DataFrame.melt:
Most of the benign (class 2) boxplots are at 0 (scaled) or 1 (unscaled), as they should be
print(df_scaled_melted.groupby(['Class', 'Attributes', 'Values'])['Values'].count().unstack()) after melt, to understand the counts
MinMaxScaler has been used, but is unnecessary in this case, because all of the data values are very close together. If you plot the data without scaling, the plot will look the same, except the y-axis range will be 1 - 10 instead.
This should really only be used in cases when the data is widely diverging, where an attribute will have too much influence with some ML algorithm.
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from pathlib import Path
import numpy as np
from sklearn.preprocessing import MinMaxScaler
# path to file
p = Path(r'c:\some_path_to_file\breast-cancer-wisconsin.data')
# create dataframe
df = pd.read_csv(p, names=['id', 'clump_thickness','unif_cell_size',
'unif_cell_shape', 'marg_adhesion', 'single_epith_cell_size',
'bare_nuclei', 'bland_chromatin', 'normal_nucleoli','mitoses','Class'])
# replace ? with np.NaN
df.replace('?', np.NaN, inplace=True)
# scale the data
min_max_scaler = MinMaxScaler()
df_scaled = pd.DataFrame(min_max_scaler.fit_transform(df.iloc[:, 1:-1]))
df_scaled.columns = df.columns[1:-1]
df_scaled['Class'] = df['Class']
# melt the dataframe
df_scaled_melted = df_scaled.iloc[:, 1:].melt(id_vars='Class', var_name='Attributes', value_name='Values')
# plot the data
plt.figure(figsize=(12, 8))
g = sns.boxplot(x='Attributes', y='Values', hue='Class', data=df_scaled_melted)
for item in g.get_xticklabels():
item.set_rotation(90)
plt.legend(loc='center left', bbox_to_anchor=(1, 0.5))
plt.show()
Without scaling:
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from pathlib import Path
import numpy as np
p = Path.cwd() / r'data\breast_cancer\breast-cancer-wisconsin.data'
df = pd.read_csv(p, names=['id', 'clump_thickness','unif_cell_size',
'unif_cell_shape', 'marg_adhesion', 'single_epith_cell_size',
'bare_nuclei', 'bland_chromatin', 'normal_nucleoli','mitoses','Class'])
df.replace('?', np.NaN, inplace=True)
df.dropna(inplace=True)
df = df.astype('int')
df_melted = df.iloc[:, 1:].melt(id_vars='Class', var_name='Attributes', value_name='Values')
plt.figure(figsize=(12, 8))
g = sns.boxplot(x='Attributes', y='Values', hue='Class', data=df_melted)
for item in g.get_xticklabels():
item.set_rotation(90)
plt.legend(loc='center left', bbox_to_anchor=(1, 0.5))
plt.show()

Related

Plot in Seaborn 2 probability denisty functions on one figure

I'm trying to plot two probability density functions on one figure(so that they overlap).
import matplotlib.pyplot as plt
import numpy
import seaborn as sns
from sklearn.preprocessing import MinMaxScaler
import numpy as np
import pandas as pd
data = [0,0,1,2,2,2,2,1,2,3,0,5,4,5,4,6,2,2,5,4,6,3,2,5,4,3,7,-1,0]
scaler = MinMaxScaler()
df = pd.DataFrame(data, columns=['Numbers'])
X = numpy.asarray(data)
X=X.reshape(-1,1)
standardized_data = scaler.fit_transform(X)
normal_data = np.random.normal(loc=0.0, scale=1.0, size=len(df))
sns.displot(normal_data, kind='kde')
sns.displot(standardized_data, kind='kde')
plt.show()
sns.displot(
{"normal": normal_data, "standardized": standardized_data.squeeze()},
kind='kde'
)

Seaborn xaxis with large timeline

I have around 4475 rows of csv data like below:
,Time,Values,Size
0,1900-01-01 23:11:30.368,2,
1,1900-01-01 23:11:30.372,2,
2,1900-01-01 23:11:30.372,2,
3,1900-01-01 23:11:30.372,2,
4,1900-01-01 23:11:30.376,2,
5,1900-01-01 23:11:30.380,,
6,1900-01-01 23:11:30.380,,
7,1900-01-01 23:11:30.380,,
8,1900-01-01 23:11:30.380,,321
9,1900-01-01 23:11:30.380,,111
.
.
4474,1900-01-01 23:11:32.588,,
When I try to create simple seaborn lineplot with below code. It creates line chart but its continuous chart while my data i.e. 'Values' has many empty/nan values which should show as gap on chart. How can I do that?
[from datetime import datetime
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
df = pd.read_csv("Data.csv")
sns.set(rc={'figure.figsize':(13,4)})
ax =sns.lineplot(x="Time", y="Values", data=df)
ax.set(xlabel='Time', ylabel='Values')
plt.xticks(rotation=90)
plt.tight_layout()
plt.show()]
As reported in this answer:
I've looked at the source code and it looks like lineplot drops nans from the DataFrame before plotting. So unfortunately it's not possible to do it properly.
So, the easiest way to do it is to use matplotlib in place of seaborn.
In the code below I generate a dataframe like your with 20% of missing values in 'Values' column and I use matplotlib to draw a plot:
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
df = pd.DataFrame({'Time': pd.date_range(start = '1900-01-01 23:11:30', end = '1900-01-01 23:11:30.1', freq = 'L')})
df['Values'] = np.random.randint(low = 2, high = 10, size = len(df))
df['Values'] = df['Values'].mask(np.random.random(df['Values'].shape) < 0.2)
fig, ax = plt.subplots(figsize = (13, 4))
ax.plot(df['Time'], df['Values'])
ax.set(xlabel = 'Time', ylabel = 'Values')
plt.xticks(rotation = 90)
plt.tight_layout()
plt.show()

No handles with labels found to put in legend. plt.legend()

I just learned python, this is literally my first lesson and i was told to make kmeans with python. and while i was doing in and it gives me an error when i use plt.legend() i have read in sov that we should use ax.legend but apparently either it didn't work or i wrote it wrong. so i thought i'll just gave the code before i changed it to the ax. my english is not very good so please bear with it. thank you
import numpy as np
import pandas as pd
from sklearn.cluster import KMeans
from sklearn.preprocessing import MinMaxScaler
import matplotlib.pyplot as plt
import seaborn as sns
df = pd.read_excel("Umur.xlsx")
df.head()
print(df)
a = plt.scatter(df['Umur'],df['Gaji'])
plt.show()
km = KMeans(n_clusters=3)
km
y_predicted = km.fit_predict(df[['Umur','Gaji']])
y_predicted
print(y_predicted)
df['cluster'] = y_predicted
df.head()
print(df)
df1 = df[df.cluster==0]
df2 = df[df.cluster==1]
df3 = df[df.cluster==2]
plt.scatter(df1.Umur,df1['Gaji'],color='green')
plt.scatter(df2.Umur,df2['Gaji'],color='red')
plt.scatter(df3.Umur,df3['Gaji'],color='black')
#plt.scatter(km.cluster_centers_[:,0],km_clusters_centers_[:,1],color='purple',marker='*',label='centroid')
plt.xlabel('Umur')
plt.ylabel('Gaji')
plt.legend ()
I edit three lines and add one line like below:
...
gaji_green = plt.scatter(df1.Umur,df1['Gaji'],color='green')
gaji_red = plt.scatter(df2.Umur,df2['Gaji'],color='red')
gaji_balck = plt.scatter(df3.Umur,df3['Gaji'],color='black')
...
plt.legend((gaji_green, gaji_red, gaji_balck),
('gaji_green', 'gaji_red', 'gaji_balck'),
scatterpoints=1,
loc='lower left',
ncol=1,
fontsize=8)
...
finally, code like below:
import numpy as np
import pandas as pd
from sklearn.cluster import KMeans
from sklearn.preprocessing import MinMaxScaler
import matplotlib.pyplot as plt
import seaborn as sns
df = pd.read_excel("Umur.xlsx")
km = KMeans(n_clusters=3)
y_predicted = km.fit_predict(df[['Umur','Gaji']])
df['cluster'] = y_predicted
df1 = df[df.cluster==0]
df2 = df[df.cluster==1]
df3 = df[df.cluster==2]
gaji_green = plt.scatter(df1.Umur,df1['Gaji'],color='green')
gaji_red = plt.scatter(df2.Umur,df2['Gaji'],color='red')
gaji_balck = plt.scatter(df3.Umur,df3['Gaji'],color='black')
plt.xlabel('Umur')
plt.ylabel('Gaji')
plt.legend ()
plt.legend((gaji_green, gaji_red, gaji_balck),
('gaji_green', 'gaji_red', 'gaji_balck'),
scatterpoints=1,
loc='lower left',
ncol=1,
fontsize=8)
plt.show()

Trouble creating scatter plot

I'm having trouble using the scatter to create a scatter plot. Can someone help me? I've highlighted the line causing the error:
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
import numpy as np
from sklearn.preprocessing import StandardScaler
data = pd.read_csv('vetl8.csv')
df = pd.DataFrame(data=data)
clusterNum = 3
X = df.iloc[:, 1:].values
X = np.nan_to_num(X)
Clus_dataSet = StandardScaler().fit_transform(X)
k_means = KMeans(init="k-means++", n_clusters=clusterNum, n_init=12)
k_means.fit(X)
labels = k_means.labels_
df["Labels"] = labels
df.to_csv('dfkmeans.csv')
plt.scatter(df[2], df[1], c=labels) **#Here**
plt.xlabel('K', fontsize=18)
plt.ylabel('g', fontsize=16)
plt.show()
#data set correct
You are close, just a minor adjustment to access the x-y columns by number should fix it:
plt.scatter(df[df.columns[2]], df[df.columns[1]], c=df["Labels"])

Dataframe Bar plot with Seaborn

I'm trying to create a bar plot from a DataFrame with Datetime Index.
This is an example working code:
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns
sns.set()
index = pd.date_range('2012-01-01', periods=48, freq='M')
data = np.random.randint(100, size = (len(index),1))
df = pd.DataFrame(index=index, data=data, columns=['numbers'])
fig, ax = plt.subplots()
ax.bar(df.index, df['numbers'])
The result is:
As you can see the white bars cannot be distinguished well with respect of the background (why?).
I tried using instead:
df['numbers'].plot(kind='bar')
import matplotlib.ticker as ticker
ticklabels = df.index.strftime('%Y-%m')
ax.xaxis.set_major_formatter(ticker.FixedFormatter(ticklabels))
with this result:
But in this way I lose the automatic xticks labels (and grid) 6-months spacing.
Any idea?
You can just change the style:
import matplotlib.pyplot as plt
index = pd.date_range('2012-01-01', periods=48, freq='M')
data = np.random.randint(100, size = (len(index),1))
df = pd.DataFrame(index=index, data=data, columns=['numbers'])
plt.figure(figsize=(12, 5))
plt.style.use('default')
plt.bar(df.index,df['numbers'],color="red")
You do not actually use seaborn. Replace ax.bar(df.index, df['numbers'])
with
sns.barplot(df.index, df['numbers'], ax=ax)

Categories

Resources