Proper Matplotlib axes construction / reuse - python

I currently am building a set of scatter plot charts using pandas plot.scatter. In this construction off of two base axes.
My current construction looks akin to
ax1 = pandas.scatter.plot()
ax2 = pandas.scatter.plot(ax=ax1)
for dataframe in list:
output_ax = pandas.scatter.plot(ax2)
output_ax.get_figure().save("outputfile.png")
total_output_ax = total_list.scatter.plot(ax2)
total_output_ax.get_figure().save("total_output.png")
This seems inefficient. For 1...N permutations I want to reuse a base axes that has 50% of the data already plotted. What I am trying to do is:
Add base data to scatter plot
For item x in y: (save data to base scatter and save image)
Add all data to scatter plot and save image

here's one way to do it with plt.scatter.
I plot column 0 on x-axis, and all other columns on y axis, one at a time.
Notice that there is only 1 ax object, and I don't replot all points, I just add points using the same axes with a for loop.
Each time I get a corresponding png image.
import numpy as np
import pandas as pd
np.random.seed(2)
testdf = pd.DataFrame(np.random.rand(20,4))
testdf.head(5) looks like this
0 1 2 3
0 0.435995 0.025926 0.549662 0.435322
1 0.420368 0.330335 0.204649 0.619271
2 0.299655 0.266827 0.621134 0.529142
3 0.134580 0.513578 0.184440 0.785335
4 0.853975 0.494237 0.846561 0.079645
#I put the first axis out of a loop, that can be in the loop as well
import matplotlib.pyplot as plt
fig = plt.figure()
ax = fig.add_subplot(1,1,1)
ax.scatter(testdf[0],testdf[1], color='red')
fig.legend()
fig.savefig('fig_1.png')
colors = ['pink', 'green', 'black', 'blue']
for i in range(2,4):
ax.scatter(testdf[0], testdf[i], color=colors[i])
fig.legend()
fig.savefig('full_' + str(i) + '.png')
Then you get these 3 images (fig_1, fig_2, fig_3)

Axes objects cannot be simply copied or transferred. However, it is possible to set artists to visible/invisible in a plot. Given your ambiguous question, it is not fully clear how your data are stored but it seems to be a list of dataframes. In any case, the concept can easily be adapted to different input data.
import matplotlib.pyplot as plt
#test data generation
import pandas as pd
import numpy as np
rng = np.random.default_rng(123456)
df_list = [pd.DataFrame(rng.integers(0, 100, (7, 2))) for _ in range(3)]
#plot all dataframes into an axis object to ensure
#that all plots have the same scaling
fig, ax = plt.subplots()
patch_collections = []
for i, df in enumerate(df_list):
pc = ax.scatter(x=df[0], y=df[1], label=str(i))
pc.set_visible(False)
patch_collections.append(pc)
#store individual plots
for i, pc in enumerate(patch_collections):
pc.set_visible(True)
ax.set_title(f"Dataframe {i}")
fig.savefig(f"outputfile{i}.png")
pc.set_visible(False)
#store summary plot
[pc.set_visible(True) for pc in patch_collections]
ax.set_title("All dataframes")
ax.legend()
fig.savefig(f"outputfile_0_{i}.png")
plt.show()

Related

plotting area plot as a subplot [duplicate]

I have a few Pandas DataFrames sharing the same value scale, but having different columns and indices. When invoking df.plot(), I get separate plot images. what I really want is to have them all in the same plot as subplots, but I'm unfortunately failing to come up with a solution to how and would highly appreciate some help.
You can manually create the subplots with matplotlib, and then plot the dataframes on a specific subplot using the ax keyword. For example for 4 subplots (2x2):
import matplotlib.pyplot as plt
fig, axes = plt.subplots(nrows=2, ncols=2)
df1.plot(ax=axes[0,0])
df2.plot(ax=axes[0,1])
...
Here axes is an array which holds the different subplot axes, and you can access one just by indexing axes.
If you want a shared x-axis, then you can provide sharex=True to plt.subplots.
You can see e.gs. in the documentation demonstrating joris answer. Also from the documentation, you could also set subplots=True and layout=(,) within the pandas plot function:
df.plot(subplots=True, layout=(1,2))
You could also use fig.add_subplot() which takes subplot grid parameters such as 221, 222, 223, 224, etc. as described in the post here. Nice examples of plot on pandas data frame, including subplots, can be seen in this ipython notebook.
You can plot multiple subplots of multiple pandas data frames using matplotlib with a simple trick of making a list of all data frame. Then using the for loop for plotting subplots.
Working code:
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
# dataframe sample data
df1 = pd.DataFrame(np.random.rand(10,2)*100, columns=['A', 'B'])
df2 = pd.DataFrame(np.random.rand(10,2)*100, columns=['A', 'B'])
df3 = pd.DataFrame(np.random.rand(10,2)*100, columns=['A', 'B'])
df4 = pd.DataFrame(np.random.rand(10,2)*100, columns=['A', 'B'])
df5 = pd.DataFrame(np.random.rand(10,2)*100, columns=['A', 'B'])
df6 = pd.DataFrame(np.random.rand(10,2)*100, columns=['A', 'B'])
#define number of rows and columns for subplots
nrow=3
ncol=2
# make a list of all dataframes
df_list = [df1 ,df2, df3, df4, df5, df6]
fig, axes = plt.subplots(nrow, ncol)
# plot counter
count=0
for r in range(nrow):
for c in range(ncol):
df_list[count].plot(ax=axes[r,c])
count+=1
Using this code you can plot subplots in any configuration. You need to define the number of rows nrow and the number of columns ncol. Also, you need to make list of data frames df_list which you wanted to plot.
You can use the familiar Matplotlib style calling a figure and subplot, but you simply need to specify the current axis using plt.gca(). An example:
plt.figure(1)
plt.subplot(2,2,1)
df.A.plot() #no need to specify for first axis
plt.subplot(2,2,2)
df.B.plot(ax=plt.gca())
plt.subplot(2,2,3)
df.C.plot(ax=plt.gca())
etc...
You can use this:
fig = plt.figure()
ax = fig.add_subplot(221)
plt.plot(x,y)
ax = fig.add_subplot(222)
plt.plot(x,z)
...
plt.show()
You may not need to use Pandas at all. Here's a matplotlib plot of cat frequencies:
x = np.linspace(0, 2*np.pi, 400)
y = np.sin(x**2)
f, axes = plt.subplots(2, 1)
for c, i in enumerate(axes):
axes[c].plot(x, y)
axes[c].set_title('cats')
plt.tight_layout()
Option 1: Create subplots from a dictionary of dataframes with long (tidy) data
Assumptions:
There is a dictionary of multiple dataframes of tidy data that are either:
Created by reading in from files
Created by separating a single dataframe into multiple dataframes
The categories, cat, may be overlapping, but all dataframes don't necessarily contain all values of cat
hue='cat'
This example uses a dict of dataframes, but a list of dataframes would be similar.
If the dataframes are wide, use pandas.DataFrame.melt to convert them to long form.
Because dataframes are being iterated through, there's no guarantee that colors will be mapped the same for each plot
A custom color map needs to be created from the unique 'cat' values for all the dataframes
Since the colors will be the same, place one legend to the side of the plots, instead of a legend in every plot
Tested in python 3.10, pandas 1.4.3, matplotlib 3.5.1, seaborn 0.11.2
Imports and Test Data
import pandas as pd
import numpy as np # used for random data
import matplotlib.pyplot as plt
from matplotlib.patches import Patch # for custom legend - square patches
from matplotlib.lines import Line2D # for custom legend - round markers
import seaborn as sns
import math import ceil # determine correct number of subplot
# synthetic data
df_dict = dict()
for i in range(1, 7):
np.random.seed(i) # for repeatable sample data
data_length = 100
data = {'cat': np.random.choice(['A', 'B', 'C'], size=data_length),
'x': np.random.rand(data_length), 'y': np.random.rand(data_length)}
df_dict[i] = pd.DataFrame(data)
# display(df_dict[1].head())
cat x y
0 B 0.944595 0.606329
1 A 0.586555 0.568851
2 A 0.903402 0.317362
3 B 0.137475 0.988616
4 B 0.139276 0.579745
# display(df_dict[6].tail())
cat x y
95 B 0.881222 0.263168
96 A 0.193668 0.636758
97 A 0.824001 0.638832
98 C 0.323998 0.505060
99 C 0.693124 0.737582
Create color mappings and plot
# create color mapping based on all unique values of cat
unique_cat = {cat for v in df_dict.values() for cat in v.cat.unique()} # get unique cats
colors = sns.color_palette('tab10', n_colors=len(unique_cat)) # get a number of colors
cmap = dict(zip(unique_cat, colors)) # zip values to colors
col_nums = 3 # how many plots per row
row_nums = math.ceil(len(df_dict) / col_nums) # how many rows of plots
# create the figue and axes
fig, axes = plt.subplots(row_nums, col_nums, figsize=(9, 6), sharex=True, sharey=True)
# convert to 1D array for easy iteration
axes = axes.flat
# iterate through dictionary and plot
for ax, (k, v) in zip(axes, df_dict.items()):
sns.scatterplot(data=v, x='x', y='y', hue='cat', palette=cmap, ax=ax)
sns.despine(top=True, right=True)
ax.legend_.remove() # remove the individual plot legends
ax.set_title(f'dataset = {k}', fontsize=11)
fig.tight_layout()
# create legend from cmap
# patches = [Patch(color=v, label=k) for k, v in cmap.items()] # square patches
patches = [Line2D([0], [0], marker='o', color='w', markerfacecolor=v, label=k, markersize=8) for k, v in cmap.items()] # round markers
# place legend outside of plot; change the right bbox value to move the legend up or down
plt.legend(title='cat', handles=patches, bbox_to_anchor=(1.06, 1.2), loc='center left', borderaxespad=0, frameon=False)
plt.show()
Option 2: Create subplots from a single dataframe with multiple separate datasets
The dataframes must be in a long form with the same column names.
This option uses pd.concat to combine multiple dataframes into a single dataframe, and .assign to add a new column.
See Import multiple csv files into pandas and concatenate into one DataFrame for creating a single dataframes from a list of files.
This option is easier because it doesn't require manually mapping colors to 'cat'
Combine DataFrames
# using df_dict, with dataframes as values, from the top
# combine all the dataframes in df_dict to a single dataframe with an identifier column
df = pd.concat((v.assign(dataset=k) for k, v in df_dict.items()), ignore_index=True)
# display(df.head())
cat x y dataset
0 B 0.944595 0.606329 1
1 A 0.586555 0.568851 1
2 A 0.903402 0.317362 1
3 B 0.137475 0.988616 1
4 B 0.139276 0.579745 1
# display(df.tail())
cat x y dataset
595 B 0.881222 0.263168 6
596 A 0.193668 0.636758 6
597 A 0.824001 0.638832 6
598 C 0.323998 0.505060 6
599 C 0.693124 0.737582 6
Plot a FacetGrid with seaborn.relplot
sns.relplot(kind='scatter', data=df, x='x', y='y', hue='cat', col='dataset', col_wrap=3, height=3)
Both options create the same result, however, it's less complicated to combine all the dataframes, and plot a figure-level plot with sns.relplot.
Building on #joris response above, if you have already established a reference to the subplot, you can use the reference as well. For example,
ax1 = plt.subplot2grid((50,100), (0, 0), colspan=20, rowspan=10)
...
df.plot.barh(ax=ax1, stacked=True)
Here is a working pandas subplot example, where modes is the column names of the dataframe.
dpi=200
figure_size=(20, 10)
fig, ax = plt.subplots(len(modes), 1, sharex="all", sharey="all", dpi=dpi)
for i in range(len(modes)):
ax[i] = pivot_df.loc[:, modes[i]].plot.bar(figsize=(figure_size[0], figure_size[1]*len(modes)),
ax=ax[i], title=modes[i], color=my_colors[i])
ax[i].legend()
fig.suptitle(name)
import numpy as np
import pandas as pd
imoprt matplotlib.pyplot as plt
fig, ax = plt.subplots(2,2)
df = pd.DataFrame({'A':np.random.randint(1,100,10),
'B': np.random.randint(100,1000,10),
'C':np.random.randint(100,200,10)})
for ax in ax.flatten():
df.plot(ax =ax)

How to create and save distinct scatterplots using matplotlib and nested 'for-loops' for labelled data?

I have a dataset containing 10 features and corresponding labels. I am using scatterplot to plot distinct pair of features to see which of them describe the labels perfectly (which means that total 45 plots will be created). In order to do that, I used a nested loop format. The code shows no error and I obtained all the plots as well. However, there is clearly something wrong with the code because each new scatterplot that gets created and saved is accumulating points from the previous ones as well. I am attaching the complete code which I used. How to fix this problem? Below is the link for raw dataset:
https://github.com/IITGuwahati-AI/Learning-Content/raw/master/Phase%203%20-%202020%20(Summer)/Week%201%20(Mar%2028%20-%20Apr%204)/assignment/data.txt
import pandas as pd
import matplotlib
from matplotlib import pyplot as plt
data_url ='https://raw.githubusercontent.com/diwakar1412/Learning-Content/master/DiwakarDas_184104503/datacsv.csv'
df = pd.read_csv(data_url)
df.head()
def transform_label(value):
if value >= 2:
return "BLUE"
else:
return "RED"
df["Label"] = df.Label.apply(transform_label)
df.head()
colors = {'RED':'r', 'BLUE':'b'}
fig, ax = plt.subplots()
for i in range(1,len(df.columns)):
for j in range(i+1,len(df.columns)):
for k in range(len(df[str(i)])):
ax.scatter(df[str(i)][k], df[str(j)][k], color=colors[df['Label'][k]])
ax.set_title('F%svsF%s' %(i,j))
ax.set_xlabel('%s' %i)
ax.set_ylabel('%s' %j)
plt.savefig('F%svsF%s' %(i,j))
Dataset
You have to create a new figure each time. Try to put
fig, ax = plt.subplots()
inside your loop:
for i in range(1,len(df.columns)):
for j in range(i+1,len(df.columns)):
fig, ax = plt.subplots() # <-------------- here
for k in range(len(df[str(i)])):
ax.scatter(df[str(i)][k], df[str(j)][k], color=colors[df['Label'][k]])
ax.set_title('F%svsF%s' %(i,j))
ax.set_xlabel('%s' %i)
ax.set_ylabel('%s' %j)
plt.savefig('/Users/Alessandro/Desktop/tmp/F%svsF%s' %(i,j))

How to do kde plot in pyplot.subplots context? [duplicate]

I have a few Pandas DataFrames sharing the same value scale, but having different columns and indices. When invoking df.plot(), I get separate plot images. what I really want is to have them all in the same plot as subplots, but I'm unfortunately failing to come up with a solution to how and would highly appreciate some help.
You can manually create the subplots with matplotlib, and then plot the dataframes on a specific subplot using the ax keyword. For example for 4 subplots (2x2):
import matplotlib.pyplot as plt
fig, axes = plt.subplots(nrows=2, ncols=2)
df1.plot(ax=axes[0,0])
df2.plot(ax=axes[0,1])
...
Here axes is an array which holds the different subplot axes, and you can access one just by indexing axes.
If you want a shared x-axis, then you can provide sharex=True to plt.subplots.
You can see e.gs. in the documentation demonstrating joris answer. Also from the documentation, you could also set subplots=True and layout=(,) within the pandas plot function:
df.plot(subplots=True, layout=(1,2))
You could also use fig.add_subplot() which takes subplot grid parameters such as 221, 222, 223, 224, etc. as described in the post here. Nice examples of plot on pandas data frame, including subplots, can be seen in this ipython notebook.
You can plot multiple subplots of multiple pandas data frames using matplotlib with a simple trick of making a list of all data frame. Then using the for loop for plotting subplots.
Working code:
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
# dataframe sample data
df1 = pd.DataFrame(np.random.rand(10,2)*100, columns=['A', 'B'])
df2 = pd.DataFrame(np.random.rand(10,2)*100, columns=['A', 'B'])
df3 = pd.DataFrame(np.random.rand(10,2)*100, columns=['A', 'B'])
df4 = pd.DataFrame(np.random.rand(10,2)*100, columns=['A', 'B'])
df5 = pd.DataFrame(np.random.rand(10,2)*100, columns=['A', 'B'])
df6 = pd.DataFrame(np.random.rand(10,2)*100, columns=['A', 'B'])
#define number of rows and columns for subplots
nrow=3
ncol=2
# make a list of all dataframes
df_list = [df1 ,df2, df3, df4, df5, df6]
fig, axes = plt.subplots(nrow, ncol)
# plot counter
count=0
for r in range(nrow):
for c in range(ncol):
df_list[count].plot(ax=axes[r,c])
count+=1
Using this code you can plot subplots in any configuration. You need to define the number of rows nrow and the number of columns ncol. Also, you need to make list of data frames df_list which you wanted to plot.
You can use the familiar Matplotlib style calling a figure and subplot, but you simply need to specify the current axis using plt.gca(). An example:
plt.figure(1)
plt.subplot(2,2,1)
df.A.plot() #no need to specify for first axis
plt.subplot(2,2,2)
df.B.plot(ax=plt.gca())
plt.subplot(2,2,3)
df.C.plot(ax=plt.gca())
etc...
You can use this:
fig = plt.figure()
ax = fig.add_subplot(221)
plt.plot(x,y)
ax = fig.add_subplot(222)
plt.plot(x,z)
...
plt.show()
You may not need to use Pandas at all. Here's a matplotlib plot of cat frequencies:
x = np.linspace(0, 2*np.pi, 400)
y = np.sin(x**2)
f, axes = plt.subplots(2, 1)
for c, i in enumerate(axes):
axes[c].plot(x, y)
axes[c].set_title('cats')
plt.tight_layout()
Option 1: Create subplots from a dictionary of dataframes with long (tidy) data
Assumptions:
There is a dictionary of multiple dataframes of tidy data that are either:
Created by reading in from files
Created by separating a single dataframe into multiple dataframes
The categories, cat, may be overlapping, but all dataframes don't necessarily contain all values of cat
hue='cat'
This example uses a dict of dataframes, but a list of dataframes would be similar.
If the dataframes are wide, use pandas.DataFrame.melt to convert them to long form.
Because dataframes are being iterated through, there's no guarantee that colors will be mapped the same for each plot
A custom color map needs to be created from the unique 'cat' values for all the dataframes
Since the colors will be the same, place one legend to the side of the plots, instead of a legend in every plot
Tested in python 3.10, pandas 1.4.3, matplotlib 3.5.1, seaborn 0.11.2
Imports and Test Data
import pandas as pd
import numpy as np # used for random data
import matplotlib.pyplot as plt
from matplotlib.patches import Patch # for custom legend - square patches
from matplotlib.lines import Line2D # for custom legend - round markers
import seaborn as sns
import math import ceil # determine correct number of subplot
# synthetic data
df_dict = dict()
for i in range(1, 7):
np.random.seed(i) # for repeatable sample data
data_length = 100
data = {'cat': np.random.choice(['A', 'B', 'C'], size=data_length),
'x': np.random.rand(data_length), 'y': np.random.rand(data_length)}
df_dict[i] = pd.DataFrame(data)
# display(df_dict[1].head())
cat x y
0 B 0.944595 0.606329
1 A 0.586555 0.568851
2 A 0.903402 0.317362
3 B 0.137475 0.988616
4 B 0.139276 0.579745
# display(df_dict[6].tail())
cat x y
95 B 0.881222 0.263168
96 A 0.193668 0.636758
97 A 0.824001 0.638832
98 C 0.323998 0.505060
99 C 0.693124 0.737582
Create color mappings and plot
# create color mapping based on all unique values of cat
unique_cat = {cat for v in df_dict.values() for cat in v.cat.unique()} # get unique cats
colors = sns.color_palette('tab10', n_colors=len(unique_cat)) # get a number of colors
cmap = dict(zip(unique_cat, colors)) # zip values to colors
col_nums = 3 # how many plots per row
row_nums = math.ceil(len(df_dict) / col_nums) # how many rows of plots
# create the figue and axes
fig, axes = plt.subplots(row_nums, col_nums, figsize=(9, 6), sharex=True, sharey=True)
# convert to 1D array for easy iteration
axes = axes.flat
# iterate through dictionary and plot
for ax, (k, v) in zip(axes, df_dict.items()):
sns.scatterplot(data=v, x='x', y='y', hue='cat', palette=cmap, ax=ax)
sns.despine(top=True, right=True)
ax.legend_.remove() # remove the individual plot legends
ax.set_title(f'dataset = {k}', fontsize=11)
fig.tight_layout()
# create legend from cmap
# patches = [Patch(color=v, label=k) for k, v in cmap.items()] # square patches
patches = [Line2D([0], [0], marker='o', color='w', markerfacecolor=v, label=k, markersize=8) for k, v in cmap.items()] # round markers
# place legend outside of plot; change the right bbox value to move the legend up or down
plt.legend(title='cat', handles=patches, bbox_to_anchor=(1.06, 1.2), loc='center left', borderaxespad=0, frameon=False)
plt.show()
Option 2: Create subplots from a single dataframe with multiple separate datasets
The dataframes must be in a long form with the same column names.
This option uses pd.concat to combine multiple dataframes into a single dataframe, and .assign to add a new column.
See Import multiple csv files into pandas and concatenate into one DataFrame for creating a single dataframes from a list of files.
This option is easier because it doesn't require manually mapping colors to 'cat'
Combine DataFrames
# using df_dict, with dataframes as values, from the top
# combine all the dataframes in df_dict to a single dataframe with an identifier column
df = pd.concat((v.assign(dataset=k) for k, v in df_dict.items()), ignore_index=True)
# display(df.head())
cat x y dataset
0 B 0.944595 0.606329 1
1 A 0.586555 0.568851 1
2 A 0.903402 0.317362 1
3 B 0.137475 0.988616 1
4 B 0.139276 0.579745 1
# display(df.tail())
cat x y dataset
595 B 0.881222 0.263168 6
596 A 0.193668 0.636758 6
597 A 0.824001 0.638832 6
598 C 0.323998 0.505060 6
599 C 0.693124 0.737582 6
Plot a FacetGrid with seaborn.relplot
sns.relplot(kind='scatter', data=df, x='x', y='y', hue='cat', col='dataset', col_wrap=3, height=3)
Both options create the same result, however, it's less complicated to combine all the dataframes, and plot a figure-level plot with sns.relplot.
Building on #joris response above, if you have already established a reference to the subplot, you can use the reference as well. For example,
ax1 = plt.subplot2grid((50,100), (0, 0), colspan=20, rowspan=10)
...
df.plot.barh(ax=ax1, stacked=True)
Here is a working pandas subplot example, where modes is the column names of the dataframe.
dpi=200
figure_size=(20, 10)
fig, ax = plt.subplots(len(modes), 1, sharex="all", sharey="all", dpi=dpi)
for i in range(len(modes)):
ax[i] = pivot_df.loc[:, modes[i]].plot.bar(figsize=(figure_size[0], figure_size[1]*len(modes)),
ax=ax[i], title=modes[i], color=my_colors[i])
ax[i].legend()
fig.suptitle(name)
import numpy as np
import pandas as pd
imoprt matplotlib.pyplot as plt
fig, ax = plt.subplots(2,2)
df = pd.DataFrame({'A':np.random.randint(1,100,10),
'B': np.random.randint(100,1000,10),
'C':np.random.randint(100,200,10)})
for ax in ax.flatten():
df.plot(ax =ax)

Generate multiple plots with for loop; display output in matplotlib subplots

Objective: To generate 100 barplots using a for loop, and display the output as a subplot image
Data format: Datafile with 101 columns. The last column is the X variable; the remaining 100 columns are the Y variables, against which x is plotted.
Desired output: Barplots in 5 x 20 subplot array, as in this example image:
Current approach: I've been using PairGrid in seaborn, which generates an n x 1 array: .
where input == dataframe; input3 == list from which column headers are called:
for i in input3:
plt.figure(i)
g = sns.PairGrid(input,
x_vars=["key_variable"],
y_vars=i,
aspect=.75, size=3.5)
g.map(sns.barplot, palette="pastel")
Does anyone have any ideas how to solve this?
To give an example of how to plot 100 dataframe columns over a grid of 20 x 5 subplots:
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
data = np.random.rand(3,101)
data[:,0] = np.arange(2,7,2)
df = pd.DataFrame(data)
fig, axes = plt.subplots(nrows=5, ncols=20, figsize=(21,9), sharex=True, sharey=True)
for i, ax in enumerate(axes.flatten()):
ax.bar(df.iloc[:,0], df.iloc[:,i+1])
ax.set_xticks(df.iloc[:,0])
plt.show()
You can try to use matplotlob's subplots to create the plot grid and pass the axis to the barplot. The axis indexing you could do using a nested loop...

searborn annotate overwrites previous

I am trying to loop through chunks of pandas dataframe and append chart to pdf. here is sample code:
import random
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns
from matplotlib.backends import backend_pdf
df = pd.DataFrame({'a':[a + + random.random() for a in range(12)] ,
'b':[ b + random.random() for b in range(12,24)]})
print(df)
chunk_size = 3 # number of rows in heatmap
n_chunks = len(df)//chunk_size # number of pages in heatmap pdf
with backend_pdf.PdfPages('chart.pdf') as pdf_pages:
for e,(k,g) in enumerate(df.groupby(np.arange(len(df))//chunk_size)):
#print(k,g.shape)
snsplot = sns.heatmap(g, annot=True, cbar=False, linewidths=.5) #fmt="d",cmap="YlGnBu",
pdf_pages.savefig(snsplot.figure)
This code adds pages alright, but all the annotation from previous pages seems to be overlayed (preserved) in all the pages that follow.
Every time you call sns.heatmap it is using plt.gca() so all of your plotting is going to the same Axes object (each loop might be getting slower too as all of the previous artists are rendered, but just occluded by the latest one).
I suggest something like
fig, ax = plt.subplots()
with backend_pdf.PdfPages('chart.pdf') as pdf_pages:
for e,(k,g) in enumerate(df.groupby(np.arange(len(df))//chunk_size)):
#print(k,g.shape)
ax.cla()
snsplot = sns.heatmap(g, annot=True, cbar=False, linewidths=.5, ax=ax)
pdf_pages.savefig(snsplot.figure)
Which passes in an Axes object so seaborn knows where to draw and explicitly clears it in each loop.

Categories

Resources