I am building a webapp (a simple flask site) that uses docker. I want my development code to not reside within docker, but be executed by the development environment (using python3) I have defined in my dockerfile. I know that I can use the COPY . . syntax in a dockerfile to copy my source code into the image for execution, but that violates my aim of separating the container from my source. Is there a way to have a docker container read and execute the code that it is in the directory I run the docker container run command from?
Right now my container uses the copy company to copy all the source code into the container. It then uses the CMD command to automatically run the flask app:
CMD [ "python", "flask_app/server.py" ]
(I'm storing all my flask code in a directory called flask_app). I'm assuming this works because all this has been copied into the container (according to the specifications given in the dockerfile) and is being executed when I run the container. I would like for the container to instead access and execute flask_app/server.py without copying this information into itself -- is this possible? If so, how?
Instead of using COPY to move the code into the container, you'll use a "bind mount" (https://docs.docker.com/storage/bind-mounts/).
When you run the container, you'll do it with a command like this:
docker run --mount type=bind,source=<path_outside_container>,target=<path_inside_container> <image_tag>
For portability, I recommending putting this line in a script intended to be run from the repository root, and having the <path_outside_container> be "$(pwd)", so that it will work on other people's computers. You'll need to adjust <path_inside_container> and your CMD depending on where you want the code to live inside the container.
(Obviously you can also put whatever other options you'd like on the command, like --it --rm or -p <whatever>.)
Related
I have cloned a repository of an API built with python on my local machine and my goal is to be able to send requests and receive responses locally.
I'm not familiar python but the code is very readable and easy to understand, however the repository contains some dependencies and configuration files to Dockerise (and I'm not familiar with Docker and containers too) .
so what are the steps to follow in order to be able to interact with the API locally?.
Here are some files in the repository for config and requirements :
requirements.txt file :
fastapi==0.70.0
pytest==7.0.1
requests==2.27.1
uvicorn==0.15.0
Dockerfile file :
FROM tiangolo/uvicorn-gunicorn:python3.9
COPY ./requirements.txt /requirements.txt
RUN pip install -r /requirements.txt
COPY ./app /app
i already installed Python3 and docker so what's next ?
Adjust Dockerfile
Assuming all code is in the /app directory you have already copied over all your code and installed all the dependencies required for the application.
But you are missing - at least (see disclaimer) - one essential line in the Dockerfile which is actually the most important line as it is the CMD command to tell Docker which command/ process should be executed when the container starts.
I am not familiar with the particular base image you are using (which is defined using the FROM command) but after googling I found this repo which suggests the following line, which does make a lot of sense to me as it starts a web server:
# open port 80 on the container to make it accesable from the outside
EXPOSE 80
# line as described in repo to start the web server
CMD ["uvicorn", "app.main:app", "--host", "0.0.0.0", "--port", "80"]
This should start the web server on port 80 using the application stored in a variable app in your main.py when the container starts.
Build and run container
When you have added that you need to build your image using docker build command.
docker build -t asmoun/my-container .
This builds an container image asmoun/my-container using the Dockerfile in the current directory, hence the .. So make sure you execute that when in the directory with the Dockerfile. This will take some time as the base image has to download and dependencies need to be installed.
You now have an image that you can run using docker run command:
docker run --name my-fastapi-container -d -p 80:80 asmoun/my-container
This will start a container called my-fastapi-container using the image asmoun/my-container in detached mode (-d option that makes sure your TTY is not attached to the container) and define a port mapping, which maps the port 80 on the host to port 80 on the container, which we have previously exposed in the Dockerfile (EXPOSE 80).
You should now see some ID getting printed to your console. This means the container has started. You can check its state using docker ps -a and you should see it marked as running. If it is, you should be able to connect to localhost:80 now. If it is not use docker logs my-fastapi-container to view the logs of the container and you'll hopefully learn more.
Disclaimer
Please be aware that this is only a minimal guide on how you should be able to get a simple FastAPI container up and running, but some parameters could well be different depending on the application (e.g. name of main.py could be server.py or similar stuff) in which case you will need to adjust some of the parameters but the overall process (1. adjust Dockerfile, 2. build container, 3. run container) should work. It's also possible that your application expects some other stuff to be present in the container which would need to be defined in the Dockerfile but neither me, nor you (presumably) know this, as the Dockerfile provided seems to be incomplete. This is just a best effort answer.
I have tried to link all relevant resources and commands so you can have a look at what some of them do and which options/ parameters might be of interest for you.
I am starting to get a hand on docker and try to containerized some of the applications I use. Thanks to the tutorial I was able to create docker images and containers but now I am trying to thing about the most efficient and practical ways to do things.
To present my use-case, I have a python code (let's call it process.py) that takes as an input a single .jpg image, does some operations on this image, and then output the processed .jpg image.
Normally I would run it through :
python process.py -i path_of_the_input_image -o path_of_the_output_image
Then, the way I do the connection input/output with my docker is the following. First I create the docker file :
FROM python:3.6.8
COPY . /app
WORKDIR /app
RUN pip install --upgrade pip
RUN pip install -r requirements.txt
CMD python ./process.py -i ./input_output/input.jpg -o ./input_output/output.jpg
And then after building the image, I run docker run mapping the a local folder with the input_output folder of docker:
docker run -v C:/local_folder/:/app/input_output my_docker_image
This seems to work, but is not really practical, as I have to create locally a specific folder to mount it to the docker container. So here are the questions I am asking myself :
Is there a more practical ways of doings things ? To directly send one single input file and directly receive one single output files from the output of a docker container ?
When I run the docker image, what happens (If I understand correctly) is that it will create a docker container that will run my program once process.py once and then just sits there doing nothing. Even after finishing running process.py it will still be there listed in the command "docker ps -a". Is this behaviour expected ? Is there a way to automatically delete finished container ? Am I using docker run the right way ?
Is there a more practical way of having a container running continuously and on which I can query to run the program process.py on demand with a given input ?
I have a python code (let's call it process.py) that takes as an input a single .jpg image, does some operations on this image, and then output the processed .jpg image.
That's most efficiently done without Docker; just run the python command you already have. If your application has interesting Python library dependencies, you can install them in a virtual environment to avoid conflicts with the system Python installation.
When I run the Docker image...
...the container runs its main command (docker run command arguments, Dockerfile CMD, possibly combined with an entrypoint from the some sources), and when that command exits, the container exits. It will be listed in docker ps -a output, but as "Stopped" (probably with status 0 for a successful completion). You can docker run --rm to have the container automatically delete itself.
Is there a more practical way of having a container running continuously and on which I can query to run the program process.py on demand with a given input ?
Wrap it in a network service, like a Flask application. As long as this is running, you can use a tool like curl to do an HTTP POST with the input JPEG file as the body, and get the output JPEG file as the response. Avoid using local files and Docker together whenever that's an option (prefer network I/O for process inputs and outputs; prefer a database to local-file storage).
Why are volume mounts not practical?
I would argue that Dockerising your application is not practical, but you've chosen to do so for, presumably very good, reasons. Volume mounts are simply an extension to this. If you want to get data in/out of your container, the 'normal' way to do this is by using volume mounts as you have done. Sure, you could use docker cp to copy the files manually, but that's not really practical either.
As far as the process exiting goes, normally, once the main process exits, the container exits. docker ps -a shows stopped containers as well as running ones. You should see that it says Exited n minutes(hours, days etc) ago. This means that your container has run and exited, correctly. You can remove it with docker rm <containerid>.
docker ps (no -a) will only show the running ones, btw.
If you use the --rm flag in your Docker run command, it will be removed when it exits, so you won't see it in the ps -a output. Stopped containers can be started again, but that's rather unusual.
Another solution might be to change your script to wait for incoming files and process them as they are received. Then you can leave the container running, and it will just process them as needed. If doing this, make sure that your idle loop has a sleep or something in it to ensure that you don't consume too many resources.
Im working on a OpenCv project and as many know, the instalation of that on windows is iritating. So, what i want to do is to run the project in a docker container and store the output to a folder on the host computer. In simple terms it is something like this:
Program python / opencv code
Build Docker image
Run Docker image --> Saves the output data somewhere
In some way - get access to the output data on host.
Now, i have been trying to find many ways of dooing this, and i will probably at a later time send it using other means. However, for development i need this slightly more direct approach. It also has somthing to do with colaboration with others.
Simple Docker file that can be used as the base:
FROM python:3
WORKDIR /usr/src/app
COPY . .
CMD [ "python", "./script.py" ]
Lets say that script.py creates a file called output.txt. I want that output.txt stored at my E: drive.
How to do this automatically - without having to do multiple comandline operations?
TLDR; How to get files from Docker container to host? Goal: File physically stored on E:
There are two ways to do this. First is to mount a docker volume.
docker run --name=name -d -v /path/in/host:/path/in/docker name
By mounting a volume like this, whatever you write in the directory you've mounted will be written in the host automatically. Check this for more information on volumes.
The second way is to copy the files from a container to the host like this
docker cp <containerId>:/file/path/within/container /host/path/target
Check docs here for more info on this.
I'm trying to create a container to run a program. I'm using a pre-configured image and now I need to run the program. However, it's a machine learning program and I need a dataset from my computer to run.
The file is too large to be copied to the container. It would be best if the program running in the container searched the dataset in a local directory of my computer, but I don't know how I can do this.
Well, I have made the shared folder from my machine appeared using docker run -it -v ~/Volumes/Data/Studies/PhD\Work/gitlab/J2/ydk-py:/ydk-py ydkdev/ydk-py in the container, but all files in folder ydk-py are not shown. This is the safe, usually-desired behavior. But for development and instance setup, it would be immensely useful to have access to an existing file structure.
docker run with -v will automatically mount sub-directories. In your case you are using relative path, which you need to use absolute path as per this documentation.
So change your command from
docker run -it -v ~/Volumes/Data/Studies/PhD\Work/gitlab/J2/ydk-py:/ydk-py ydkdev/ydk-py
to
docker run -it -v /home/<what ever user>/Volumes/Data/Studies/PhD\Work/gitlab/J2/ydk-py:/ydk-py ydkdev/ydk-py
it will work.
Make sure you have enough permissions on directory that you are trying to mount.
What's the proper development workflow for code that runs in a Docker container?
Solomon Hykes said that the "official" workflow involves building and running a new Docker image for each Git commit. That makes sense, but what if I want to test a change before committing it to the Git repo?
I can think of two ways to do it:
Run the code on a local development server (e.g., the Django development server). Edit a file; test on the dev server; make a Git commit; rebuild the Docker image with the new code; test again on the local Docker container.
Don't run a local dev server. Instead, build and run a new Docker image each time I edit a file, and then test the change on local Docker container.
Both approaches are pretty inefficient. Is there a better way?
A more efficient way is to run a new container from the latest image that was built (which then has the latest code).
You could start that container starting a bash shell so that you will be able to edit files from inside the container:
docker run -it <some image> bash -l
You would then run the application in that container to test the new code.
Another way to alter files in that container is to start it with a volume. The idea is to alter files in a directory on the docker host instead of messing with files from the command line from the container itself:
docker run -it -v /home/joe/tmp:/data <some image>
Any file that you will put in /home/joe/tmp on your docker host will be available under /data/ in the container. Change /data to whatever path is suitable for your case and hack away.