Is there a way to plot the z-Value in python - python

I'm have got a programme that uses matplotlib and pandas to plot the rolling mean and standard deviation for the price of bitcoin. I'm wondering how I can plot the z values ( the number of standard deviations the price is from the mean).
import pandas as pd
from matplotlib import pyplot as plt
btc_1_day = pd.read_csv('C:\Users\Oliver\Desktop\data\data1_btcusdt_1day.csv')
df1_btc = pd.DataFrame(btc_1_day)
df1_btc['SMA_10'] = df1_btc.price_close.rolling(10).mean()
df1_btc['SMSD_10'] = df1_btc.price_close.rolling(10).std()
plt.grid(True)
plt.plot(btc_1_day.price_close)
plt.plot(df1_btc['SMA_10'],label='10 day moving average')
plt.plot(df1_btc['SMSD_10'],label='10 day standard deviation')
plt.legend(loc=2)
plt.show()

Since I don't have your csv file, I'll show you how I would do this using some random data and a pandas dataframe. You can find the z score using stats.zscore(df['btc'], but that would give you numbers on a very different scale from the ones you're trying to plot in your example.
Plot 1:
Code 1:
import pandas as pd
from matplotlib import pyplot as plt
import statsmodels.api as sm
import pandas as pd
import numpy as np
import datetime
from scipy import stats
# data
np.random.seed(1234)
numdays=100
df = pd.DataFrame({'btc': (np.random.randint(low=-20, high=20, size=numdays).cumsum()+100).tolist()})
# moving averages and standard deviations
df['SMA_10'] = df['btc'].rolling(10).mean()
df['SMSD_10+sigma'] = df['btc'].rolling(10).mean()+df['btc'].rolling(10).std()
df['SMSD_10-sigma'] = df['btc'].rolling(10).mean()-df['btc'].rolling(10).std()
# matplotlib
df['ZScore']=stats.zscore(df['btc'])
plt.figure()
df['btc'].plot()
df['ZScore'].plot()
plt.show()
In order to illustrate your dataset together with averages and starndard deviations for rolling windows, I'd rather use an approach such as:
Plot 2:
Code 2:
import pandas as pd
from matplotlib import pyplot as plt
import statsmodels.api as sm
import pandas as pd
import numpy as np
import datetime
from scipy import stats
# data
np.random.seed(1234)
numdays=100
df = pd.DataFrame({'btc': (np.random.randint(low=-20, high=20, size=numdays).cumsum()+100).tolist()})
# moving averages and standard deviations
df['SMA_10'] = df['btc'].rolling(10).mean()
df['SMSD_10+sigma'] = df['btc'].rolling(10).mean()+df['btc'].rolling(10).std()
df['SMSD_10-sigma'] = df['btc'].rolling(10).mean()-df['btc'].rolling(10).std()
# matplotlib
plt.grid(True)
plt.plot( df['btc'])
plt.plot(df['SMA_10'],label='10 day moving average')
plt.plot(df['SMSD_10+sigma'],label='10 day standard deviation',
color='green',
linewidth=0.5)
plt.plot(df['SMSD_10-sigma'],label='10 day standard deviation',
color='green',
linewidth=0.5)
plt.plot(df['btc'], color='blue', linewidth=1.5)
plt.legend(loc=2)
plt.show()

Related

how to create the outliers for dates in python

my purpose is to create an anomaly graph for a stock that have dates and close. I tried to create outliers, but I get the lines not in the place I want. For example, I want the line to be in the year of 2019 and after 2020 where there are drastic changes. The X line has dates and the problem I don't know how to write the outliers
I thought to write y["2019"]=40 for example but it doesn't do anything
from pandas import read_csv
from matplotlib import pyplot
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
import numpy as np
#from IPython.core.debugger import set_trace
#import data
AAPL= pd.read_csv('AAPL.csv', header=0, squeeze=True)
x=AAPL['Date']
x=pd.to_datetime(x)
y=AAPL['Close/Last']
plt.figure(figsize=(15,7))
plt.plot(x, y, label="Close")
plt.title("AAPL")
plt.xlabel("Time")
plt.ylabel("Close")
plt.xticks(rotation=0)
plt.grid()
plt.show()
y[5] = 5
y[60] =55
y[85] = 1.4
n_outliers = 3
plt.figure(figsize=(15,7))
plt.plot(x,y)
plt.scatter(x,y)
plt.grid()
plt.ylabel('Y')
plt.xlabel('x')
plt.show()
Thank you in advance

Plot dates on x,y axes of matplotlib 3d graph

I have a large Pandas DataFrame that contains three columns: two different dates and one of measurement (floats). I want to plot a 3d figure (eg. trisurf, plot_surface, etc) where the dates are on the x and y axes and measurement is on the z axis. I tried using the suggestions in this post, but it isn't helpful.
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
import numpy as np
import matplotlib.dates as dates
import datetime
import matplotlib.ticker as ticker
import pandas as pd
df = pd.DataFrame()
df['date1'] = pd.date_range(start='2018-01-05', end='2018-04-15', freq='1D')
df['date2'] = pd.date_range(start='2018-01-19', end='2018-04-29', freq='1D')
df['mydata'] = np.sin(2*np.linspace(-1,1,len(df))) # dummy variable
def format_date(x, pos=None):
return dates.num2date(x).strftime('%Y-%m-%d') #use FuncFormatter to format dates
plt.figure()
ax = Axes3D(fig,rect=[0,0.1,1,1]) #make room for date labels
ax.plot_trisurf(df.date1, df.date2, df.mydata, cmap=cm.coolwarm, linewidth=0.2)
ax.w_xaxis.set_major_locator(ticker.FixedLocator(some_dates)) # I want all the dates on my xaxis
ax.w_xaxis.set_major_formatter(ticker.FuncFormatter(format_date))
ax.w_yaxis.set_major_locator(ticker.FixedLocator(some_dates))
ax.w_yaxis.set_major_formatter(ticker.FuncFormatter(format_date))
for tl in ax.w_xaxis.get_ticklabels(): # re-create what autofmt_xdate but with w_xaxis
tl.set_ha('right')
tl.set_rotation(30)
for tl in ax.w_yaxis.get_ticklabels():
tl.set_ha('right')
#tl.set_rotation(30)
ax.set_xlabel('date1')
ax.set_ylabel('date2')
ax.set_zlabel('mydata')
plt.show()
I keep getting the error RuntimeError: Error in qhull Delaunay triangulation calculation: singular input data (exitcode=2); use python verbose option (-v) to see original qhull error. What am I doing wrong and how do I resolve it?

How to change xticks to yearly interval in pandas time series plot

I am very new to pandas, and I have searched many StackOverflow questions similar to this for changing xtick labels yearly, but they all are different did not solve my problem, so I decided to ask my own question.
Here is my question. I have a mock data frame which I want to plot yearly xticks in the x-axis.
import numpy as np
import pandas as pd
df = pd.DataFrame({'date': pd.date_range('1991-01-01','2019-01-01')}).set_index('date')
df['value'] = np.random.randn(len(df))
df.plot()
This gives:
Xticks ==> 1995 2000 2005 etc
But I want ==> 1991 1992 ... 2019
How to do that?
So far I have tried this:
import matplotlib
import matplotlib
import matplotlib.pyplot as plt
%matplotlib inline
fig,ax = plt.subplots()
df.plot(ax=ax)
ax.xaxis.set_major_locator(matplotlib.dates.YearLocator(base=1))
# ax.xaxis.set_minor_locator(matplotlib.dates.YearLocator(base=1))
# ax.set_xticklabels(list(df.index.time))
This gives just 2005 as xtick and nothing has worked till now.
Links I looked:
- Changing xticks in a pandas plot
- Python: Change the time on xticks for Pandas Plot
- https://matplotlib.org/3.1.1/api/dates_api.html
You need to use the x_compat=True argument to have pandas choose the units in a way that they are compatible with matplotlib.dates locators and formatters.
df.plot(ax=ax, x_compat=True)
Complete code:
import numpy as np
import pandas as pd
import matplotlib
import matplotlib.pyplot as plt
df = pd.DataFrame({'date': pd.date_range('1991-01-01','2019-01-01')}).set_index('date')
df['value'] = np.random.randn(len(df))
fig,ax = plt.subplots()
df.plot(ax=ax, x_compat=True)
ax.xaxis.set_major_locator(matplotlib.dates.YearLocator(base=1))
ax.xaxis.set_major_formatter(matplotlib.dates.DateFormatter("%Y"))
plt.show()
You can try this:
import datetime
# create xticks
xticks = pd.date_range(datetime.datetime(1990,1,1), datetime.datetime(2020,1,1), freq='YS')
# plot
fig, ax = plt.subplots(figsize=(12,8))
df['value'].plot(ax=ax,xticks=xticks.to_pydatetime())
ax.set_xticklabels([x.strftime('%Y') for x in xticks]);
plt.xticks(rotation=90);
Complete Example
import numpy as np
import pandas as pd
import matplotlib
import matplotlib.pyplot as plt
import datetime
# data
df = pd.DataFrame({'date': pd.date_range('1991-01-01','2019-01-01')}).set_index('date')
df['value'] = np.random.randn(len(df))
# create xticks
xticks = pd.date_range(datetime.datetime(1990,1,1), datetime.datetime(2020,1,1), freq='YS')
# plot
fig, ax = plt.subplots(figsize=(12,8))
df['value'].plot(ax=ax,xticks=xticks.to_pydatetime())
ax.set_xticklabels([x.strftime('%Y') for x in xticks]);
plt.xticks(rotation=90);
plt.show()
This gives:

How to format y-axis to show percentage with Python Jupyter Notebook lmplot? [duplicate]

I have the following pandas plot:
Is it possible to add '%' sign on the y axis not as a label but on the number. Such as it would show instead of 0.0 it would be 0.0% and so on for all the numbers?
Code:
import pandas as pd
from pandas import datetime
from pandas import DataFrame as df
import matplotlib
from pandas_datareader import data as web
import matplotlib.pyplot as plt
import datetime
end = datetime.date.today()
start = datetime.date(2020,1,1)
data = web.DataReader('fb', 'yahoo', start, end)
data['percent'] = data['Close'].pct_change()
data['percent'].plot()
Here is how you can use matplotlib.ticker:
import matplotlib.pyplot as plt
import matplotlib.ticker as mtick
fig = plt.figure()
ax = fig.add_subplot(1,1,1)
ax.yaxis.set_major_formatter(mtick.PercentFormatter())
plt.show()
Output:
You can now control the display format of the y-axis. I think it will be 0.0%.
yvals = ax.get_yticks()
ax.set_yticklabels(["{:,.1%}".format(y) for y in yvals], fontsize=12)
You can also use plt.gca() instead of using ax
import matplotlib.pyplot as plt
import matplotlib.ticker as mtick
plt.gca().yaxis.set_major_formatter(mtick.PercentFormatter(xmax=1.0))

matplotlib overlay a normal distribution with stddev axis onto another plot

I have a series of data that I'm reading in from a tutorial site.
I've managed to plot the distribution of the TV column in that data, however I also want to overlay a normal distribution curve with StdDev ticks on a second x-axis (so I can compare the two curves). I'm struggling to work out how to do it..
import pandas as pd
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
import scipy.stats as stats
import matplotlib.mlab as mlab
import math
# read data into a DataFrame
data = pd.read_csv('http://www-bcf.usc.edu/~gareth/ISL/Advertising.csv', index_col=0)
# draw distribution curve
h = sorted(data.TV)
hmean = np.mean(h)
hstd = np.std(h)
pdf = stats.norm.pdf(h, hmean, hstd)
plt.plot(h, pdf)
Here is a diagram close to what I'm after, where x is the StdDeviations. All this example needs is a second x axis to show the values of data.TV
Not sure what you really want, but you could probably use second axis like this
import pandas as pd
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
import scipy.stats as stats
import matplotlib.mlab as mlab
import math
# read data into a DataFrame
data = pd.read_csv('Advertising.csv', index_col=0)
fig, ax1 = plt.subplots()
# draw distribution curve
h = sorted(data.TV)
ax1.plot(h,'b-')
ax1.set_xlabel('TV')
ax1.set_ylabel('Count', color='b')
for tl in ax1.get_yticklabels():
tl.set_color('b')
hmean = np.mean(h)
hstd = np.std(h)
pdf = stats.norm.pdf(h, hmean, hstd)
ax2 = ax1.twinx()
ax2.plot(h, pdf, 'r.')
ax2.set_ylabel('pdf', color='r')
for tl in ax2.get_yticklabels():
tl.set_color('r')
plt.show()
Ok, assuming that you want to plot the distribution of your data, the fitted normal distribution with two x-axes, one way to achieve this is as follows.
Plot the normalized data together with the standard normal distribution. Then use matplotlib's twiny() to add a second x-axis to the plot. Use the same tick positions as the original x-axis on the second axis, but scale the labels so that you get the corresponding original TV values. The result looks like this:
Code
import pandas as pd
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
import scipy.stats as stats
import matplotlib.mlab as mlab
import math
# read data into a DataFrame
data = pd.read_csv('http://www-bcf.usc.edu/~gareth/ISL/Advertising.csv', index_col=0)
h = sorted(data.TV)
hmean = np.mean(h)
hstd = np.std(h)
h_n = (h - hmean) / hstd
pdf = stats.norm.pdf( h_n )
# plot data
f,ax1 = plt.subplots()
ax1.hist( h_n, 20, normed=1 )
ax1.plot( h_n , pdf, lw=3, c='r')
ax1.set_xlim( [h_n.min(), h_n.max()] )
ax1.set_xlabel( r'TV $[\sigma]$' )
ax1.set_ylabel( r'Relative Frequency')
ax2 = ax1.twiny()
ax2.grid( False )
ax2.set_xlim( ax1.get_xlim() )
ax2.set_ylim( ax1.get_ylim() )
ax2.set_xlabel( r'TV' )
ticklocs = ax2.xaxis.get_ticklocs()
ticklocs = [ round( t*hstd + hmean, 2) for t in ticklocs ]
ax2.xaxis.set_ticklabels( map( str, ticklocs ) )

Categories

Resources