I'm trying to blend 3 images.
First i overlay photo.png over base.png with some positioning. And it works.
base_photo.png
Second i'm trying to overlay effect.png
effect.png
over resulting image from previous step.
The result looks like this
result.png
I'm using opencv blending described here. I've tried to use cv2.addWeighted but the result was the same
# blending function
def img_overlay(background, overlay, x_offset, y_offset):
y1, y2 = y_offset, y_offset + overlay.shape[0]
x1, x2 = x_offset, x_offset + overlay.shape[1]
alpha_s = overlay[:, :, 3] / 255.0
alpha_l = 1.0 - alpha_s
for c in range(0, 3):
background[y1:y2, x1:x2, c] = (alpha_s * overlay[:, :, c] +
alpha_l * background[y1:y2, x1:x2, c])
return background
# First step
background = cv2.imread('base.png')
overlay = cv2.imread('photo.png', -1)
x_offset = 386
y_offset = 70
base_photo = img_overlay(background, overlay, x_offset, y_offset)
# Second step
overlay = cv2.imread('effect.png', -1)
final_photo = img_overlay(base_photo, overlay, 0, 0)
cv2.imwrite(result, final_photo)
How i can fix img_overlay function so it will overlay effect.png correctly?
The problem is your 'effect' image is in the a different scale. Correct this by dividing by 255.
Yours 'Second Step' should look like this:
# Second step
overlay = cv2.imread('effect.png', -1)
overlay = overlay / 255.0
final_photo = img_overlay(base_photo, overlay, 0, 0)
Which works for me.
Related
I know this question has been asked for several times, e.g., this one, but my problem is I need to overlay a smaller PNG image with a larger PNG image, where both images need to maintain their transparency in the output.
For example, smaller image is like:
... larger image is like:
(The image above has only 1 pixel filled with white color and 90% transparency)
Using the code examples given in the previous question (overlay a smaller image on a larger image python OpenCv), the larger background image will be in black.
def overlay_image_alpha(img, img_overlay, x, y, alpha_mask):
"""Overlay `img_overlay` onto `img` at (x, y) and blend using `alpha_mask`.
`alpha_mask` must have same HxW as `img_overlay` and values in range [0, 1].
"""
# Image ranges
y1, y2 = max(0, y), min(img.shape[0], y + img_overlay.shape[0])
x1, x2 = max(0, x), min(img.shape[1], x + img_overlay.shape[1])
# Overlay ranges
y1o, y2o = max(0, -y), min(img_overlay.shape[0], img.shape[0] - y)
x1o, x2o = max(0, -x), min(img_overlay.shape[1], img.shape[1] - x)
# Exit if nothing to do
if y1 >= y2 or x1 >= x2 or y1o >= y2o or x1o >= x2o:
return
# Blend overlay within the determined ranges
img_crop = img[y1:y2, x1:x2]
img_overlay_crop = img_overlay[y1o:y2o, x1o:x2o]
alpha = alpha_mask[y1o:y2o, x1o:x2o, np.newaxis]
alpha_inv = 1.0 - alpha
img_crop[:] = alpha * img_overlay_crop + alpha_inv * img_crop
# Prepare inputs
x, y = 50, 0
img = np.array(Image.open("template.png"))
img_overlay_rgba = np.array(Image.open("../foo.png"))
# Perform blending
alpha_mask = img_overlay_rgba[:, :, 3] / 255.0
img_result = img[:, :, :3].copy()
img_overlay = img_overlay_rgba[:, :, :3]
overlay_image_alpha(img_result, img_overlay, x, y, alpha_mask)
# Save result
Image.fromarray(img_result).save("img_result.png")
Result:
My desired result is to maintain the larger image's transparency.
May I know how to do so?
This is actually the correct output. Fully transparent images (like your template image) have the pixel value of 0 on empty areas which represents black. If you were to use semi-transparent templates (which have pixels value greater than 0 even if they are slightly transparent). You should see this:
Answer 2:
Your output images are 24bit. (Which means you get rid of thhe alpha channel before saving it). I looked into your code and saw the lines 34 and 35;
img_result = img[:, :, :3].copy()
img_overlay = img_overlay_rgba[:, :, :3]
You're sending RGB images to overlay_image_alpha function. Change this to;
img_result = img.copy()
img_overlay = img_overlay_rgba
To preserve Alpha channel information.
New Output:
On Photoshop:
I Here is my Code
# Json file in which Easyocr anotations have saved.
img = cv2.imread('dummy.jpg')
img1 = img.copy()
#rotoated because anotation have according to vertical alignment of image i have matched the orientation
img1=cv2.rotate(img1,rotateCode=cv2.ROTATE_90_CLOCKWISE)
rects = []
with open('dummy.json') as jsn:
jsn_dict = json.load(jsn)
for k in jsn_dict['textAnnotations']:
vertices= k['boundingPoly']['vertices']
cv2.rectangle(img1,list(vertices[2].values()),list(vertices[0].values()),[0,255,0],10)
# I want to put predicted text on top of bounding boxes vertically because my image is rotated anti clockwise
cv2.putText(img1, k['description'], list(vertices[0].values()),cv2.FONT_HERSHEY_SIMPLEX,5,[0,255,0],5)
I have the code mentioned above I am labelling the recognized text. First step is, I put the image into the OCR model and it returns some values according to the image, in which we have three values for every detected text. These values are the vertex of the bounding box, the text that was recognized, and the accuracy percentage. But my problem is that my image was rotated by the Exif orientation value but cv2 read it as a zero angle and my text is printing horizontally. I want to print text on an image vertically. I have tried so many times but could not resolve my problem. I hope I have explained it well.
Try this one
import cv2
def transparentOverlay(src, overlay, pos=(0, 0), scale=1):
"""
:param src: Input Color Background Image
:param overlay: transparent Image (BGRA)
:param pos: position where the image to be blit.
:param scale : scale factor of transparent image.
:return: Resultant Image
"""
overlay = cv2.resize(overlay, (0, 0), fx=scale, fy=scale)
h, w, _ = overlay.shape # Size of foreground
rows, cols, _ = src.shape # Size of background Image
y, x = pos[0], pos[1] # Position of foreground/overlay image
# loop over all pixels and apply the blending equation
for i in range(h):
for j in range(w):
if x + i >= rows or y + j >= cols:
continue
alpha = float(overlay[i][j][3] / 255.0) # read the alpha channel
src[x + i][y + j] = alpha * overlay[i][j][:3] + (1 - alpha) * src[x + i][y + j]
return src
def addImageWatermark(LogoImage,MainImage,opacity,pos=(10,100),):
opacity = opacity / 100
OriImg = cv2.imread(MainImage, -1)
waterImg = cv2.imread(LogoImage, -1)
tempImg = OriImg.copy()
print(tempImg.shape)
overlay = transparentOverlay(tempImg, waterImg, pos)
output = OriImg.copy()
# apply the overlay
cv2.addWeighted(overlay, opacity, output, 1 - opacity, 0, output)
cv2.imshow('Life2Coding', output)
cv2.waitKey(0)
cv2.destroyAllWindows()
if __name__ == '__main__':
addImageWatermark('./logo.png','./hanif.jpg',100,(10,100))
Rotate your image 90º clockwise, add the text, and rotate the image back to the original.
# Rotate 90º clockwise
img_rot = cv2.rotate(img1 , cv2.ROTATE_90_CLOCKWISE)
# Add your text here, adjusting x and y coordinates to the new orientation.
# The new adjusted coordinates will be:
# (x2, y2) = (original_height - y, x)
# [...]
# Rotate back
img1 = cv2.rotate(img_rot, cv2.ROTATE_90_CLOCKWISE)
Hello I want to reflect an object in the image as in this image[enter image description here][1]
[1]: https://i.stack.imgur.com/N9J3I.jpg How can I get this kind of result?
It is possible that OpenCV does not have good solutions for this, take a closer look at Pillow.
from PIL import Image, ImageFilter
def drop_shadow(image, iterations=3, border=8, offset=(5,5), background_colour=0xffffff, shadow_colour=0x444444):
shadow_width = image.size[0] + abs(offset[0]) + 2 * border
shadow_height = image.size[1] + abs(offset[1]) + 2 * border
shadow = Image.new(image.mode, (shadow_width, shadow_height), background_colour)
shadow_left = border + max(offset[0], 0)
shadow_top = border + max(offset[1], 0)
shadow.paste(shadow_colour, [shadow_left, shadow_top, shadow_left + image.size[0], shadow_top + image.size[1]])
for i in range(iterations):
shadow = shadow.filter(ImageFilter.BLUR)
img_left = border - min(offset[0], 0)
img_top = border - min(offset[1], 0)
shadow.paste(image, (img_left, img_top))
return shadow
drop_shadow(Image.open('boobs.jpg')).save('shadowed_boobs.png')
Here is one way to do the reflection in Python/OpenCV.
One flips the image. Then makes a vertical ramp (gradient) image and puts that into the alpha channel of the flipped image. Then one concatenates the original and the flipped images.
Input:
import cv2
import numpy as np
# set top and bottom opacity percentages
top = 85
btm = 15
# load image
img = cv2.imread('bear2.png')
hh, ww = img.shape[:2]
# flip the input
flip = np.flip(img, axis=0)
# add opaque alpha channel to input
img = cv2.cvtColor(img, cv2.COLOR_BGR2BGRA)
# make vertical gradient that is bright at top and dark at bottom as alpha channel for the flipped image
gtop = 255*top//100
gbtm = 255*btm//100
grady = np.linspace(gbtm, gtop, hh, dtype=np.uint8)
gradx = np.linspace(1, 1, ww, dtype=np.uint8)
grad = np.outer(grady, gradx)
grad = np.flip(grad, axis=0)
# alternate method
#grad = np.linspace(0, 255, hh, dtype=np.uint8)
#grad = np.tile(grad, (ww,1))
#grad = np.transpose(grad)
#grad = np.flip(grad, axis=0)
# put the gradient into the alpha channel of the flipped image
flip = cv2.cvtColor(flip, cv2.COLOR_BGR2BGRA)
flip[:,:,3] = grad
# concatenate the original and the flipped versions
result = np.vstack((img, flip))
# save output
cv2.imwrite('bear2_vertical_gradient.png', grad)
cv2.imwrite('bear2_reflection.png', result)
# Display various images to see the steps
cv2.imshow('flip',flip)
cv2.imshow('grad',grad)
cv2.imshow('result',result)
cv2.waitKey(0)
cv2.destroyAllWindows()
Ramped (Gradient) Image:
Result:
First of all, I am not asking anyone to do my homework. I would like to get an explanation or clarification about my difficulties in understanding the following question.
I just finished my image processing test, but one question that I could not solve due to my confusion.
The question is:
Write the code to detect the red eye in a given image in RGB color space using the following formula for HSL color space:
LS_ratio = L / S
eye_pixel = (L >= 64) and (S >= 100) and (LS_ratio > 0.5) and (LS_ratio < 1.5) and ((H <= 7) or (H >= 162))
Please note that in above formula, H, S and L represent a single pixel value for the image in HSL color space and the value of ‘eye_pixel’ will be either True or False depending on the values of H, S and L (i.e. it will be either a red eye color pixel or not).
Your task is to write the code to check all pixels in the image. Store the result as a numpy array and display the resulted image.
My code is:
from __future__ import print_function
import numpy as np
import argparse
import cv2
#argument paser
ap = argparse.ArgumentParser()
ap.add_argument("-i", "--image", required = True, help = "Path to the image")
args = vars(ap.parse_args())
#load the image
image = cv2.imread(args["image"])
#Convert image to HLS
hls = cv2.cvtColor(image, cv2.COLOR_BGR2HLS)
#Split HLS Channels
H = hls[:, :, 0]
S = hls[:, :, 1]
L = hls[:, :, 2]
LS_ratio = L / S
#eye_pixel = (L >= 64) and (S >= 100) and (LS_ratio > 0.5) and (LS_ratio < 1.5) and ((H <= 7) or (H >= 162))
#if HSL pixel
#eye pixel either red or not
#show the image
#cv2.imshow("Image", np.hstack([image, red_eye]))
#debug
print("Lightness is: {}".format(L))
print("Saturation is: {}".format(S))
print("Hue is: {}".format(H))
#print("LS ratio: {}", LS_ratio)
cv2.waitKey(0)
Suppose that the image is:
I literally feel confused about what needs to be done. Highly appreciate if anyone helps explains to me what should be done.
Thank you.
All you need to do is implement the formula in term of the entire H, L, S images.
#Convert image to HLS
hls = cv2.cvtColor(image, cv2.COLOR_BGR2HLS)
#Split HLS Channels
H = hls[:, :, 0]
L = hls[:, :, 1]
S = hls[:, :, 2]
LS_ratio = L/(S + 1e-6)
redeye = ((L>=64) * (S>=100) * np.logical_or(H<=7, H>=162) * (LS_ratio>0.5) * (LS_ratio<1.5)).astype(bool)
Here redeye is a bool array the same size of your original image, where each pixel contains a True or False, representing whether if it's a redeye pixel or not. If I display the image:
redeye = cv2.cvtColor(redeye.astype(np.uint8)*255, cv2.COLOR_GRAY2BGR)
cv2.imshow('image-redeye', np.hstack([image, redeye]))
I am trying to create my own face filtering augmented reality program in open-cv. The idea is it will map a beaver to the users face. Currently, I am unable to get proper transperency when loading this image with 'cv2.imread(...)'. It looks black in the background, and often shows partially in certain areas that are white. When I open this image in photoshop, I am fully capable of moving this image on top of a background with expected transparency results. I am wondering if the alpha is not getting rendered properly. Here is the relevent code where I am loading the image in.
import numpy
import cv2
def augment_stream(face: numpy.array, augment: numpy.array) -> numpy.array:
face_h, face_w, _ = face.shape
augment_h, augment_w, _ = augment.shape
scalar = min(face_h / augment_h, face_w / augment_w)
delta_augment_h = int(scalar * augment_h)
delta_augment_w = int(scalar * augment_w)
delta_augment_shape = (delta_augment_w, delta_augment_h)
resized_augment = cv2.resize(augment, delta_augment_shape)
augmented_face = face.copy()
dark_pixels = (resized_augment < 250).all(axis=2)
offset_x = int((face_w - delta_augment_w) / 2)
offset_y = int((face_h - delta_augment_h) / 2)
augmented_face[offset_y: offset_y+delta_augment_h, offset_x: offset_x+delta_augment_w][dark_pixels] = resized_augment[dark_pixels]
return augmented_face
def main():
stream = cv2.VideoCapture(0)
cascade = cv2.CascadeClassifier(cv2.data.haarcascades + "haarcascade_frontalface_default.xml")
augment = cv2.imread('assets/normal.png')
# tmp = cv2.cvtColor(augment, cv2.COLOR_BGR2GRAY)
# _,alpha = cv2.threshold(tmp,0,255,cv2.THRESH_BINARY)
# b, g, r = cv2.split(augment)
# rgba = [b,g,r, alpha]
# dst = cv2.merge(rgba,4)
# cv2.imwrite("assets/normal.png", dst)
while True:
ret, border = stream.read()
border_h, border_w, _ = border.shape
bw = cv2.equalizeHist(cv2.cvtColor(border, cv2.COLOR_BGR2GRAY))
rects = cascade.detectMultiScale(bw, scaleFactor=1.3, minNeighbors=4, minSize=(30, 30), flags=cv2.CASCADE_SCALE_IMAGE)
for x, y, w, h in rects:
y0 = int(y - 0.25*h)
y1 = int(y + 0.75*h)
x0 = x
x1 = x + w
if x0 < 0 or x1 > border_w or y0 < 0 or y1 > border_h:
continue
border[y0: y1, x0: x1] = augment_stream(border[y0: y1, x0: x1], augment)
cv2.imshow('border', border)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
stream.release()
cv2.destroyAllWindows()
if __name__ == '__main__':
main()
Using example from question overlay a smaller image on a larger image python OpenCv
I reduced it to show only how to put image
use cv2.IMREAD_UNCHANGED to load it as RGBA.
split it to RGB and A
use A to create masks for image and border
use loop to add channels
import cv2
stream = cv2.VideoCapture(0)
# load RGBA
augment = cv2.imread('image.png', cv2.IMREAD_UNCHANGED) # load RGBA
# make it smaller then frame - only for test
W = 320
H = 240
augment = cv2.resize(augment, (W, H))
# split image and alpha
image = augment[:,:,0:3]
alpha = augment[:,:,3]
mask_image = alpha / 255.0
mask_border = 1.0 - mask_image
# ROI - region of interest
x1 = 200
y1 = 100
x2 = x1 + W
y2 = y1 + H
while True:
ret, border = stream.read()
# copy only in some region (ROI) (don't assign to variable) but gives worse result
#cv2.copyTo(image, alpha, border[y1:y2, x1:x2])
for c in range(0, 3): # channels RGB
border[y1:y2, x1:x2, c] = (image[:, :, c]*mask_image + border[y1:y2, x1:x2, c]*mask_border)
cv2.imshow('border', border)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
stream.release()
cv2.destroyAllWindows()
BTW: I tried to use cv2.copyTo(image, mask_image, border) but it gives worse result - maybe mask/alpha needs 3 channels.
It seems it can be done in C/C++ - how to insert a small size image on to a big image