I've got a dataframe where one column is U.S. states. I'd like to create a new column and bin the states according to region, i.e., South, Southwest, etc. It looks like pd.cut is only used for continuous variables, so binning that way doesn't seem like an option. Is there a good way to create a column that's conditional on categorical data in another column?
import pandas as pd
def label_states (row):
if row['state'] in ['Maine', 'New Hampshire', 'Vermont', 'Massachusetts', 'Rhode Island', 'Connecticut', 'New York', 'Pennsylvania', 'New Jersey']:
return 'north-east'
if row['state'] in ['Wisconsin', 'Michigan', 'Illinois', 'Indiana', 'Ohio', 'North Dakota', 'South Dakota', 'Nebraska', 'Kansas', 'Minnesota', 'Iowa', 'Missouri']:
return 'midwest'
if row['state'] in ['Delaware', 'Maryland', 'District of Columbia', 'Virginia', 'West Virginia', 'North Carolina', 'South Carolina', 'Georgia', 'Florida', 'Kentucky', 'Tennessee', 'Mississippi', 'Alabama', 'Oklahoma', 'Texas', 'Arkansas', 'Louisiana']:
return 'south'
return 'etc'
df = pd.DataFrame([{'state':"Illinois", 'data':"aaa"}, {'state':"Rhode Island",'data':"aba"}, {'state':"Georgia",'data':"aba"}, {'state':"Iowa",'data':"aba"}, {'state':"Connecticut",'data':"bbb"}, {'state':"Ohio",'data':"bbb"}])
df['label'] = df.apply(lambda row: label_states(row), axis=1)
df
Assume that your df contains:
State - US state code.
other columns, for the test (see below) I included only State Name.
Of course it can contain more columns and more than one row for each state.
To add region names (a new column), define regions DataFrame,
containing columns:
State - US state code.
Region - Region name.
Then merge these DataFrames and save the result back under df:
df = df.merge(regions, on='State')
A part of the result is:
State Name State Region
0 Alabama AL Southeast
1 Arizona AZ Southwest
2 Arkansas AR South
3 California CA West
4 Colorado CO Southwest
5 Connecticut CT Northeast
6 Delaware DE Northeast
7 Florida FL Southeast
8 Georgia GA Southeast
9 Idaho ID Northwest
10 Illinois IL Central
11 Indiana IN Central
12 Iowa IA East North Central
13 Kansas KS South
14 Kentucky KY Central
15 Louisiana LA South
Of course, there are numerous variants of how to assign US states to regions,
so if you want to use other variant, define regions DataFrame according
to your classification.
Related
I've been looking for an answer to this problem for a few days, but can't find anything similar in other threads.
I have a lookup table to define classification for some input data. The classification depends on continent, country and city. However, some classes may depend on a subset of these variables, e.g. only continent and country (no city). An example of such lookup table is below. In my example, I'm using one and two stars as wildcards:
- One Star: I want all cities in France to be classified as France, and
- Two Stars: All cities in US, excepting New York and San Francisco as USA - Other.
lookup_df = pd.DataFrame({'Continent': ['Europe', 'Europe', 'Asia', 'America', 'America', 'America', 'America', 'Africa'],
'Country': ['France', 'Italy', 'Japan', 'USA', 'USA', 'USA', 'Argentina', '*'],
'City': ['*', '*', '*', 'New York', 'San Francisco', '**', '*', '*'],
'Classification': ['France', 'Italy', 'Japan', 'USA - NY', 'USA - SF', 'USA - Other', 'Argentina', 'Africa']})
If my dataframe is
df = pd.DataFrame({'Continent': ['Europe', 'Europe', 'Asia', 'America ', 'America', 'America', 'Africa'],
'Country': ['France', 'Italy', 'Japan', 'USA', 'USA', 'USA', 'Egypt'],
'City': ['Paris', 'Rome', 'Tokyo', 'San Francisco', 'Houston', 'DC', 'Cairo']})
I am trying to get the following result:
Continent Country City Classification
0 Europe France Paris France
1 Europe Italy Rome Italy
2 Asia Japan Tokyo Japan
3 America USA San Francisco USA - SF
4 America USA Houston USA - Other
5 America USA DC USA - Other
6 Africa Egypt Cairo Africa
I need to start from a lookup table or similar because it's easier to maintain, easier to explain and it's also used by other processes. I can't create a full table, because I would have to consider all possible cities in the world.
Is there any pythonic way of doing this? I thought I could use pd.merge, but I haven't found any examples of this online.
One easy-to-maintain way to handle your task is to use maps:
df2 = df.copy()
# below will yield a field df2.Classification and save the value when all "Continent", "Country" and "City" match, otherwise np.nan
df2 = df2.merge(lookup_df, how='left', on = ["Continent", "Country", "City"])
# create map1 from lookup_df when City is '*' but Country is not '*'
map1 = lookup_df.loc[lookup_df.City.str.match('^\*+$') & ~lookup_df.Country.str.match('^\*+$')].set_index(['Continent','Country']).Classification.to_dict()
map1
#{('Europe', 'France'): 'France',
# ('Europe', 'Italy'): 'Italy',
# ('Asia', 'Japan'): 'Japan',
# ('America', 'USA'): 'USA - Other',
# ('America', 'Argentina'): 'Argentina'}
# create map2 from lookup_df when both City and Country are '*'
map2 = lookup_df.loc[lookup_df.City.str.match('^\*+$') & lookup_df.Country.str.match('^\*+$')].set_index('Continent').Classification.to_dict()
map2
#{'Africa': 'Africa'}
# create a function to define your logic:
def set_classification(x):
return x.Classification if x.Classification is not np.nan else \
map1[(x.Continent, x.Country)] if (x.Continent, x.Country) in map1 else \
map2[x.Continent] if x.Continent in map2 else \
np.nan
# apply the above function to each row of the df2
df2["Classification"] = df2.apply(set_classification, axis = 1)
Note: your original df.Continent on the 4th row contains an extra trailing space 'America ' which will fail the above df2 = df2.merge(...) line. you will need to fix this data issue though.
I have a dataframe (df) and I would like to create a new column called country, which is calculated buy looking at the region column and where the region value is present in the EnglandRegions list then the country value is set to England else its the value from the region column.
Please see below for my desired output:
name salary region B1salary country
0 Jason 42000 London 42000 England
1 Molly 52000 South West England
2 Tina 36000 East Midland England
3 Jake 24000 Wales Wales
4 Amy 73000 West Midlands England
You can see that all the values in country are set to England except for the value assigned to Jakes record that is set to Wales (as Wales is not in the EnglandRegions list). The code below produces the following error:
File "C:/Users/stacey/Documents/scripts/stacey.py", line 20
df['country'] = np.where((df.loc[df['region'].isin(EnglandRegions)),'England', df['region'])
^
SyntaxError: invalid syntax
The code is as follows:
import pandas as pd
import numpy as np
EnglandRegions = ["London", "South West", "East Midland", "West Midlands", "East Anglia"]
data = {'name': ['Jason', 'Molly', 'Tina', 'Jake', 'Amy'],
'salary': [42000, 52000, 36000, 24000, 73000],
'region': ['London', 'South West', 'East Midland', 'Wales', 'West Midlands']}
df = pd.DataFrame(data, columns = ['name', 'salary', 'region'])
df['B1salary'] = np.where((df['salary']>=40000) & (df['salary']<=50000) , df['salary'], '')
df['country'] = np.where((df.loc[df['region'].isin(EnglandRegions)),'England', df['region'])
print(df)
The specific issue the error is referencing is that you are missing a ] to enclose your .loc. However, fixing this won't work anyways. Try:
df['country'] = np.where(df['region'].isin(EnglandRegions), 'England', df['region'])
This is essentially what you already had in the line above it for B1salary anyways.
I have a data frame that looks like below:
City State Country
Chicago IL United States
Boston
San Diego CA United States
Los Angeles CA United States
San Francisco
Sacramento
Vancouver BC Canada
Toronto
And I have 3 lists of values that are ready to fill in the None cells:
city = ['Boston', 'San Francisco', 'Sacramento', 'Toronto']
state = ['MA', 'CA', 'CA', 'ON']
country = ['United States', 'United States', 'United States', 'Canada']
The order of the elements in these list are correspondent to each other. Thus, the first items across all 3 lists match each other, and so forth. How can I fill out the empty cells and produce a result like below?
City State Country
Chicago IL United States
Boston MA United States
San Diego CA United States
Los Angeles CA United States
San Francisco CA United States
Sacramento CA United States
Vancouver BC Canada
Toronto ON Canada
My code gives me an error and I'm stuck.
if df.loc[df['City'] == 'Boston']:
'State' = 'MA'
Any solution is welcome. Thank you.
Create two mappings, one for <city : state>, and another for <city : country>.
city_map = dict(zip(city, state))
country_map = dict(zip(city, country))
Next, set City as the index -
df = df.set_index('City')
And, finally use map/replace to transform keys to values as appropriate -
df['State'] = df['City'].map(city_map)
df['Country'] = df['City'].map(country_map)
As an extra final step, you may call df.reset_index() at the end.
I have a dataframe with a column named 'States' that lists various U.S. states. I need to create another column with a region specifier like 'Atlantic Coast' I have lists of the states that belong to various regions so if the state in df['States'] matches a state in the list 'Atlantic_states' the specifier 'Atlantic Coast' is inserted into the new column df['region specifier'] my code below shows the list I want to compare my dataframe values with and the output of the df['States'] column.
#list of states
Atlantic_states = ['Virginia',
'Massachusetts',
'Maine',
'New York',
'Rhode Island',
'Connecticut',
'New Hampshire',
'Maryland',
'Delaware',
'New Jersey',
'North Carolina',
'South Carolina',
'Georgia',
'Florida']
print(df['States'])
Out:
States
0 Virginia
1 Massachusetts
2 Maine
3 New York
4 Rhode Island
5 Connecticut
6 New Hampshire
7 Maryland
8 Delaware
9 New Jersey
10 North Carolina
11 South Carolina
12 Georgia
13 Florida
14 Wisconsin
15 Michigan
16 Ohio
17 Pennsylvania
18 Illinois
19 Indiana
20 Minnesota
21 New York
22 Washington
23 Oregon
24 California
Whilst Andy's answer works it is not the most efficient way of doing this. There is a handy method that can be called on almost all pandas Series-like objects: .isin(). Entries to this can be lists, dicts and pandas Series.
df = pd.DataFrame(['Virginia','Massachusetts','Maine','New York','Rhode Island',
'Connecticut','New Hampshire','Maryland', 'Delaware',
'New Jersey','North Carolina', 'South Carolina','Georgia','Florida',
'Wisconsin','Michigan', 'Ohio','Pennsylvania','Illinois',
'Indiana','Minnesota','New York','Washington','Oregon',
'California'],
columns=['States'])
Atlantic_states = ['Virginia', 'Massachusetts', 'Maine', 'New York','Rhode Island',
'Connecticut', 'New Hampshire', 'Maryland', 'Delaware',
'New Jersey', 'North Carolina', 'South Carolina', 'Georgia',
'Florida']
df['Coast'] = np.where(df['States'].isin(Atlantic_states), 'Atlantic Coast',
'Unknown')
df.head()
Out[1]:
States Coast
0 Virginia Atlantic Coast
1 Massachusetts Atlantic Coast
2 Maine Atlantic Coast
3 New York Atlantic Coast
4 Rhode Island Atlantic Coast
Benchmarks
Here are some timings using for mapping the first 10 letters of the alphabet to some random int numbers:
import numpy as np
import pandas as pd
df = pd.DataFrame(np.random.randint(low=0, high=26, size=(1000000,1)),
columns=['numbers'])
letters = dict(zip(list(range(0, 10)), [i for i in 'abcdefghij']))
for apply
%%timeit
def is_atlantic(state):
return True if state in letters else False
df.numbers.apply(is_atlantic)
Out[]: 1 loops, best of 3: 432 ms per loop
Now for map as suggested by JohnE
%%timeit
df.numbers.map(letters)
Out[]: 10 loops, best of 3: 56.9 ms per loop
and finally for isin (also suggested by Nickil Maveli)
%%timeit
df.numbers.isin(letters)
Out[]: 10 loops, best of 3: 20.9 ms per loop
So we see that .isin() is much quicker than .apply() and twice as quick as .map().
Note: apply and isin just return the boolean masks and map fills with the desired strings. Even so, when assigning to another column isin wins out by about 2/3 of the time of map.
You have a couple options. First, to directly answer the question as posed:
Option 1
Create a function that returns whether a state is in the Atlantic region or not
def is_atlantic(state):
return "Atlantic" if state in Atlantic_states else "Unknown"
Now, you use .apply() and get the results (and return it to your new column)
df['Region'] = df['State'].apply(is_atlantic)
This returns a data frame that looks like this:
State Region
0 Virginia Atlantic
1 Massachusetts Atlantic
2 Maine Atlantic
3 New York Atlantic
4 Rhode Island Atlantic
5 Connecticut Atlantic
6 New Hampshire Atlantic
7 Maryland Atlantic
8 Delaware Atlantic
9 New Jersey Atlantic
10 North Carolina Atlantic
11 South Carolina Atlantic
12 Georgia Atlantic
13 Florida Atlantic
14 Wisconsin Unknown
15 Michigan Unknown
16 Ohio Unknown
17 Pennsylvania Unknown
18 Illinois Unknown
19 Indiana Unknown
20 Minnesota Unknown
21 New York Atlantic
22 Washington Unknown
23 Oregon Unknown
24 California Unknown
Option 2
The first option gets cumbersome if you have multiple lists you want to check against. Instead of having multiple lists, I recommend creating a single dictionary with the State as the key and the region as the value. With only 50 values this should be easy enough to maintain.
regions = {
'Virginia': 'Atlantic',
'Massachusetts': 'Atlantic',
'Maine': 'Atlantic',
'New York': 'Atlantic',
'Rhode Island': 'Atlantic',
'Connecticut': 'Atlantic',
'New Hampshire': 'Atlantic',
'Maryland': 'Atlantic',
'Delaware': 'Atlantic',
'New Jersey': 'Atlantic',
'North Carolina': 'Atlantic',
'South Carolina': 'Atlantic',
'Georgia': 'Atlantic',
'Florida': 'Atlantic',
'Wisconsin': 'Midwest',
'Michigan': 'Midwest',
'Ohio': 'Midwest',
'Pennsylvania': 'Midwest',
'Illinois': 'Midwest',
'Indiana': 'Midwest',
'Minnesota': 'Midwest',
'New York': 'Atlantic',
'Washington': 'West',
'Oregon': 'West',
'California': 'West'
}
You can use .apply() again, with a slightly modified function:
def get_region(state):
return regions[state]
df['Region'] = df['State'].apply(get_region)
This time your dataframe looks like this:
State Region
0 Virginia Atlantic
1 Massachusetts Atlantic
2 Maine Atlantic
3 New York Atlantic
4 Rhode Island Atlantic
5 Connecticut Atlantic
6 New Hampshire Atlantic
7 Maryland Atlantic
8 Delaware Atlantic
9 New Jersey Atlantic
10 North Carolina Atlantic
11 South Carolina Atlantic
12 Georgia Atlantic
13 Florida Atlantic
14 Wisconsin Midwest
15 Michigan Midwest
16 Ohio Midwest
17 Pennsylvania Midwest
18 Illinois Midwest
19 Indiana Midwest
20 Minnesota Midwest
21 New York Atlantic
22 Washington West
23 Oregon West
24 California West
My csv writer currently does not produced row by row it just jumbles it up. Any help would be great, basically i need csv with the 4 lines in yields sections below in one colulmn.
tweets_df=tweets_df.dropna()
for i in tweets_df.ix[:,0]:
if regex_getter(i) != None:
print(regex_getter(i))
yields
Burlington, VT
Minneapolis, MN
Bloomington, IN
Irvine, CA
with open('Bernie.csv', 'w') as mycsvfile:
for i in tweets_df.ix[:,0]:
if regex_getter(i) != None:
row = regex_getter(i)
writer.writerow([i])
def regex_getter(entry):
txt = entry
re1='((?:[a-z][a-z]+))' # Word 1
re2='(,)' # Any Single Character 1
re3='(\\s+)' # White Space 1
re4='((?:(?:AL)|(?:AK)|(?:AS)|(?:AZ)|(?:AR)|(?:CA)|(?:CO)|(?:CT)|(?:DE)|(?:DC)|(?:FM)|(?:FL)|(?:GA)|(?:GU)|(?:HI)|(?:ID)|(?:IL)|(?:IN)|(?:IA)|(?:KS)|(?:KY)|(?:LA)|(?:ME)|(?:MH)|(?:MD)|(?:MA)|(?:MI)|(?:MN)|(?:MS)|(?:MO)|(?:MT)|(?:NE)|(?:NV)|(?:NH)|(?:NJ)|(?:NM)|(?:NY)|(?:NC)|(?:ND)|(?:MP)|(?:OH)|(?:OK)|(?:OR)|(?:PW)|(?:PA)|(?:PR)|(?:RI)|(?:SC)|(?:SD)|(?:TN)|(?:TX)|(?:UT)|(?:VT)|(?:VI)|(?:VA)|(?:WA)|(?:WV)|(?:WI)|(?:WY)))(?![a-z])' # US State 1
rg = re.compile(re1+re2+re3+re4,re.IGNORECASE|re.DOTALL)
m = rg.search(txt)
if m:
word1=m.group(1)
c1=m.group(2)
ws1=m.group(3)
usstate1=m.group(4)
return str((word1 + c1 +ws1 + usstate1))
What my data looks without the regex method, it basically takes out all data that is not in City, State format. It excluded everything not like Raleigh, NC for example.
for i in tweets_df.ix[:,0]:
print(i)
Indiana, USA
Burlington, VT
United States
Saint Paul - Minneapolis, MN
Inland Valley, The Pass, S. CA
In the Dreamatorium
Nova Scotia;Canada
North Carolina, USA
INTP. West Michigan
Los Angeles, California
Waterbury Connecticut
Right side of the tracks
I would do it this way:
states = {
'AK': 'Alaska',
'AL': 'Alabama',
'AR': 'Arkansas',
'AS': 'American Samoa',
'AZ': 'Arizona',
'CA': 'California',
'CO': 'Colorado',
'CT': 'Connecticut',
'DC': 'District of Columbia',
'DE': 'Delaware',
'FL': 'Florida',
'GA': 'Georgia',
'GU': 'Guam',
'HI': 'Hawaii',
'IA': 'Iowa',
'ID': 'Idaho',
'IL': 'Illinois',
'IN': 'Indiana',
'KS': 'Kansas',
'KY': 'Kentucky',
'LA': 'Louisiana',
'MA': 'Massachusetts',
'MD': 'Maryland',
'ME': 'Maine',
'MI': 'Michigan',
'MN': 'Minnesota',
'MO': 'Missouri',
'MP': 'Northern Mariana Islands',
'MS': 'Mississippi',
'MT': 'Montana',
'NA': 'National',
'NC': 'North Carolina',
'ND': 'North Dakota',
'NE': 'Nebraska',
'NH': 'New Hampshire',
'NJ': 'New Jersey',
'NM': 'New Mexico',
'NV': 'Nevada',
'NY': 'New York',
'OH': 'Ohio',
'OK': 'Oklahoma',
'OR': 'Oregon',
'PA': 'Pennsylvania',
'PR': 'Puerto Rico',
'RI': 'Rhode Island',
'SC': 'South Carolina',
'SD': 'South Dakota',
'TN': 'Tennessee',
'TX': 'Texas',
'UT': 'Utah',
'VA': 'Virginia',
'VI': 'Virgin Islands',
'VT': 'Vermont',
'WA': 'Washington',
'WI': 'Wisconsin',
'WV': 'West Virginia',
'WY': 'Wyoming'
}
# sample DF
data = """\
location
Indiana, USA
Burlington, VT
United States
Saint Paul - Minneapolis, MN
Inland Valley, The Pass, S. CA
In the Dreamatorium
Nova Scotia;Canada
North Carolina, USA
INTP. West Michigan
Los Angeles, California
Waterbury Connecticut
Right side of the tracks
"""
df = pd.read_csv(io.StringIO(data), sep=r'\|')
re_states = r'.*,\s*(?:' + '|'.join(states.keys()) + ')'
df.loc[df.location.str.contains(re_states), 'location'].to_csv('filtered.csv', index=False)
Explanation:
In [3]: df
Out[3]:
location
0 Indiana, USA
1 Burlington, VT
2 United States
3 Saint Paul - Minneapolis, MN
4 Inland Valley, The Pass, S. CA
5 In the Dreamatorium
6 Nova Scotia;Canada
7 North Carolina, USA
8 INTP. West Michigan
9 Los Angeles, California
10 Waterbury Connecticut
11 Right side of the tracks
generated RegEx:
In [9]: re_states
Out[9]: '.*,\\s*(?:VA|AK|ND|CA|CO|AR|MD|DC|KY|LA|OR|VT|IL|CT|OH|GA|WA|AS|NC|MN|NH|ID|HI|NA|MA|MS|WV|VI|FL|MO|MI|AL|ME|GU|NM|SD|WY|AZ|MP|DE|RI|PA|
NJ|WI|OK|TN|TX|KS|IN|NV|NY|NE|PR|UT|IA|MT|SC)'
Search mask:
In [10]: df.location.str.contains(re_states)
Out[10]:
0 False
1 True
2 False
3 True
4 False
5 False
6 False
7 False
8 False
9 False
10 False
11 False
Name: location, dtype: bool
Filtered DF:
In [11]: df.loc[df.location.str.contains(re_states)]
Out[11]:
location
1 Burlington, VT
3 Saint Paul - Minneapolis, MN
Now just spool it to CSV:
df.loc[df.location.str.contains(re_states), 'location'].to_csv('d:/temp/filtered.csv', index=False)
filtered.csv:
"Burlington, VT"
"Saint Paul - Minneapolis, MN"
UPDATE:
starting from Pandas 0.20.1 the .ix indexer is deprecated, in favor of the more strict .iloc and .loc indexers.