Remove opening and closing parenthesis with word in pandas - python

Given a data frame:
df =
multi
0 MULTIPOLYGON(((3 11, 2 33)))
1 MULTIPOLYGON(((4 22, 5 66)))
I was trying to remove the word 'MULTIPOLYGON', and parenthesis '(((', ')))'
My try:
df['multi'] = df['multi'].str.replace(r"\(.*\)","")
df['multi'] = df['multi'].map(lambda x: x.lstrip('MULTIPOLYGON()').rstrip('aAbBcC'))
df.values =
array([[''],
[''],
...
[''],
[''],
[''],
['7.5857754821 44.9628409423']
Desired output:
df =
multi
3 11, 2 33
4 22, 5 6

Try this:
import pandas as pd
import re
def f(x):
x = ' '.join(re.findall(r'[0-9, ]+',x))
return x
def f2(x):
x = re.findall(r'[0-9, ]+',x)
return pd.Series(x[0].split(','))
df =pd.DataFrame({'a':['MULTIPOLYGON(((3 11, 2 33)))' ,'MULTIPOLYGON(((4 22, 5 6)))']})
df['a'] = df['a'].apply(f)
print(df)
#or for different columns you can do
df =pd.DataFrame({'a':['MULTIPOLYGON(((3 11, 2 33)))' ,'MULTIPOLYGON(((4 22, 5 6)))']})
#df['multi'] = df.a.str.replace('[^0-9. ]', '', regex=True)
#print(df)
list_of_cols = ['c1','c2']
df[list_of_cols] = df['a'].apply(f2)
del df['a']
print(df)
output:
a
0 3 11, 2 33
1 4 22, 5 6
c1 c2
0 3 11 2 33
1 4 22 5 6
[Finished in 2.5s]

You can also use str.replace with a regex:
# removes anything that's not a digit or a space or a dot
df['multi'] = df.multi.str.replace('[^0-9\. ]', '', regex=True)#changing regex

You can use df.column.str in the following way.
df['a'] = df['a'].str.findall(r'[0-9.]+')
df = pd.DataFrame(df['a'].tolist())
print(df)
output:
0 1
0 3.49 11.10
1 4.49 22.12
This will work for any number of columns. But in the end you have to name those columns.
df.columns = ['a'+str(i) for i in range(df.shape[1])]
This method will work even when some rows have different number of numerical values. like
df =pd.DataFrame({'a':['MULTIPOLYGON(((3.49)))' ,'MULTIPOLYGON(((4.49 22.12)))']})
a
0 MULTIPOLYGON(((3.49)))
1 MULTIPOLYGON(((4.49 22.12)))
So the expected output is
0 1
0 3.49 None
1 4.49 22.12
After naming the columns using,
df.columns = ['a'+str(i) for i in range(df.shape[1])]
You get,
a0 a1
0 3.49 None
1 4.49 22.12

Apply is a rather slow method in pandas since it's basically a loop that iterates over each row and apply's your function. Pandas has vectorized methods, we can use str.extract here to extract your pattern:
df['multi'] = df['multi'].str.extract('(\d\.\d+\s\d+\.\d+)')
multi
0 3.49 11.10
1 4.49 22.12

Related

how to apply multiplication within pandas dataframe

please advice how to get the following output:
df1 = pd.DataFrame([['1, 2', '2, 2','3, 2','1, 1', '2, 1','3, 1']])
df2 = pd.DataFrame([[1, 2, 100, 'x'], [3, 4, 200, 'y'], [5, 6, 300, 'x']])
import numpy as np
df22 = df2.rename(index = lambda x: x + 1).set_axis(np.arange(1, len(df2.columns) + 1), inplace=False, axis=1)
f = lambda x: df22.loc[tuple(map(int, x.split(',')))]
df = df1.applymap(f)
print (df)
Output:
0 1 2 3 4 5
0 2 4 6 1 3 5
df1 is 'address' of df2 in row, col format (1,2 is first row, second column which is 2, 2,2 is 4 3,2 is 6 etc.)
I need to add values from the 3rd and 4th columns to get something like (2*100x, 4*200y, 6*300x, 1*100x, 3*200y, 5*300x)
the output should be 5000(sum of x's and y's), 0.28 (1400/5000 - % of y's)
It's not clear to me why you need df1 and df... Maybe your question is lacking some details?
You can compute your values directly:
df22['val'] = (df22[1] + df22[2])*df22[3]
Output:
1 2 3 4 val
1 1 2 100 x 300
2 3 4 200 y 1400
3 5 6 300 x 3300
From there it's straightforward to compute the sums (total and grouped by column 4):
total = df22['val'].sum() # 5000
y_sum = df22.groupby(4).sum().loc['y', 'val'] # 1400
print(y_sum/total) # 0.28
Edit: if df1 doesn't necessarily contain all members of columns 1 and 2, you could loop through it (it's not clear in your question why df1 is a Dataframe or if it can have more than one row, therefore I flattened it):
df22['val'] = 0
for c in df1.to_numpy().flatten():
i, j = map(int, c.split(','))
df22.loc[i, 'val'] += df22.loc[i, j]*df22.loc[i, 3]
This gives you the same output as above for your example but will ignore values that are not in df1.

Evaluating an Expression using data frames

I have a df
Patient ID
A 72
A SD75
A 74
A 74
B 71
C 72
And
I have an expression
exp = '((71+72)*((73+75)+SD75))*((74+76)+SD76))'
Now I need to evaluate this expression with ones and zeros if there's a match in the df for each of the three patients A, B , C . A has a match with ID 72, SD75, 74 so the expressions should be
A- '((0+1)*((0+0)+1))*((1+0)+0))'
B- '((1+0)*((0+0)+0))*((0+0)+0))'
C- '((0+1)*((0+0)+0))*((0+0)+0))'
And My final df_output should look like this
Patient FinalVal
A 1
B 0
C 0
The FinalVal can be obtained by eval(exp) after replacing the ID's with 1's and O's
so Far here is where I reached. When I am replacing the ID 75 with 0 the SD75 is becoming SD0 and that's where I am stuck
import pandas as pd
import re
exp = '((71+72)*((73+75)+SD75))*((74+76)+SD76))'
mylist = re.sub(r'[^\w]', ' ', exp).split()
distinct_pt = df.Patient.drop_duplicates().dropna()
df_output = pd.DataFrame(distinct_pt)
df_output['Exp'] = exp
for index, row in df_output.iterrows():
new_df = df[df.Patient == row['Patient']]
new_dfl = new_df['ID'].tolist()
#print(new_dfl)
for j in mylist:
if j in new_dfl:
#print(j)
row['Exp'] = row['Exp'].replace(j,'1')
else:
row['Exp'] = row['Exp'].replace(j,'1')
We can try creating an indicator DataFrame using a Series.get_dummies to create indicator columns for each value in the ID column, then reduce to a single row per Patient via groupby max:
# Convert to ID columns to binary indicators
indicator_df = df.set_index('Patient')['ID'].str.get_dummies()
# Reduce to 1 row per Patient
indicator_df = indicator_df.groupby(level=0).max()
indicator_df:
71 72 74 SD75
Patient
A 0 1 1 1
B 1 0 0 0
C 0 1 0 0
Now we can reindex from the expression terms to create missing columns. np.unique is used to ensure that duplicate terms in the expression do not result in duplicate columns in indicator_df (this can be omitted if it is guaranteed there are no duplicate terms):
exp = '(((71+72)*((73+75)+SD75))*((74+76)+SD76))'
# Extract terms from expression
cols = re.sub(r'[^\w]', ' ', exp).split()
# Convert to ID columns to binary indicators
indicator_df = df.set_index('Patient')['ID'].str.get_dummies()
# Reduce to 1 row per Patient
indicator_df = indicator_df.groupby(level=0).max()
# Ensure All expression terms are present
indicator_df = indicator_df.reindex(
columns=np.unique(cols), # prevent duplicate cols
fill_value=0 # Added cols are filled with 0
)
indicator_df:
71 72 73 74 75 76 SD75 SD76
Patient
A 0 1 0 1 0 0 1 0
B 1 0 0 0 0 0 0 0
C 0 1 0 0 0 0 0 0
Now if we alter the exp slightly by surrounding these new columns names with backticks (`) we can use DataFrame.eval to compute the expression:
exp = '(((71+72)*((73+75)+SD75))*((74+76)+SD76))'
# Extract terms from expression
cols = re.sub(r'[^\w]', ' ', exp).split()
# create indicator_df (chained)
indicator_df = (
df.set_index('Patient')['ID']
.str.get_dummies()
.groupby(level=0).max()
.reindex(columns=np.unique(cols), fill_value=0)
)
# Eval the expression and create the resulting DataFrame
result = indicator_df.eval(
# Add Backticks around columns names
re.sub(r'(\w+)', r'`\1`', exp)
).reset_index(name='FinalVal')
result:
Patient FinalVal
0 A 1
1 B 0
2 C 0
The backticks are necessary to indicate these values represent column names, and not numeric values:
re.sub(r'(\w+)', r'`\1`', exp)
# (((`71`+`72`)*((`73`+`75`)+`SD75`))*((`74`+`76`)+`SD76`))
Notice the difference between 71 with backticks vs without:
# Column '71' + the number 71
pd.DataFrame({'71': [1, 2, 3]}).eval('B = `71` + 71')
71 B
0 1 72
1 2 73
2 3 74
Alternatively, the indicator_df can be created with a crosstab and clip:
exp = '(((71+72)*((73+75)+SD75))*((74+76)+SD76))'
# Extract terms from expression
cols = re.sub(r'[^\w]', ' ', exp).split()
indicator_df = (
pd.crosstab(df['Patient'], df['ID'])
.clip(upper=1) # Restrict upperbound to 1
.reindex(columns=np.unique(cols), fill_value=0)
)
# Eval the expression and create the resulting DataFrame
result = indicator_df.eval(
# Add Backticks around columns names
re.sub(r'(\w+)', r'`\1`', exp)
).reset_index(name='FinalVal')
Setup and imports used:
import re
import numpy as np
import pandas as pd
df = pd.DataFrame({
'Patient': ['A', 'A', 'A', 'A', 'B', 'C'],
'ID': ['72', 'SD75', '74', '74', '71', '72']
})
I would not try to parse that expression and evaluate it. Instead, I would create dummy or indicator variables for the ID column. (Indicator variables are also called one-hot encoded variables.) With these indicators, you can then calculate your expression using a standard function.
Here's how to do it with Pandas and scikit-learn. I am using scikit-learn's OneHotEncoder. An alternative might be Panda's get_dummies(), but the OneHotEncoder allows you to specify the categories.
import pandas as pd
from sklearn.preprocessing import OneHotEncoder
variables = [71, 72, 73, 74, 75, 76, "SD75", "SD76"]
enc = OneHotEncoder(categories=[variables], sparse=False)
df = pd.DataFrame({
"Patient": ["A"] * 4 + ["B", "C"],
"ID": [72, "SD75", 74, 74, 71, 72]
})
# Create one-hot encoded variables, also called dummy or indicator variables
df_one_hot = pd.DataFrame(
enc.fit_transform(df[["ID"]]),
columns=variables,
index=df.Patient
)
# Aggregate dummy or one-hot variables, so there's one for each patient
# You may need to alter the aggretaion function
# I chose max because it matched your example
# but perhaps sum might be better (e.g. patient A has two entires for 74, should that be a value of 2 for variable 74?
one_hot_patient = df_one_hot.groupby(level="Patient").agg(max)
# Finally, evaluate your expression
# Create a function to calcualte the output given a data frame
def my_expr(DF):
out = (DF[71] + DF[72]) \
* (DF[73] + DF[75] + DF["SD75"]) \
* (DF[74]+DF[76]+DF["SD76"])
return out
output = one_hot_patient.assign(FinalVal=my_expr)
Result
71 72 73 74 75 76 SD75 SD76 FinalVal
Patient
A 0.0 1.0 0.0 1.0 0.0 0.0 1.0 0.0 1.0
B 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
C 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Using sub instead of replace should work:
for j in mylist:
if j in new_dfl:
exp = re.sub(r'\b{}'.format(j), '1', exp)
else:
exp = re.sub(r'\b{}'.format(j), '0', exp)
Another way that would work for this exact scenario is to sort mylist in descending order so the items preceded by SD are iterated before the others.
mylist = re.sub(r'[^\w]', ' ', exp).split()
mylist.sort(reverse=True)

get partial sum of values in df column once they reach a certain threshold

I need to start adding values in one of the columns in my df and return a row where the sum reaches a certain threshold. What is the easiest way to do it?
e.g.
threshold = 86
values ID
1 42 xxxxx
2 34 yyyyy
3 29 vvvvv
4 28 eeeee
should return line 3
import pandas as pd
df = pd.DataFrame(dict(values=[42, 34, 29, 28], ID=['x', 'y', 'z', 'e']))
threshold = 86
idx = df['values'].cumsum().searchsorted(threshold)
print(df.iloc[idx])
Try it here
Output:
values 29
ID z
Name: 2, dtype: object
Note that df.values has a special pandas meaning so df['values'] is different and necessary.
This should work
df['new_values'] = df['values'].cumsum()
rows = df[df['new_values']==threshold].index.to_list()
Another way
df['values'].cumsum().ge(threshold).idxmax()
Out[131]: 3
df.loc[df['values'].cumsum().ge(threshold).idxmax()]
Out[133]:
values 29
ID vvvvv
Name: 3, dtype: object

pandas multiple column replace

I have df as given below which I am splitting column wise.
>>> df
ID Started
0 NaN 20.06.2017 13:19:04
1 NaN 10.04.2018 04:48:32
2 WBTS-1509 06.11.2017 10:28:14
3 WBTS-1509 03.03.2018 10:12:29
4 WBTS-1117 07.03.2018 17:04:28
df['Started'].apply(lambda x: x.split(':')[0])
df['ID'].apply(lambda x: x.split('-')[1])
I would like to set 3 list variables
col_names = ['ID' , 'Started']
splitby = ['-' , ':']
index_after_split = [1 , 0]
do splitting using one line (avoiding loop) using inplace = True.
Please help me do same.
Thanks
I think loop is necessary here with str.split and indexing by str[]:
for a,b,c, in zip(col_names, splitby, index_after_split):
df[a] = df[a].str.split(b).str[c]
print (df)
ID Started
0 NaN 20.06.2017 13
1 NaN 10.04.2018 04
2 1509 06.11.2017 10
3 1509 03.03.2018 10
4 1117 07.03.2018 17

How to change the order of DataFrame columns?

I have the following DataFrame (df):
import numpy as np
import pandas as pd
df = pd.DataFrame(np.random.rand(10, 5))
I add more column(s) by assignment:
df['mean'] = df.mean(1)
How can I move the column mean to the front, i.e. set it as first column leaving the order of the other columns untouched?
One easy way would be to reassign the dataframe with a list of the columns, rearranged as needed.
This is what you have now:
In [6]: df
Out[6]:
0 1 2 3 4 mean
0 0.445598 0.173835 0.343415 0.682252 0.582616 0.445543
1 0.881592 0.696942 0.702232 0.696724 0.373551 0.670208
2 0.662527 0.955193 0.131016 0.609548 0.804694 0.632596
3 0.260919 0.783467 0.593433 0.033426 0.512019 0.436653
4 0.131842 0.799367 0.182828 0.683330 0.019485 0.363371
5 0.498784 0.873495 0.383811 0.699289 0.480447 0.587165
6 0.388771 0.395757 0.745237 0.628406 0.784473 0.588529
7 0.147986 0.459451 0.310961 0.706435 0.100914 0.345149
8 0.394947 0.863494 0.585030 0.565944 0.356561 0.553195
9 0.689260 0.865243 0.136481 0.386582 0.730399 0.561593
In [7]: cols = df.columns.tolist()
In [8]: cols
Out[8]: [0L, 1L, 2L, 3L, 4L, 'mean']
Rearrange cols in any way you want. This is how I moved the last element to the first position:
In [12]: cols = cols[-1:] + cols[:-1]
In [13]: cols
Out[13]: ['mean', 0L, 1L, 2L, 3L, 4L]
Then reorder the dataframe like this:
In [16]: df = df[cols] # OR df = df.ix[:, cols]
In [17]: df
Out[17]:
mean 0 1 2 3 4
0 0.445543 0.445598 0.173835 0.343415 0.682252 0.582616
1 0.670208 0.881592 0.696942 0.702232 0.696724 0.373551
2 0.632596 0.662527 0.955193 0.131016 0.609548 0.804694
3 0.436653 0.260919 0.783467 0.593433 0.033426 0.512019
4 0.363371 0.131842 0.799367 0.182828 0.683330 0.019485
5 0.587165 0.498784 0.873495 0.383811 0.699289 0.480447
6 0.588529 0.388771 0.395757 0.745237 0.628406 0.784473
7 0.345149 0.147986 0.459451 0.310961 0.706435 0.100914
8 0.553195 0.394947 0.863494 0.585030 0.565944 0.356561
9 0.561593 0.689260 0.865243 0.136481 0.386582 0.730399
You could also do something like this:
df = df[['mean', '0', '1', '2', '3']]
You can get the list of columns with:
cols = list(df.columns.values)
The output will produce:
['0', '1', '2', '3', 'mean']
...which is then easy to rearrange manually before dropping it into the first function
Just assign the column names in the order you want them:
In [39]: df
Out[39]:
0 1 2 3 4 mean
0 0.172742 0.915661 0.043387 0.712833 0.190717 1
1 0.128186 0.424771 0.590779 0.771080 0.617472 1
2 0.125709 0.085894 0.989798 0.829491 0.155563 1
3 0.742578 0.104061 0.299708 0.616751 0.951802 1
4 0.721118 0.528156 0.421360 0.105886 0.322311 1
5 0.900878 0.082047 0.224656 0.195162 0.736652 1
6 0.897832 0.558108 0.318016 0.586563 0.507564 1
7 0.027178 0.375183 0.930248 0.921786 0.337060 1
8 0.763028 0.182905 0.931756 0.110675 0.423398 1
9 0.848996 0.310562 0.140873 0.304561 0.417808 1
In [40]: df = df[['mean', 4,3,2,1]]
Now, 'mean' column comes out in the front:
In [41]: df
Out[41]:
mean 4 3 2 1
0 1 0.190717 0.712833 0.043387 0.915661
1 1 0.617472 0.771080 0.590779 0.424771
2 1 0.155563 0.829491 0.989798 0.085894
3 1 0.951802 0.616751 0.299708 0.104061
4 1 0.322311 0.105886 0.421360 0.528156
5 1 0.736652 0.195162 0.224656 0.082047
6 1 0.507564 0.586563 0.318016 0.558108
7 1 0.337060 0.921786 0.930248 0.375183
8 1 0.423398 0.110675 0.931756 0.182905
9 1 0.417808 0.304561 0.140873 0.310562
For pandas >= 1.3 (Edited in 2022):
df.insert(0, 'mean', df.pop('mean'))
How about (for Pandas < 1.3, the original answer)
df.insert(0, 'mean', df['mean'])
https://pandas.pydata.org/pandas-docs/stable/user_guide/dsintro.html#column-selection-addition-deletion
In your case,
df = df.reindex(columns=['mean',0,1,2,3,4])
will do exactly what you want.
In my case (general form):
df = df.reindex(columns=sorted(df.columns))
df = df.reindex(columns=(['opened'] + list([a for a in df.columns if a != 'opened']) ))
import numpy as np
import pandas as pd
df = pd.DataFrame()
column_names = ['x','y','z','mean']
for col in column_names:
df[col] = np.random.randint(0,100, size=10000)
You can try out the following solutions :
Solution 1:
df = df[ ['mean'] + [ col for col in df.columns if col != 'mean' ] ]
Solution 2:
df = df[['mean', 'x', 'y', 'z']]
Solution 3:
col = df.pop("mean")
df = df.insert(0, col.name, col)
Solution 4:
df.set_index(df.columns[-1], inplace=True)
df.reset_index(inplace=True)
Solution 5:
cols = list(df)
cols = [cols[-1]] + cols[:-1]
df = df[cols]
solution 6:
order = [1,2,3,0] # setting column's order
df = df[[df.columns[i] for i in order]]
Time Comparison:
Solution 1:
CPU times: user 1.05 ms, sys: 35 µs, total: 1.08 ms Wall time: 995 µs
Solution 2:
CPU times: user 933 µs, sys: 0 ns, total: 933 µs
Wall time: 800 µs
Solution 3:
CPU times: user 0 ns, sys: 1.35 ms, total: 1.35 ms
Wall time: 1.08 ms
Solution 4:
CPU times: user 1.23 ms, sys: 45 µs, total: 1.27 ms
Wall time: 986 µs
Solution 5:
CPU times: user 1.09 ms, sys: 19 µs, total: 1.11 ms
Wall time: 949 µs
Solution 6:
CPU times: user 955 µs, sys: 34 µs, total: 989 µs
Wall time: 859 µs
You need to create a new list of your columns in the desired order, then use df = df[cols] to rearrange the columns in this new order.
cols = ['mean'] + [col for col in df if col != 'mean']
df = df[cols]
You can also use a more general approach. In this example, the last column (indicated by -1) is inserted as the first column.
cols = [df.columns[-1]] + [col for col in df if col != df.columns[-1]]
df = df[cols]
You can also use this approach for reordering columns in a desired order if they are present in the DataFrame.
inserted_cols = ['a', 'b', 'c']
cols = ([col for col in inserted_cols if col in df]
+ [col for col in df if col not in inserted_cols])
df = df[cols]
Suppose you have df with columns A B C.
The most simple way is:
df = df.reindex(['B','C','A'], axis=1)
If your column names are too-long-to-type then you could specify the new order through a list of integers with the positions:
Data:
0 1 2 3 4 mean
0 0.397312 0.361846 0.719802 0.575223 0.449205 0.500678
1 0.287256 0.522337 0.992154 0.584221 0.042739 0.485741
2 0.884812 0.464172 0.149296 0.167698 0.793634 0.491923
3 0.656891 0.500179 0.046006 0.862769 0.651065 0.543382
4 0.673702 0.223489 0.438760 0.468954 0.308509 0.422683
5 0.764020 0.093050 0.100932 0.572475 0.416471 0.389390
6 0.259181 0.248186 0.626101 0.556980 0.559413 0.449972
7 0.400591 0.075461 0.096072 0.308755 0.157078 0.207592
8 0.639745 0.368987 0.340573 0.997547 0.011892 0.471749
9 0.050582 0.714160 0.168839 0.899230 0.359690 0.438500
Generic example:
new_order = [3,2,1,4,5,0]
print(df[df.columns[new_order]])
3 2 1 4 mean 0
0 0.575223 0.719802 0.361846 0.449205 0.500678 0.397312
1 0.584221 0.992154 0.522337 0.042739 0.485741 0.287256
2 0.167698 0.149296 0.464172 0.793634 0.491923 0.884812
3 0.862769 0.046006 0.500179 0.651065 0.543382 0.656891
4 0.468954 0.438760 0.223489 0.308509 0.422683 0.673702
5 0.572475 0.100932 0.093050 0.416471 0.389390 0.764020
6 0.556980 0.626101 0.248186 0.559413 0.449972 0.259181
7 0.308755 0.096072 0.075461 0.157078 0.207592 0.400591
8 0.997547 0.340573 0.368987 0.011892 0.471749 0.639745
9 0.899230 0.168839 0.714160 0.359690 0.438500 0.050582
Although it might seem like I'm just explicitly typing the column names in a different order, the fact that there's a column 'mean' should make it clear that new_order relates to actual positions and not column names.
For the specific case of OP's question:
new_order = [-1,0,1,2,3,4]
df = df[df.columns[new_order]]
print(df)
mean 0 1 2 3 4
0 0.500678 0.397312 0.361846 0.719802 0.575223 0.449205
1 0.485741 0.287256 0.522337 0.992154 0.584221 0.042739
2 0.491923 0.884812 0.464172 0.149296 0.167698 0.793634
3 0.543382 0.656891 0.500179 0.046006 0.862769 0.651065
4 0.422683 0.673702 0.223489 0.438760 0.468954 0.308509
5 0.389390 0.764020 0.093050 0.100932 0.572475 0.416471
6 0.449972 0.259181 0.248186 0.626101 0.556980 0.559413
7 0.207592 0.400591 0.075461 0.096072 0.308755 0.157078
8 0.471749 0.639745 0.368987 0.340573 0.997547 0.011892
9 0.438500 0.050582 0.714160 0.168839 0.899230 0.359690
The main problem with this approach is that calling the same code multiple times will create different results each time, so one needs to be careful :)
This question has been answered before but reindex_axis is deprecated now so I would suggest to use:
df = df.reindex(sorted(df.columns), axis=1)
For those who want to specify the order they want instead of just sorting them, here's the solution spelled out:
df = df.reindex(['the','order','you','want'], axis=1)
Now, how you want to sort the list of column names is really not a pandas question, that's a Python list manipulation question. There are many ways of doing that, and I think this answer has a very neat way of doing it.
You can reorder the dataframe columns using a list of names with:
df = df.filter(list_of_col_names)
I think this is a slightly neater solution:
df.insert(0, 'mean', df.pop("mean"))
This solution is somewhat similar to #JoeHeffer 's solution but this is one liner.
Here we remove the column "mean" from the dataframe and attach it to index 0 with the same column name.
I ran into a similar question myself, and just wanted to add what I settled on. I liked the reindex_axis() method for changing column order. This worked:
df = df.reindex_axis(['mean'] + list(df.columns[:-1]), axis=1)
An alternate method based on the comment from #Jorge:
df = df.reindex(columns=['mean'] + list(df.columns[:-1]))
Although reindex_axis seems to be slightly faster in micro benchmarks than reindex, I think I prefer the latter for its directness.
This function avoids you having to list out every variable in your dataset just to order a few of them.
def order(frame,var):
if type(var) is str:
var = [var] #let the command take a string or list
varlist =[w for w in frame.columns if w not in var]
frame = frame[var+varlist]
return frame
It takes two arguments, the first is the dataset, the second are the columns in the data set that you want to bring to the front.
So in my case I have a data set called Frame with variables A1, A2, B1, B2, Total and Date. If I want to bring Total to the front then all I have to do is:
frame = order(frame,['Total'])
If I want to bring Total and Date to the front then I do:
frame = order(frame,['Total','Date'])
EDIT:
Another useful way to use this is, if you have an unfamiliar table and you're looking with variables with a particular term in them, like VAR1, VAR2,... you may execute something like:
frame = order(frame,[v for v in frame.columns if "VAR" in v])
Simply do,
df = df[['mean'] + df.columns[:-1].tolist()]
Here's a way to move one existing column that will modify the existing dataframe in place.
my_column = df.pop('column name')
df.insert(3, my_column.name, my_column) # Is in-place
Just type the column name you want to change, and set the index for the new location.
def change_column_order(df, col_name, index):
cols = df.columns.tolist()
cols.remove(col_name)
cols.insert(index, col_name)
return df[cols]
For your case, this would be like:
df = change_column_order(df, 'mean', 0)
You could do the following (borrowing parts from Aman's answer):
cols = df.columns.tolist()
cols.insert(0, cols.pop(-1))
cols
>>>['mean', 0L, 1L, 2L, 3L, 4L]
df = df[cols]
Moving any column to any position:
import pandas as pd
df = pd.DataFrame({"A": [1,2,3],
"B": [2,4,8],
"C": [5,5,5]})
cols = df.columns.tolist()
column_to_move = "C"
new_position = 1
cols.insert(new_position, cols.pop(cols.index(column_to_move)))
df = df[cols]
I wanted to bring two columns in front from a dataframe where I do not know exactly the names of all columns, because they are generated from a pivot statement before.
So, if you are in the same situation: To bring columns in front that you know the name of and then let them follow by "all the other columns", I came up with the following general solution:
df = df.reindex_axis(['Col1','Col2'] + list(df.columns.drop(['Col1','Col2'])), axis=1)
Here is a very simple answer to this(only one line).
You can do that after you added the 'n' column into your df as follows.
import numpy as np
import pandas as pd
df = pd.DataFrame(np.random.rand(10, 5))
df['mean'] = df.mean(1)
df
0 1 2 3 4 mean
0 0.929616 0.316376 0.183919 0.204560 0.567725 0.440439
1 0.595545 0.964515 0.653177 0.748907 0.653570 0.723143
2 0.747715 0.961307 0.008388 0.106444 0.298704 0.424512
3 0.656411 0.809813 0.872176 0.964648 0.723685 0.805347
4 0.642475 0.717454 0.467599 0.325585 0.439645 0.518551
5 0.729689 0.994015 0.676874 0.790823 0.170914 0.672463
6 0.026849 0.800370 0.903723 0.024676 0.491747 0.449473
7 0.526255 0.596366 0.051958 0.895090 0.728266 0.559587
8 0.818350 0.500223 0.810189 0.095969 0.218950 0.488736
9 0.258719 0.468106 0.459373 0.709510 0.178053 0.414752
### here you can add below line and it should work
# Don't forget the two (()) 'brackets' around columns names.Otherwise, it'll give you an error.
df = df[list(('mean',0, 1, 2,3,4))]
df
mean 0 1 2 3 4
0 0.440439 0.929616 0.316376 0.183919 0.204560 0.567725
1 0.723143 0.595545 0.964515 0.653177 0.748907 0.653570
2 0.424512 0.747715 0.961307 0.008388 0.106444 0.298704
3 0.805347 0.656411 0.809813 0.872176 0.964648 0.723685
4 0.518551 0.642475 0.717454 0.467599 0.325585 0.439645
5 0.672463 0.729689 0.994015 0.676874 0.790823 0.170914
6 0.449473 0.026849 0.800370 0.903723 0.024676 0.491747
7 0.559587 0.526255 0.596366 0.051958 0.895090 0.728266
8 0.488736 0.818350 0.500223 0.810189 0.095969 0.218950
9 0.414752 0.258719 0.468106 0.459373 0.709510 0.178053
You can use a set which is an unordered collection of unique elements to do keep the "order of the other columns untouched":
other_columns = list(set(df.columns).difference(["mean"])) #[0, 1, 2, 3, 4]
Then, you can use a lambda to move a specific column to the front by:
In [1]: import numpy as np
In [2]: import pandas as pd
In [3]: df = pd.DataFrame(np.random.rand(10, 5))
In [4]: df["mean"] = df.mean(1)
In [5]: move_col_to_front = lambda df, col: df[[col]+list(set(df.columns).difference([col]))]
In [6]: move_col_to_front(df, "mean")
Out[6]:
mean 0 1 2 3 4
0 0.697253 0.600377 0.464852 0.938360 0.945293 0.537384
1 0.609213 0.703387 0.096176 0.971407 0.955666 0.319429
2 0.561261 0.791842 0.302573 0.662365 0.728368 0.321158
3 0.518720 0.710443 0.504060 0.663423 0.208756 0.506916
4 0.616316 0.665932 0.794385 0.163000 0.664265 0.793995
5 0.519757 0.585462 0.653995 0.338893 0.714782 0.305654
6 0.532584 0.434472 0.283501 0.633156 0.317520 0.994271
7 0.640571 0.732680 0.187151 0.937983 0.921097 0.423945
8 0.562447 0.790987 0.200080 0.317812 0.641340 0.862018
9 0.563092 0.811533 0.662709 0.396048 0.596528 0.348642
In [7]: move_col_to_front(df, 2)
Out[7]:
2 0 1 3 4 mean
0 0.938360 0.600377 0.464852 0.945293 0.537384 0.697253
1 0.971407 0.703387 0.096176 0.955666 0.319429 0.609213
2 0.662365 0.791842 0.302573 0.728368 0.321158 0.561261
3 0.663423 0.710443 0.504060 0.208756 0.506916 0.518720
4 0.163000 0.665932 0.794385 0.664265 0.793995 0.616316
5 0.338893 0.585462 0.653995 0.714782 0.305654 0.519757
6 0.633156 0.434472 0.283501 0.317520 0.994271 0.532584
7 0.937983 0.732680 0.187151 0.921097 0.423945 0.640571
8 0.317812 0.790987 0.200080 0.641340 0.862018 0.562447
9 0.396048 0.811533 0.662709 0.596528 0.348642 0.563092
Just flipping helps often.
df[df.columns[::-1]]
Or just shuffle for a look.
import random
cols = list(df.columns)
random.shuffle(cols)
df[cols]
You can use reindex which can be used for both axis:
df
# 0 1 2 3 4 mean
# 0 0.943825 0.202490 0.071908 0.452985 0.678397 0.469921
# 1 0.745569 0.103029 0.268984 0.663710 0.037813 0.363821
# 2 0.693016 0.621525 0.031589 0.956703 0.118434 0.484254
# 3 0.284922 0.527293 0.791596 0.243768 0.629102 0.495336
# 4 0.354870 0.113014 0.326395 0.656415 0.172445 0.324628
# 5 0.815584 0.532382 0.195437 0.829670 0.019001 0.478415
# 6 0.944587 0.068690 0.811771 0.006846 0.698785 0.506136
# 7 0.595077 0.437571 0.023520 0.772187 0.862554 0.538182
# 8 0.700771 0.413958 0.097996 0.355228 0.656919 0.444974
# 9 0.263138 0.906283 0.121386 0.624336 0.859904 0.555009
df.reindex(['mean', *range(5)], axis=1)
# mean 0 1 2 3 4
# 0 0.469921 0.943825 0.202490 0.071908 0.452985 0.678397
# 1 0.363821 0.745569 0.103029 0.268984 0.663710 0.037813
# 2 0.484254 0.693016 0.621525 0.031589 0.956703 0.118434
# 3 0.495336 0.284922 0.527293 0.791596 0.243768 0.629102
# 4 0.324628 0.354870 0.113014 0.326395 0.656415 0.172445
# 5 0.478415 0.815584 0.532382 0.195437 0.829670 0.019001
# 6 0.506136 0.944587 0.068690 0.811771 0.006846 0.698785
# 7 0.538182 0.595077 0.437571 0.023520 0.772187 0.862554
# 8 0.444974 0.700771 0.413958 0.097996 0.355228 0.656919
# 9 0.555009 0.263138 0.906283 0.121386 0.624336 0.859904
Hackiest method in the book
df.insert(0, "test", df["mean"])
df = df.drop(columns=["mean"]).rename(columns={"test": "mean"})
A pretty straightforward solution that worked for me is to use .reindex on df.columns:
df = df[df.columns.reindex(['mean', 0, 1, 2, 3, 4])[0]]
Here is a function to do this for any number of columns.
def mean_first(df):
ncols = df.shape[1] # Get the number of columns
index = list(range(ncols)) # Create an index to reorder the columns
index.insert(0,ncols) # This puts the last column at the front
return(df.assign(mean=df.mean(1)).iloc[:,index]) # new df with last column (mean) first
A simple approach is using set(), in particular when you have a long list of columns and do not want to handle them manually:
cols = list(set(df.columns.tolist()) - set(['mean']))
cols.insert(0, 'mean')
df = df[cols]
How about using T?
df = df.T.reindex(['mean', 0, 1, 2, 3, 4]).T
I believe #Aman's answer is the best if you know the location of the other column.
If you don't know the location of mean, but only have its name, you cannot resort directly to cols = cols[-1:] + cols[:-1]. Following is the next-best thing I could come up with:
meanDf = pd.DataFrame(df.pop('mean'))
# now df doesn't contain "mean" anymore. Order of join will move it to left or right:
meanDf.join(df) # has mean as first column
df.join(meanDf) # has mean as last column

Categories

Resources