Pythonic way of copying a dict without distinct attribute - python

In ECMAScript6 you can use the spread operator to destructure an object like this
const {a, ...rest} = obj;
Which does a shallow copy of obj to rest without attribute a.
Is there a clean way of doing the same in python?

Python dict literals can use the unpacking operator, like { **obj, 'a': 3 } to make a shallow copy overriding some particular properties, but there is no special syntax to omit a property from the unpacking. Also, while python can destructure sequences and nested sequences, you cannot use a dictionary pattern on the left-hand-side of an destructuring assignment.
However, it is possible to do this a bit more verbosely using a dict comprehension:
rest = { k: v for k, v in obj.items() if k != 'a' }
But for readability, two lines is probably better:
rest = dict(obj)
rest.pop('a', None)
Or if you expect the key 'a' to always appear in the original dictionary, and you'd like a KeyError when it's missing, you can use del:
rest = dict(obj)
del rest['a']

I wouldn't call it "clean", but we can (ab)use the function keyword parameter mechanism:
>>> obj = {'b': 2, 'a': 1, 'c': 3}
>>> (lambda a=None, **rest: rest)(**obj)
{'b': 2, 'c': 3}
Or if the goal was to assign to two variables a and rest (I'm not sure since I don't do ECMAScript):
obj = {'b': 2, 'a': 1, 'c': 3}
a, rest = (lambda a=None, **rest: (a, rest))(**obj)
print('a: ', a)
print('rest:', rest)
Output:
a: 1
rest: {'b': 2, 'c': 3}

An possible answer that works, but may not be the prettiest is:
new_dict= rest.copy() # create copy to delete keys
try:
del new_dict["a"]
except KeyError:
print("The key 'a' was not found.")

Related

TypeError when parsing a nested Json in python [duplicate]

d = {'x': 1, 'y': 2, 'z': 3}
for key in d:
print(key, 'corresponds to', d[key])
How does Python recognize that it needs only to read the key from the dictionary? Is key a special keyword, or is it simply a variable?
key is just a variable name.
for key in d:
will simply loop over the keys in the dictionary, rather than the keys and values. To loop over both key and value you can use the following:
For Python 3.x:
for key, value in d.items():
For Python 2.x:
for key, value in d.iteritems():
To test for yourself, change the word key to poop.
In Python 3.x, iteritems() was replaced with simply items(), which returns a set-like view backed by the dict, like iteritems() but even better.
This is also available in 2.7 as viewitems().
The operation items() will work for both 2 and 3, but in 2 it will return a list of the dictionary's (key, value) pairs, which will not reflect changes to the dict that happen after the items() call. If you want the 2.x behavior in 3.x, you can call list(d.items()).
It's not that key is a special word, but that dictionaries implement the iterator protocol. You could do this in your class, e.g. see this question for how to build class iterators.
In the case of dictionaries, it's implemented at the C level. The details are available in PEP 234. In particular, the section titled "Dictionary Iterators":
Dictionaries implement a tp_iter slot that returns an efficient
iterator that iterates over the keys of the dictionary. [...] This
means that we can write
for k in dict: ...
which is equivalent to, but much faster than
for k in dict.keys(): ...
as long as the restriction on modifications to the dictionary
(either by the loop or by another thread) are not violated.
Add methods to dictionaries that return different kinds of
iterators explicitly:
for key in dict.iterkeys(): ...
for value in dict.itervalues(): ...
for key, value in dict.iteritems(): ...
This means that for x in dict is shorthand for for x in
dict.iterkeys().
In Python 3, dict.iterkeys(), dict.itervalues() and dict.iteritems() are no longer supported. Use dict.keys(), dict.values() and dict.items() instead.
Iterating over a dict iterates through its keys in no particular order, as you can see here:
(This is no longer the case in Python 3.6, but note that it's not guaranteed behaviour yet.)
>>> d = {'x': 1, 'y': 2, 'z': 3}
>>> list(d)
['y', 'x', 'z']
>>> d.keys()
['y', 'x', 'z']
For your example, it is a better idea to use dict.items():
>>> d.items()
[('y', 2), ('x', 1), ('z', 3)]
This gives you a list of tuples. When you loop over them like this, each tuple is unpacked into k and v automatically:
for k,v in d.items():
print(k, 'corresponds to', v)
Using k and v as variable names when looping over a dict is quite common if the body of the loop is only a few lines. For more complicated loops it may be a good idea to use more descriptive names:
for letter, number in d.items():
print(letter, 'corresponds to', number)
It's a good idea to get into the habit of using format strings:
for letter, number in d.items():
print('{0} corresponds to {1}'.format(letter, number))
key is simply a variable.
For Python2.X:
>>> d = {'x': 1, 'y': 2, 'z': 3}
>>> for my_var in d:
>>> print my_var, 'corresponds to', d[my_var]
x corresponds to 1
y corresponds to 2
z corresponds to 3
... or better,
d = {'x': 1, 'y': 2, 'z': 3}
for the_key, the_value in d.iteritems():
print the_key, 'corresponds to', the_value
For Python3.X:
d = {'x': 1, 'y': 2, 'z': 3}
for the_key, the_value in d.items():
print(the_key, 'corresponds to', the_value)
When you iterate through dictionaries using the for .. in ..-syntax, it always iterates over the keys (the values are accessible using dictionary[key]).
To iterate over key-value pairs, use the following:
for k,v in dict.iteritems() in Python 2
for k,v in dict.items() in Python 3
This is a very common looping idiom. in is an operator. For when to use for key in dict and when it must be for key in dict.keys() see David Goodger's Idiomatic Python article (archived copy).
I have a use case where I have to iterate through the dict to get the key, value pair, also the index indicating where I am. This is how I do it:
d = {'x': 1, 'y': 2, 'z': 3}
for i, (key, value) in enumerate(d.items()):
print(i, key, value)
Note that the parentheses around the key, value are important, without them, you'd get an ValueError "not enough values to unpack".
Iterating over dictionaries using 'for' loops
d = {'x': 1, 'y': 2, 'z': 3}
for key in d:
...
How does Python recognize that it needs only to read the key from the
dictionary? Is key a special word in Python? Or is it simply a
variable?
It's not just for loops. The important word here is "iterating".
A dictionary is a mapping of keys to values:
d = {'x': 1, 'y': 2, 'z': 3}
Any time we iterate over it, we iterate over the keys. The variable name key is only intended to be descriptive - and it is quite apt for the purpose.
This happens in a list comprehension:
>>> [k for k in d]
['x', 'y', 'z']
It happens when we pass the dictionary to list (or any other collection type object):
>>> list(d)
['x', 'y', 'z']
The way Python iterates is, in a context where it needs to, it calls the __iter__ method of the object (in this case the dictionary) which returns an iterator (in this case, a keyiterator object):
>>> d.__iter__()
<dict_keyiterator object at 0x7fb1747bee08>
We shouldn't use these special methods ourselves, instead, use the respective builtin function to call it, iter:
>>> key_iterator = iter(d)
>>> key_iterator
<dict_keyiterator object at 0x7fb172fa9188>
Iterators have a __next__ method - but we call it with the builtin function, next:
>>> next(key_iterator)
'x'
>>> next(key_iterator)
'y'
>>> next(key_iterator)
'z'
>>> next(key_iterator)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
StopIteration
When an iterator is exhausted, it raises StopIteration. This is how Python knows to exit a for loop, or a list comprehension, or a generator expression, or any other iterative context. Once an iterator raises StopIteration it will always raise it - if you want to iterate again, you need a new one.
>>> list(key_iterator)
[]
>>> new_key_iterator = iter(d)
>>> list(new_key_iterator)
['x', 'y', 'z']
Returning to dicts
We've seen dicts iterating in many contexts. What we've seen is that any time we iterate over a dict, we get the keys. Back to the original example:
d = {'x': 1, 'y': 2, 'z': 3}
for key in d:
If we change the variable name, we still get the keys. Let's try it:
>>> for each_key in d:
... print(each_key, '=>', d[each_key])
...
x => 1
y => 2
z => 3
If we want to iterate over the values, we need to use the .values method of dicts, or for both together, .items:
>>> list(d.values())
[1, 2, 3]
>>> list(d.items())
[('x', 1), ('y', 2), ('z', 3)]
In the example given, it would be more efficient to iterate over the items like this:
for a_key, corresponding_value in d.items():
print(a_key, corresponding_value)
But for academic purposes, the question's example is just fine.
For Iterating through dictionaries, The below code can be used.
dictionary= {1:"a", 2:"b", 3:"c"}
#To iterate over the keys
for key in dictionary.keys():
print(key)
#To Iterate over the values
for value in dictionary.values():
print(value)
#To Iterate both the keys and values
for key, value in dictionary.items():
print(key,'\t', value)
You can check the implementation of CPython's dicttype on GitHub. This is the signature of method that implements the dict iterator:
_PyDict_Next(PyObject *op, Py_ssize_t *ppos, PyObject **pkey,
PyObject **pvalue, Py_hash_t *phash)
CPython dictobject.c
To iterate over keys, it is slower but better to use my_dict.keys(). If you tried to do something like this:
for key in my_dict:
my_dict[key+"-1"] = my_dict[key]-1
it would create a runtime error because you are changing the keys while the program is running. If you are absolutely set on reducing time, use the for key in my_dict way, but you have been warned.
If you are looking for a clear and visual example:
cat = {'name': 'Snowy', 'color': 'White' ,'age': 14}
for key , value in cat.items():
print(key, ': ', value)
Result:
name: Snowy
color: White
age: 14
This will print the output in sorted order by values in ascending order.
d = {'x': 3, 'y': 1, 'z': 2}
def by_value(item):
return item[1]
for key, value in sorted(d.items(), key=by_value):
print(key, '->', value)
Output:
y -> 1
z -> 2
x -> 3
Let's get straight to the point. If the word key is just a variable, as you have mentioned then the main thing to note is that when you run a 'FOR LOOP' over a dictionary it runs through only the 'keys' and ignores the 'values'.
d = {'x': 1, 'y': 2, 'z': 3}
for key in d:
print (key, 'corresponds to', d[key])
rather try this:
d = {'x': 1, 'y': 2, 'z': 3}
for i in d:
print (i, 'corresponds to', d[i])
but if you use a function like:
d = {'x': 1, 'y': 2, 'z': 3}
print(d.keys())
in the above case 'keys' is just not a variable, its a function.
A dictionary in Python is a collection of key-value pairs. Each key is connected to a value, and you can use a key to access the value associated with that key. A key's value can be a number, a string, a list, or even another dictionary. In this case, threat each "key-value pair" as a separate row in the table: d is your table with two columns. the key is the first column, key[value] is your second column. Your for loop is a standard way to iterate over a table.

Make dict comprehension return by reference

I have following dictionary: original = {a:1, b:2}
I then run dict comprehension: extracted = {k:v for (k,v) in original.items() if k == 'a'}
The following dict is returned: {a:1}
If I mutate extracted['a'] = 2, original['a'] will still be equal to 1
Question:
Is there a way to make the above dict comprehension return by reference? For example extracted['a'] = 2 would result in original['a'] = 2.
I would prefer not to involve alteration of the original dictionary.
Your intended goal (of having a dictionary which, when updated, will also change the other dictionary from which it was derived) can be done even with immutable values, if your new dictionary is of a custom type with the desired logic added:
class MappedDict(dict):
def __init__(self, orig, *args, **kwargs):
self.__orig = orig
dict.__init__(self, *args, **kwargs)
def __setitem__(self, k, v):
self.__orig[k] = v
return dict.__setitem__(self, k, v)
d = {'a': 1, 'b': 2}
md = MappedDict(d, {k: v*2 for (k,v) in d.items()})
md['a']=5
...will leave both d and md having 'a' having the value 5, whereas b will differ (being 2 in the former and 4 in the latter).
No, comprehensions always return a shallow copy (well, actually it's a new object containing references to the values you iterate over). However it's only a shallow copy, so if you use mutable types as values and you change them in-place the change will propagate to the original object.
>>> original = {'a':[], 'b':[]}
>>> extracted = {k:v for (k,v) in original.items() if k == 'a'}
>>> extracted['a'].append(1) # change one value in extracted in-place
>>> original # original also changed
{'a': [1], 'b': []}
>>> extracted
{'a': [1]}

Are python regex objects not iterable in dictionary for loops? [duplicate]

d = {'x': 1, 'y': 2, 'z': 3}
for key in d:
print(key, 'corresponds to', d[key])
How does Python recognize that it needs only to read the key from the dictionary? Is key a special keyword, or is it simply a variable?
key is just a variable name.
for key in d:
will simply loop over the keys in the dictionary, rather than the keys and values. To loop over both key and value you can use the following:
For Python 3.x:
for key, value in d.items():
For Python 2.x:
for key, value in d.iteritems():
To test for yourself, change the word key to poop.
In Python 3.x, iteritems() was replaced with simply items(), which returns a set-like view backed by the dict, like iteritems() but even better.
This is also available in 2.7 as viewitems().
The operation items() will work for both 2 and 3, but in 2 it will return a list of the dictionary's (key, value) pairs, which will not reflect changes to the dict that happen after the items() call. If you want the 2.x behavior in 3.x, you can call list(d.items()).
It's not that key is a special word, but that dictionaries implement the iterator protocol. You could do this in your class, e.g. see this question for how to build class iterators.
In the case of dictionaries, it's implemented at the C level. The details are available in PEP 234. In particular, the section titled "Dictionary Iterators":
Dictionaries implement a tp_iter slot that returns an efficient
iterator that iterates over the keys of the dictionary. [...] This
means that we can write
for k in dict: ...
which is equivalent to, but much faster than
for k in dict.keys(): ...
as long as the restriction on modifications to the dictionary
(either by the loop or by another thread) are not violated.
Add methods to dictionaries that return different kinds of
iterators explicitly:
for key in dict.iterkeys(): ...
for value in dict.itervalues(): ...
for key, value in dict.iteritems(): ...
This means that for x in dict is shorthand for for x in
dict.iterkeys().
In Python 3, dict.iterkeys(), dict.itervalues() and dict.iteritems() are no longer supported. Use dict.keys(), dict.values() and dict.items() instead.
Iterating over a dict iterates through its keys in no particular order, as you can see here:
(This is no longer the case in Python 3.6, but note that it's not guaranteed behaviour yet.)
>>> d = {'x': 1, 'y': 2, 'z': 3}
>>> list(d)
['y', 'x', 'z']
>>> d.keys()
['y', 'x', 'z']
For your example, it is a better idea to use dict.items():
>>> d.items()
[('y', 2), ('x', 1), ('z', 3)]
This gives you a list of tuples. When you loop over them like this, each tuple is unpacked into k and v automatically:
for k,v in d.items():
print(k, 'corresponds to', v)
Using k and v as variable names when looping over a dict is quite common if the body of the loop is only a few lines. For more complicated loops it may be a good idea to use more descriptive names:
for letter, number in d.items():
print(letter, 'corresponds to', number)
It's a good idea to get into the habit of using format strings:
for letter, number in d.items():
print('{0} corresponds to {1}'.format(letter, number))
key is simply a variable.
For Python2.X:
>>> d = {'x': 1, 'y': 2, 'z': 3}
>>> for my_var in d:
>>> print my_var, 'corresponds to', d[my_var]
x corresponds to 1
y corresponds to 2
z corresponds to 3
... or better,
d = {'x': 1, 'y': 2, 'z': 3}
for the_key, the_value in d.iteritems():
print the_key, 'corresponds to', the_value
For Python3.X:
d = {'x': 1, 'y': 2, 'z': 3}
for the_key, the_value in d.items():
print(the_key, 'corresponds to', the_value)
When you iterate through dictionaries using the for .. in ..-syntax, it always iterates over the keys (the values are accessible using dictionary[key]).
To iterate over key-value pairs, use the following:
for k,v in dict.iteritems() in Python 2
for k,v in dict.items() in Python 3
This is a very common looping idiom. in is an operator. For when to use for key in dict and when it must be for key in dict.keys() see David Goodger's Idiomatic Python article (archived copy).
I have a use case where I have to iterate through the dict to get the key, value pair, also the index indicating where I am. This is how I do it:
d = {'x': 1, 'y': 2, 'z': 3}
for i, (key, value) in enumerate(d.items()):
print(i, key, value)
Note that the parentheses around the key, value are important, without them, you'd get an ValueError "not enough values to unpack".
Iterating over dictionaries using 'for' loops
d = {'x': 1, 'y': 2, 'z': 3}
for key in d:
...
How does Python recognize that it needs only to read the key from the
dictionary? Is key a special word in Python? Or is it simply a
variable?
It's not just for loops. The important word here is "iterating".
A dictionary is a mapping of keys to values:
d = {'x': 1, 'y': 2, 'z': 3}
Any time we iterate over it, we iterate over the keys. The variable name key is only intended to be descriptive - and it is quite apt for the purpose.
This happens in a list comprehension:
>>> [k for k in d]
['x', 'y', 'z']
It happens when we pass the dictionary to list (or any other collection type object):
>>> list(d)
['x', 'y', 'z']
The way Python iterates is, in a context where it needs to, it calls the __iter__ method of the object (in this case the dictionary) which returns an iterator (in this case, a keyiterator object):
>>> d.__iter__()
<dict_keyiterator object at 0x7fb1747bee08>
We shouldn't use these special methods ourselves, instead, use the respective builtin function to call it, iter:
>>> key_iterator = iter(d)
>>> key_iterator
<dict_keyiterator object at 0x7fb172fa9188>
Iterators have a __next__ method - but we call it with the builtin function, next:
>>> next(key_iterator)
'x'
>>> next(key_iterator)
'y'
>>> next(key_iterator)
'z'
>>> next(key_iterator)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
StopIteration
When an iterator is exhausted, it raises StopIteration. This is how Python knows to exit a for loop, or a list comprehension, or a generator expression, or any other iterative context. Once an iterator raises StopIteration it will always raise it - if you want to iterate again, you need a new one.
>>> list(key_iterator)
[]
>>> new_key_iterator = iter(d)
>>> list(new_key_iterator)
['x', 'y', 'z']
Returning to dicts
We've seen dicts iterating in many contexts. What we've seen is that any time we iterate over a dict, we get the keys. Back to the original example:
d = {'x': 1, 'y': 2, 'z': 3}
for key in d:
If we change the variable name, we still get the keys. Let's try it:
>>> for each_key in d:
... print(each_key, '=>', d[each_key])
...
x => 1
y => 2
z => 3
If we want to iterate over the values, we need to use the .values method of dicts, or for both together, .items:
>>> list(d.values())
[1, 2, 3]
>>> list(d.items())
[('x', 1), ('y', 2), ('z', 3)]
In the example given, it would be more efficient to iterate over the items like this:
for a_key, corresponding_value in d.items():
print(a_key, corresponding_value)
But for academic purposes, the question's example is just fine.
For Iterating through dictionaries, The below code can be used.
dictionary= {1:"a", 2:"b", 3:"c"}
#To iterate over the keys
for key in dictionary.keys():
print(key)
#To Iterate over the values
for value in dictionary.values():
print(value)
#To Iterate both the keys and values
for key, value in dictionary.items():
print(key,'\t', value)
You can check the implementation of CPython's dicttype on GitHub. This is the signature of method that implements the dict iterator:
_PyDict_Next(PyObject *op, Py_ssize_t *ppos, PyObject **pkey,
PyObject **pvalue, Py_hash_t *phash)
CPython dictobject.c
To iterate over keys, it is slower but better to use my_dict.keys(). If you tried to do something like this:
for key in my_dict:
my_dict[key+"-1"] = my_dict[key]-1
it would create a runtime error because you are changing the keys while the program is running. If you are absolutely set on reducing time, use the for key in my_dict way, but you have been warned.
If you are looking for a clear and visual example:
cat = {'name': 'Snowy', 'color': 'White' ,'age': 14}
for key , value in cat.items():
print(key, ': ', value)
Result:
name: Snowy
color: White
age: 14
This will print the output in sorted order by values in ascending order.
d = {'x': 3, 'y': 1, 'z': 2}
def by_value(item):
return item[1]
for key, value in sorted(d.items(), key=by_value):
print(key, '->', value)
Output:
y -> 1
z -> 2
x -> 3
Let's get straight to the point. If the word key is just a variable, as you have mentioned then the main thing to note is that when you run a 'FOR LOOP' over a dictionary it runs through only the 'keys' and ignores the 'values'.
d = {'x': 1, 'y': 2, 'z': 3}
for key in d:
print (key, 'corresponds to', d[key])
rather try this:
d = {'x': 1, 'y': 2, 'z': 3}
for i in d:
print (i, 'corresponds to', d[i])
but if you use a function like:
d = {'x': 1, 'y': 2, 'z': 3}
print(d.keys())
in the above case 'keys' is just not a variable, its a function.
A dictionary in Python is a collection of key-value pairs. Each key is connected to a value, and you can use a key to access the value associated with that key. A key's value can be a number, a string, a list, or even another dictionary. In this case, threat each "key-value pair" as a separate row in the table: d is your table with two columns. the key is the first column, key[value] is your second column. Your for loop is a standard way to iterate over a table.

How to assert a dict contains another dict without assertDictContainsSubset in python? [duplicate]

This question already has answers here:
Python unittest's assertDictContainsSubset recommended alternative [duplicate]
(4 answers)
Closed 1 year ago.
I know assertDictContainsSubset can do this in python 2.7, but for some reason it's deprecated in python 3.2. So is there any way to assert a dict contains another one without assertDictContainsSubset?
This seems not good:
for item in dic2:
self.assertIn(item, dic)
any other good way? Thanks
Although I'm using pytest, I found the following idea in a comment. It worked really great for me, so I thought it could be useful here.
Python 3:
assert dict1.items() <= dict2.items()
Python 2:
assert dict1.viewitems() <= dict2.viewitems()
It works with non-hashable items, but you can't know exactly which item eventually fails.
>>> d1 = dict(a=1, b=2, c=3, d=4)
>>> d2 = dict(a=1, b=2)
>>> set(d2.items()).issubset( set(d1.items()) )
True
And the other way around:
>>> set(d1.items()).issubset( set(d2.items()) )
False
Limitation: the dictionary values have to be hashable.
The big problem with the accepted answer is that it does not work if you have non hashable values in your objects values. The second thing is that you get no useful output - the test passes or fails but doesn't tell you which field within the object is different.
As such it is easier to simply create a subset dictionary then test that. This way you can use the TestCase.assertDictEquals() method which will give you very useful formatted output in your test runner showing the diff between the actual and the expected.
I think the most pleasing and pythonic way to do this is with a simple dictionary comprehension as such:
from unittest import TestCase
actual = {}
expected = {}
subset = {k:v for k, v in actual.items() if k in expected}
TestCase().assertDictEqual(subset, expected)
NOTE obviously if you are running your test in a method that belongs to a child class that inherits from TestCase (as you almost certainly should be) then it is just self.assertDictEqual(subset, expected)
John1024's solution worked for me. However, in case of a failure it only tells you False instead of showing you which keys are not matching. So, I tried to avoid the deprecated assert method by using other assertion methods that will output helpful failure messages:
expected = {}
response_keys = set(response.data.keys())
for key in input_dict.keys():
self.assertIn(key, response_keys)
expected[key] = response.data[key]
self.assertDictEqual(input_dict, expected)
You can use assertGreaterEqual or assertLessEqual.
users = {'id': 28027, 'email': 'chungs.lama#gmail.com', 'created_at': '2005-02-13'}
data = {"email": "chungs.lama#gmail.com"}
self.assertGreaterEqual(user.items(), data.items())
self.assertLessEqual(data.items(), user.items()) # Reversed alternative
Be sure to specify .items() or it won't work.
In Python 3 and Python 2.7, you can create a set-like "item view" of a dict without copying any data. This allows you can use comparison operators to test for a subset relationship.
In Python 3, this looks like:
# Test if d1 is a sub-dict of d2
d1.items() <= d2.items()
# Get items in d1 not found in d2
difference = d1.items() - d2.items()
In Python 2.7 you can use the viewitems() method in place of items() to achieve the same result.
In Python 2.6 and below, your best bet is to iterate over the keys in the first dict and check for inclusion in the second.
# Test if d1 is a subset of d2
all(k in d2 and d2[k] == d1[k] for k in d1)
This answers a little broader question than you're asking but I use this in my test harnesses to see if the container dictionary contains something that looks like the contained dictionary. This checks keys and values. Additionally you can use the keyword 'ANYTHING' to indicate that you don't care how it matches.
def contains(container, contained):
'''ensure that `contained` is present somewhere in `container`
EXAMPLES:
contains(
{'a': 3, 'b': 4},
{'a': 3}
) # True
contains(
{'a': [3, 4, 5]},
{'a': 3},
) # True
contains(
{'a': 4, 'b': {'a':3}},
{'a': 3}
) # True
contains(
{'a': 4, 'b': {'a':3, 'c': 5}},
{'a': 3, 'c': 5}
) # True
# if an `contained` has a list, then every item from that list must be present
# in the corresponding `container` list
contains(
{'a': [{'b':1}, {'b':2}, {'b':3}], 'c':4},
{'a': [{'b':1},{'b':2}], 'c':4},
) # True
# You can also use the string literal 'ANYTHING' to match anything
contains(
{'a': [{'b':3}]},
{'a': 'ANYTHING'},
) # True
# You can use 'ANYTHING' as a dict key and it indicates to match the corresponding value anywhere
# below the current point
contains(
{'a': [ {'x':1,'b1':{'b2':{'c':'SOMETHING'}}}]},
{'a': {'ANYTHING': 'SOMETHING', 'x':1}},
) # True
contains(
{'a': [ {'x':1, 'b':'SOMETHING'}]},
{'a': {'ANYTHING': 'SOMETHING', 'x':1}},
) # True
contains(
{'a': [ {'x':1,'b1':{'b2':{'c':'SOMETHING'}}}]},
{'a': {'ANYTHING': 'SOMETHING', 'x':1}},
) # True
'''
ANYTHING = 'ANYTHING'
if contained == ANYTHING:
return True
if container == contained:
return True
if isinstance(container, list):
if not isinstance(contained, list):
contained = [contained]
true_count = 0
for contained_item in contained:
for item in container:
if contains(item, contained_item):
true_count += 1
break
if true_count == len(contained):
return True
if isinstance(contained, dict) and isinstance(container, dict):
contained_keys = set(contained.keys())
if ANYTHING in contained_keys:
contained_keys.remove(ANYTHING)
if not contains(container, contained[ANYTHING]):
return False
container_keys = set(container.keys())
if len(contained_keys - container_keys) == 0:
# then all the contained keys are in this container ~ recursive check
if all(
contains(container[key], contained[key])
for key in contained_keys
):
return True
# well, we're here, so I guess we didn't find a match yet
if isinstance(container, dict):
for value in container.values():
if contains(value, contained):
return True
return False
Here is a comparison that works even if you have lists in the dictionaries:
superset = {'a': 1, 'b': 2}
subset = {'a': 1}
common = { key: superset[key] for key in set(superset.keys()).intersection(set(subset.keys())) }
self.assertEquals(common, subset)

Destructuring-bind dictionary contents

I am trying to 'destructure' a dictionary and associate values with variables names after its keys. Something like
params = {'a':1,'b':2}
a,b = params.values()
But since dictionaries are not ordered, there is no guarantee that params.values() will return values in the order of (a, b). Is there a nice way to do this?
from operator import itemgetter
params = {'a': 1, 'b': 2}
a, b = itemgetter('a', 'b')(params)
Instead of elaborate lambda functions or dictionary comprehension, may as well use a built in library.
One way to do this with less repetition than Jochen's suggestion is with a helper function. This gives the flexibility to list your variable names in any order and only destructure a subset of what is in the dict:
pluck = lambda dict, *args: (dict[arg] for arg in args)
things = {'blah': 'bleh', 'foo': 'bar'}
foo, blah = pluck(things, 'foo', 'blah')
Also, instead of joaquin's OrderedDict you could sort the keys and get the values. The only catches are you need to specify your variable names in alphabetical order and destructure everything in the dict:
sorted_vals = lambda dict: (t[1] for t in sorted(dict.items()))
things = {'foo': 'bar', 'blah': 'bleh'}
blah, foo = sorted_vals(things)
How come nobody posted the simplest approach?
params = {'a':1,'b':2}
a, b = params['a'], params['b']
Python is only able to "destructure" sequences, not dictionaries. So, to write what you want, you will have to map the needed entries to a proper sequence. As of myself, the closest match I could find is the (not very sexy):
a,b = [d[k] for k in ('a','b')]
This works with generators too:
a,b = (d[k] for k in ('a','b'))
Here is a full example:
>>> d = dict(a=1,b=2,c=3)
>>> d
{'a': 1, 'c': 3, 'b': 2}
>>> a, b = [d[k] for k in ('a','b')]
>>> a
1
>>> b
2
>>> a, b = (d[k] for k in ('a','b'))
>>> a
1
>>> b
2
Here's another way to do it similarly to how a destructuring assignment works in JS:
params = {'b': 2, 'a': 1}
a, b, rest = (lambda a, b, **rest: (a, b, rest))(**params)
What we did was to unpack the params dictionary into key values (using **) (like in Jochen's answer), then we've taken those values in the lambda signature and assigned them according to the key name - and here's a bonus - we also get a dictionary of whatever is not in the lambda's signature so if you had:
params = {'b': 2, 'a': 1, 'c': 3}
a, b, rest = (lambda a, b, **rest: (a, b, rest))(**params)
After the lambda has been applied, the rest variable will now contain:
{'c': 3}
Useful for omitting unneeded keys from a dictionary.
Hope this helps.
Maybe you really want to do something like this?
def some_func(a, b):
print a,b
params = {'a':1,'b':2}
some_func(**params) # equiv to some_func(a=1, b=2)
If you are afraid of the issues involved in the use of the locals dictionary and you prefer to follow your original strategy, Ordered Dictionaries from python 2.7 and 3.1 collections.OrderedDicts allows you to recover you dictionary items in the order in which they were first inserted
(Ab)using the import system
The from ... import statement lets us desctructure and bind attribute names of an object. Of course, it only works for objects in the sys.modules dictionary, so one could use a hack like this:
import sys, types
mydict = {'a':1,'b':2}
sys.modules["mydict"] = types.SimpleNamespace(**mydict)
from mydict import a, b
A somewhat more serious hack would be to write a context manager to load and unload the module:
with obj_as_module(mydict, "mydict_module"):
from mydict_module import a, b
By pointing the __getattr__ method of the module directly to the __getitem__ method of the dict, the context manager can also avoid using SimpleNamespace(**mydict).
See this answer for an implementation and some extensions of the idea.
One can also temporarily replace the entire sys.modules dict with the dict of interest, and do import a, b without from.
Warning 1: as stated in the docs, this is not guaranteed to work on all Python implementations:
CPython implementation detail: This function relies on Python stack frame support
in the interpreter, which isn’t guaranteed to exist in all implementations
of Python. If running in an implementation without Python stack frame support
this function returns None.
Warning 2: this function does make the code shorter, but it probably contradicts the Python philosophy of being as explicit as you can. Moreover, it doesn't address the issues pointed out by John Christopher Jones in the comments, although you could make a similar function that works with attributes instead of keys. This is just a demonstration that you can do that if you really want to!
def destructure(dict_):
if not isinstance(dict_, dict):
raise TypeError(f"{dict_} is not a dict")
# the parent frame will contain the information about
# the current line
parent_frame = inspect.currentframe().f_back
# so we extract that line (by default the code context
# only contains the current line)
(line,) = inspect.getframeinfo(parent_frame).code_context
# "hello, key = destructure(my_dict)"
# -> ("hello, key ", "=", " destructure(my_dict)")
lvalues, _equals, _rvalue = line.strip().partition("=")
# -> ["hello", "key"]
keys = [s.strip() for s in lvalues.split(",") if s.strip()]
if missing := [key for key in keys if key not in dict_]:
raise KeyError(*missing)
for key in keys:
yield dict_[key]
In [5]: my_dict = {"hello": "world", "123": "456", "key": "value"}
In [6]: hello, key = destructure(my_dict)
In [7]: hello
Out[7]: 'world'
In [8]: key
Out[8]: 'value'
This solution allows you to pick some of the keys, not all, like in JavaScript. It's also safe for user-provided dictionaries
With Python 3.10, you can do:
d = {"a": 1, "b": 2}
match d:
case {"a": a, "b": b}:
print(f"A is {a} and b is {b}")
but it adds two extra levels of indentation, and you still have to repeat the key names.
Look for other answers as this won't cater to the unexpected order in the dictionary. will update this with a correct version sometime soon.
try this
data = {'a':'Apple', 'b':'Banana','c':'Carrot'}
keys = data.keys()
a,b,c = [data[k] for k in keys]
result:
a == 'Apple'
b == 'Banana'
c == 'Carrot'
Well, if you want these in a class you can always do this:
class AttributeDict(dict):
def __init__(self, *args, **kwargs):
super(AttributeDict, self).__init__(*args, **kwargs)
self.__dict__.update(self)
d = AttributeDict(a=1, b=2)
Based on #ShawnFumo answer I came up with this:
def destruct(dict): return (t[1] for t in sorted(dict.items()))
d = {'b': 'Banana', 'c': 'Carrot', 'a': 'Apple' }
a, b, c = destruct(d)
(Notice the order of items in dict)
An old topic, but I found this to be a useful method:
data = {'a':'Apple', 'b':'Banana','c':'Carrot'}
for key in data.keys():
locals()[key] = data[key]
This method loops over every key in your dictionary and sets a variable to that name and then assigns the value from the associated key to this new variable.
Testing:
print(a)
print(b)
print(c)
Output
Apple
Banana
Carrot
An easy and simple way to destruct dict in python:
params = {"a": 1, "b": 2}
a, b = [params[key] for key in ("a", "b")]
print(a, b)
# Output:
# 1 2
I don't know whether it's good style, but
locals().update(params)
will do the trick. You then have a, b and whatever was in your params dict available as corresponding local variables.
Since dictionaries are guaranteed to keep their insertion order in Python >= 3.7, that means that it's complete safe and idiomatic to just do this nowadays:
params = {'a': 1, 'b': 2}
a, b = params.values()
print(a)
print(b)
Output:
1
2

Categories

Resources