Calculating Range from Binary Search Tree - python

Is there a more suitable way to retrieve a range (difference between highest and lowest number) from this Binary Search Tree? I've tried returning the difference between the max & min value in the range function but nothing is working.
Here's my code:
# %load bst.py
class Node:
def __init__(self, data):
self.data = data
self.left_child = None
self.right_child = None
# self.parent = None
class BST:
def __init__(self):
self.root = None # the root of the tree
def insert(self, new_node):
if self.root is None: # is the tree empty?
self.root = new_node # if yes, new node becomes the root
return
self.insertNode(self.root, new_node)
def insertNode(self, root, new_node):
if new_node.data > root.data:
if root.right_child is not None: # does right child exist?
self.insertNode(root.right_child, new_node)
else:
root.right_child = new_node # new node becomes right child
return
else: # case where new_node.data <= root.data
if root.left_child is not None: # does left child exist?
self.insertNode(root.left_child, new_node)
else: # left child does not exist
root.left_child = new_node
# assignment starts here
def postOrder(self, node):
if node.left_child is not None: # does the left child exist?
self.postOrder(node.left_child)
if node.right_child is not None: # checking if right child exists
self.postOrder(node.right_child)
print(node.data) # visit the node
# finding maxmum of the array
def findMax(self, node):
if node.right_child is not None: # does the right child exist?
return self.findMax(node.right_child)
print(node.data) # visit the node
# finding minmum of the array
def findMin(self, node):
if node.left_child is not None: # check if left child exist
return self.findMin(node.left_child)
print(node.data) # visit the node
# finding range
def range(numbers=[8, 87]):
import statistics
statistics.range
return max(numbers) - min(numbers)
my_bst = BST()
l = [31, 67, 26, 29, 50, 15, 58, 8, 49, 87, 20]
for n in l:
n1 = Node(n)
my_bst.insert(n1)
print('maxmum of the array is')
my_bst.findMax(my_bst.root)
print('minmum of the array is')
my_bst.findMin(my_bst.root)
print('postOrdering the array follows')
my_bst.postOrder(my_bst.root)
print('range is')
my_bst.range(my_bst.root)
I've attempted but I keep getting the following error:
Traceback (most recent call last):
File "main.py", line 76, in <module>
my_bst.range(my_bst.root)
TypeError: range() takes from 0 to 1 positional arguments but 2 were given`

The range fonction should be a method, so you need to define the self parameter as the first argument of the function, like this:
class BST:
[...]
# finding range
def range(self, numbers=[8, 87]):
import statistics
statistics.range
return max(numbers) - min(numbers)
Notice that this is not a good practice to have a mutable parameter because it is not in the local scope of the function. You can fix this as bellow:
def range(self, numbers=None):
if numbers is None:
numbers = [8, 87]
import statistics
statistics.range
return max(numbers) - min(numbers)
In short, you can also write:
# finding range
def range(self, numbers=None):
numbers = numbers or [8, 87]
import statistics
statistics.range
return max(numbers) - min(numbers)
It is better to import statistics globally, like this:
import statistics
class BST:
[...]
# finding range
def range(self, numbers=None):
numbers = numbers or [8, 87]
statistics.range
return max(numbers) - min(numbers)
Notice that the statistics.range function is not called because you forget the parenthesis (and the parameters). So this is dead code.
In your main program, you try to call my_bst.range() with a my_bst.root which is a Node instance. So, you'll have a error when calculating max/min on a Node:
Traceback (most recent call last):
File "...", line 75, in <module>
my_bst.range(my_bst.root)
File "...", line 59, in range
return max(numbers) - min(numbers)
TypeError: 'Node' object is not iterable
You need to develop your algorithm by yourself.

You design doesn't make much sense. The reason you would have a separate BST class is so that you can write methods over trees that don't rely on recursion. If you're going to rely on recursion, then it makes more sense to just have a Node class, because every node is itself a binary tree.
Here's how I would rewrite the findMin, findMax and range methods of BST
class Node:
def __init__(self, data):
self.data = data
self.left = None
self.right = None
class BST:
def __init__(self):
self.root = None
def insert(self, value):
if self.root is None:
self.root = Node(value)
else:
curr_node = self.root
while True:
if value < curr_node.data:
if curr_node.left is None:
curr_node.left = Node(value)
return
else:
curr_node = curr_node.left
elif value > curr_node.data:
if curr_node.right is None:
curr_node.right = Node(value)
return
else:
curr_node = curr_node.right
else:
return
def min(self):
if self.root is None:
raise TypeError("Empty Tree")
curr_node = self.root
while curr_node.left is not None:
curr_node = curr_node.left
return curr_node.data
def max(self):
if self.root is None:
raise TypeError("Empty Tree")
curr_node = self.root
while curr_node.right is not None:
curr_node = curr_node.right
return curr_node.data
def range(self):
return self.max() - self.min()
my_bst = BST()
l = [31, 67, 26, 29, 50, 15, 58, 8, 49, 87, 20]
for v in l:
my_bst.insert(v)
print(my_bst.range()) # 79

Related

Why do I get RecursionError in this implementation of sorted dictionary as Binary Search Tree?

I am trying to implement a kind of sorted dictionary as a Binary Search Tree. The idea is that no matter what operation I do on this new dictionary-like object, the elements of the dictionary are always sorted with respect to the keys. My implementation is not complete - there are some issues of performance that I would like to fix before completing the code.
The idea is to create two classes, Nodeand SortedDict().
The class Node has the __getitem__ and __setitem__ methods to insert and get elements in the tree (for the moment I am not implementing a delete operation).
The class SortedDict() takes a sorted dictionary (for the moment I am not implementing cases where the argument is not a sorted dictionary), and it starts inserting the elements of the dictionary starting from the leaves of the tree. First, it processes the left child until it reaches the median of the keys of the dictionary. Then, it processes the right child, and then it glues the two children trees to the root. The root is the median of the sorted dictionary' keys.
If the dictionary is very large, I get a RecursionError: maximum recursion depth exceeded in comparison error if I try to access an element that is very far from the root. Why do I get this error? How can I avoid it?
The traceback is:
Traceback (most recent call last):
File "main.py", line 96, in <module>
print(dic_obj[5])
File "main.py", line 91, in __getitem__
return self.root.__getitem__(item)
File "main.py", line 26, in __getitem__
return self.left.__getitem__(item)
File "main.py", line 26, in __getitem__
return self.left.__getitem__(item)
File "main.py", line 26, in __getitem__
return self.left.__getitem__(item)
[Previous line repeated 994 more times]
File "main.py", line 18, in __getitem__
if item > self.root:
RecursionError: maximum recursion depth exceeded in comparison
To reproduce this error you can use the following code:
dic = {k:k for k in range(1,10000)}
dic_obj = SortedDict(dic)
print(dic_obj[5])
where the definition of SortedDict is given as follow:
class Node():
def __init__(self, root=None, value=None, left=None, right=None, parent=None):
self.parent = parent
self.root, self.value = root, value
self.left = left
self.right = right
def __str__(self):
return f'<Node Object - Root: {self.root}, Value: {self.value}, Parent: {self.parent}>'
def __getitem__(self, item):
if self.root is None:
raise KeyError(item)
if item > self.root:
if self.right is None:
raise KeyError(item)
return self.right.__getitem__(item)
if item < self.root:
if self.left is None:
raise KeyError(item)
return self.left.__getitem__(item)
if item == self.root:
return self.value
def __setitem__(self, key, value):
if self.root is None:
self.root, self.value = key, value
else:
if key > self.root:
if self.right is not None:
self.right.__setitem__(key,value)
else:
self.right = Node(root=key, value=value)
self.right.parent = self
elif key < self.root:
if self.left is not None:
self.left.__setitem__(key,value)
else:
self.left = Node(root=key, value=value)
self.left.parent = self
elif key == self.root:
self.root = value
class SortedDict():
def __init__(self, array: dict):
self.root = Node()
if array:
keys = list(array.keys())
for key in range(len(keys)//2):
self.__setitem__(keys[key],array[keys[key]])
root = Node(root=keys[key+1],value=array[keys[key+1]])
self.root.parent = root
root.left = self.root
self.root = Node()
for key in range(len(keys)//2+1,len(keys)):
self.__setitem__(keys[key],array[keys[key]])
self.root.parent = root
root.right = self.root
self.root = root
def __setitem__(self, key, value):
try:
if key > self.root.root:
if self.root.right is None and self.root.left is None:
node = Node(root=key, value=value)
self.root.parent = node
node.left = self.root
self.root = node
else:
if self.root.right is None:
self.root.right = Node(root=key, value=value, parent=self.root)
else:
node = Node(root=key, value=value)
self.root.parent = node
node.left = self.root
self.root = node
except:
self.root.root = key
self.root.value = value
def __getitem__(self, item):
return self.root.__getitem__(item)

RecursionError: maximum recursion depth exceeded - Binary Tree

While implementing add_node and search methods for a binary tree, Im getting a RecursionError: maximum recursion depth exceeded
Code:
class TreeNode:
def __init__(self, value):
self.value = value
self.left = None
self.right = None
class BinaryTree:
def __init__(self, root=None):
self.root = root
def add_node(self, node, value):
node = self.root
if node is not None:
if not node.value:
node.value = value
elif not node.left:
node.left = value
elif not node.right:
node.right = value
else:
node.left = self.add_node(node.left, value)
else:
self.root = TreeNode(value)
def search(self, value):
node = self.root
found = False
while node is not None:
if node.value == value:
found = True
if node.left:
found = node.left.search(value)
if node.right:
found = found or node.left.search(value)
return found
def main():
binary_tree = BinaryTree()
binary_tree.add_node(binary_tree.root, 200)
binary_tree.add_node(binary_tree.root, 300)
binary_tree.add_node(binary_tree.root, 100)
binary_tree.add_node(binary_tree.root, 30)
binary_tree.traverse_inorder(binary_tree.root)
print(binary_tree.search(200))
if __name__ == '__main__':
main()
Error:
Traceback (most recent call last):
File ".\binary_tree_test20.py", line 51, in <module>
main()
File ".\binary_tree_test20.py", line 45, in main
binary_tree.add_node(binary_tree.root, 30)
File ".\binary_tree_test20.py", line 22, in add_node
node.left = self.add_node(node.left, value)
File ".\binary_tree_test20.py", line 22, in add_node
node.left = self.add_node(node.left, value)
File ".\binary_tree_test20.py", line 22, in add_node
node.left = self.add_node(node.left, value)
[Previous line repeated 995 more times]
RecursionError: maximum recursion depth exceeded
This is a remedy I can give you.
class TreeNode:
def __init__(self, value):
self.value = value
self.left = None
self.right = None
def _add_node(node, value):
if not node.value:
node.value = value
elif not node.left:
node.left = TreeNode(value)
elif not node.right:
node.right = TreeNode(value)
else:
_add_node(node.left, value)
class BinaryTree:
# ...
def add_node(self, value):
node = self.root
if node is not None:
_add_node(node, value)
else:
self.root = TreeNode(value)
# ...
def main():
binary_tree = BinaryTree()
binary_tree.add_node(200)
binary_tree.add_node(300)
binary_tree.add_node(100)
binary_tree.add_node(30)
Although I recommend only extending TreeNode definition without defining BinaryTree.
You're getting infinite recursion because you're not using the node parameter, you're replacing it with self.root. So when you recurse, you start at the root again each time, and never end.
Also, the line node.left = self.add_node(node.left, value) expects add_node to return the new node, but your method doesn't return anything. When it's updating an existing node it should just return the modified node; if it's creating a new node, it returns that node.
def add_node(self, node, value):
if node is not None:
if not node.value:
node.value = value
elif not node.left:
node.left = value
elif not node.right:
node.right = value
else:
node.left = self.add_node(node.left, value)
return node
else:
return TreeNode(value)
You would call this method like this:
binary_tree.root = binary_tree.add_node(binary_tree.root, 30)

BST method that returns a list of values in a specified range Python implementation

I want to return a list of sorted order, provided I'm given a start/stop value for the method. For example, if start=2 and end=8, then i want to return a list within that range, implicitly, of the values in the BST in sorted order.
Since I want it to be in sorted order and not allowed to post sort the list after the method call, I think i should traverse the bst via in order traversal. when I test my implementation, first first doctest return [7,9,11] instead of [5,7,9,11] as intended.
from __future__ import annotations
from typing import Any, List, Optional, Tuple
class BinarySearchTree:
"""Binary Search Tree class.
# === Representation Invariants ===
# - If self._root is None, then so are self._left and self._right.
# This represents an empty BST.
# - If self._root is not None, then self._left and self._right
# are BinarySearchTrees.
# - (BST Property) If self is not empty, then
# all items in self._left are <= self._root, and
# all items in self._right are >= self._root.
"""
def __init__(self, root: Optional[Any]) -> None:
"""Initialize a new BST containing only the given root value.
If <root> is None, initialize an empty tree.
"""
if root is None:
self._root = None
self._left = None
self._right = None
else:
self._root = root
self._left = BinarySearchTree(None)
self._right = BinarySearchTree(None)
def is_empty(self) -> bool:
"""Return True if this BST is empty.
>>> bst = BinarySearchTree(None)
>>> bst.is_empty()
True
>>> bst = BinarySearchTree(10)
>>> bst.is_empty()
False
"""
return self._root is None
def items_in_range(self, start: Any, end: Any) -> List:
"""Return the items in this BST between <start> and <end>, inclusive.
Precondition: all items in this BST can be compared with <start> and
<end>.
The items should be returned in sorted order.
As usual, use the BST property to minimize the number of recursive
calls.
>>> bst = BinarySearchTree(7)
>>> left = BinarySearchTree(3)
>>> left._left = BinarySearchTree(2)
>>> left._right = BinarySearchTree(5)
>>> right = BinarySearchTree(11)
>>> right._left = BinarySearchTree(9)
>>> right._right = BinarySearchTree(13)
>>> bst._left = left
>>> bst._right = right
>>> bst.items_in_range(4, 11)
[5, 7, 9, 11]
>>> bst.items_in_range(10, 13)
[11, 13]
"""
if self.is_empty():
return []
else:
#use helper here
if end >= self._root >= start:
return (self._left._helper_items_in_range_left(start)
+ [self._root]
+ self._right._helper_item_in_range_right(end))
elif self._root > end:
return self._left.items_in_range(start,end)
elif self._root < start:
return self._right.items_in_range(start,end)
else:
pass
def _helper_items_in_range_left(self, start):
if self.is_empty():
return []
elif self._root < start:
return []
else:
return self._left._helper_items_in_range_left(start) +\
[self._root] + self._right._helper_items_in_range_left(start)
def _helper_item_in_range_right(self, end):
if self.is_empty():
return []
elif self._root > end:
return []
else:
return self._left._helper_item_in_range_right(end) + [self._root] +\
self._right._helper_item_in_range_right(end)
You could use something like this. Note that I tested it using a different tree structure.
import itertools
from collections import deque
class BSTIterator(object):
def __init__(self, root):
# Constructor takes in a tree root
self.stack = deque()
self._get_min(root)
def _get_min(self, root):
# We need to create our stack, i.e. dive down the left
curr = root
while curr != None:
self.stack.append(curr)
curr = curr.left
def __iter__(self): # Return self as the iterator
return self
def __next__(self): # Every time `next` is called return our data.
try:
curr = self.stack.pop()
self._get_min(curr.right)
return curr.data
except IndexError:
raise StopIteration
Tree type used:
class Node:
def __init__(self, data):
self.left = None
self.right = None
self.data = data
def insert(self, data):
if self.data:
if data < self.data:
if self.left is None:
self.left = Node(data)
else:
self.left.insert(data)
elif data > self.data:
if self.right is None:
self.right = Node(data)
else:
self.right.insert(data)
else:
self.data = data
Tested with:
root = Node(8)
root.insert(3)
root.insert(10)
root.insert(1)
root.insert(7)
root.insert(12)
root.insert(121)
root.insert(23)
root.insert(19)
root.insert(9)
b_iter = BSTIterator(root)
# root.print_tree()
# Since we now have an iterator we can for loop over it
# such as
# y = [x for x in b_iter]
# or we can slice it like
y = [x for x in itertools.islice(b_iter, 2, 5)]
print(y)
Prints:
[7, 8, 9]
That is how I would define a method returning a list of nodes from a given range (inclusive, non-decreasing order).
class Tree:
def __init__(self, root):
self.root = root
def nodes_in_range(self, start, end):
def search_range(node):
if node is not None:
if start <= node.value:
yield from search_range(node.left)
if start <= node.value <= end:
yield node.value
if end >= node.value:
yield from search_range(node.right)
return list(search_range(self.root))

Binary Search Tree (Python) not showing result

I'm somewhat new to Python and need help with an issue I'm facing. I'm trying to make a binary search tree. I've written a code and it works, but won't show any result (printed values). I can't figure out what the issue might be. Here is the entire code:
class Node:
def __init__(self, value):
self.value = value
self.left_child = None
self.right_child = None
class binary_search_tree:
def __init__(self):
self.root_node = None
def insert(self, value, curr_node):
if self.root_node == None:
self.root_node == node(value)
elif self.root_node < value:
if self.right_child == None:
self.right.child = value
else:
curr_node == self.right_child
if curr_node < value:
curr_node.right_child = node(value)
elif curr_node > value:
curr_node.left_child = node(value)
else:
print("Error! Value Already Exists!")
elif self.root_node > value:
if self.left_child == None:
self.left.child = value
else:
curr_node == self.left_child
if curr_node < value:
curr_node.right_child = node(value)
elif curr_node > value:
curr_node.left_child = node(value)
else:
print("Error! Value Already Exists!")
else:
print("Error! Value Already Exists!")
def fill_Tree(tree, num_elems = 100, max_int = 1000):
from random import randint
for x in range (num, elems):
curr_elem = randint(0, max_int)
tree.insert(curr_elem)
return tree
I have made a class Node to handle the nodes and a function insert that helps to insert the values. It check for the root node. If its there, it moves onto the leaf based on the values. If not, it adds the value as the root. The program keeps on checking for values and nodes and their differences (less than, greater than etc), just the ways a tree is supposed to function. The program executes, but nothing shows up. Not sure what I'm doing wrong though.
Any sort of help would be appreciated!
Thanks.
If that is your entire code, and if the input and execution is perfect, it would not show any result, because you are not printing any result.
You don't have an apparent main function to create an object of the class binar_search_tree.
The print statements that you have are only when there is an error. If everything works perfectly, your code doesn't print anything
You would need a method that can display the the tree
Currently, your insertion method is assigning values to the left or right children of the root, not traveling to a depth beyond those two nodes, should a value smaller than the left child or greater than the right child be found. Instead, create one class to store the value, left, and right child, along with the necessary insertion method. To determine if a value exists in the tree, it is cleaner to utilize __getitem__ with recursion:
def check_val(f):
def wrapper(cls, _val):
if _val in cls.__class__.seen:
raise ValueError(f"'{_val}' already in '{cls.__class__.__name__}'")
return f(cls, _val)
return wrapper
class Tree:
seen = []
def __init__(self, value=None):
self.left = None
self.value = value
self.right = None
def __lt__(self, _node):
return self.value < getattr(_node, 'value', _node)
#check_val
def insert_val(self, _val):
if self.value is None:
self.value = _val
self.__class__.seen.append(_val)
else:
if _val < self.value:
if self.left is None:
self.left = Tree(_val)
Tree.seen.append(_val)
else:
self.left.insert_val(_val)
else:
if self.right is None:
self.right = Tree(_val)
Tree.seen.append(_val)
else:
self.right.insert_val(_val)
def __getitem__(self, val):
if self.value == val:
return True
if val < self.value:
return getattr(self.left, '__getitem__', lambda _:False)(val)
return getattr(self.right, '__getitem__', lambda _:False)(val)
#classmethod
def load_tree(cls, size = 10):
_t = cls()
import random
for _ in range(size):
_t.insert_val(random.randint(1, 100))
return _t
To run:
t = Tree.load_tree()
print(t.__class__.seen)
#[82, 94, 33, 59, 73, 72, 96, 14, 58, 67]
for i in t.__class__.seen:
assert t[i]
print('all cases passed')
Output:
'all cases passed'

How can I use a Linked List in Python?

What's the easiest way to use a linked list in Python? In Scheme, a linked list is defined simply by '(1 2 3 4 5).
Python's lists, [1, 2, 3, 4, 5], and tuples, (1, 2, 3, 4, 5), are not, in fact, linked lists, and linked lists have some nice properties such as constant-time concatenation, and being able to reference separate parts of them. Make them immutable and they are really easy to work with!
For some needs, a deque may also be useful. You can add and remove items on both ends of a deque at O(1) cost.
from collections import deque
d = deque([1,2,3,4])
print d
for x in d:
print x
print d.pop(), d
I wrote this up the other day
#! /usr/bin/env python
class Node(object):
def __init__(self):
self.data = None # contains the data
self.next = None # contains the reference to the next node
class LinkedList:
def __init__(self):
self.cur_node = None
def add_node(self, data):
new_node = Node() # create a new node
new_node.data = data
new_node.next = self.cur_node # link the new node to the 'previous' node.
self.cur_node = new_node # set the current node to the new one.
def list_print(self):
node = self.cur_node # cant point to ll!
while node:
print node.data
node = node.next
ll = LinkedList()
ll.add_node(1)
ll.add_node(2)
ll.add_node(3)
ll.list_print()
Here is some list functions based on Martin v. Löwis's representation:
cons = lambda el, lst: (el, lst)
mklist = lambda *args: reduce(lambda lst, el: cons(el, lst), reversed(args), None)
car = lambda lst: lst[0] if lst else lst
cdr = lambda lst: lst[1] if lst else lst
nth = lambda n, lst: nth(n-1, cdr(lst)) if n > 0 else car(lst)
length = lambda lst, count=0: length(cdr(lst), count+1) if lst else count
begin = lambda *args: args[-1]
display = lambda lst: begin(w("%s " % car(lst)), display(cdr(lst))) if lst else w("nil\n")
where w = sys.stdout.write
Although doubly linked lists are famously used in Raymond Hettinger's ordered set recipe, singly linked lists have no practical value in Python.
I've never used a singly linked list in Python for any problem except educational.
Thomas Watnedal suggested a good educational resource How to Think Like a Computer Scientist, Chapter 17: Linked lists:
A linked list is either:
the empty list, represented by None, or
a node that contains a cargo object and a reference to a linked list.
class Node:
def __init__(self, cargo=None, next=None):
self.car = cargo
self.cdr = next
def __str__(self):
return str(self.car)
def display(lst):
if lst:
w("%s " % lst)
display(lst.cdr)
else:
w("nil\n")
The accepted answer is rather complicated. Here is a more standard design:
L = LinkedList()
L.insert(1)
L.insert(1)
L.insert(2)
L.insert(4)
print L
L.clear()
print L
It is a simple LinkedList class based on the straightforward C++ design and Chapter 17: Linked lists, as recommended by Thomas Watnedal.
class Node:
def __init__(self, value = None, next = None):
self.value = value
self.next = next
def __str__(self):
return 'Node ['+str(self.value)+']'
class LinkedList:
def __init__(self):
self.first = None
self.last = None
def insert(self, x):
if self.first == None:
self.first = Node(x, None)
self.last = self.first
elif self.last == self.first:
self.last = Node(x, None)
self.first.next = self.last
else:
current = Node(x, None)
self.last.next = current
self.last = current
def __str__(self):
if self.first != None:
current = self.first
out = 'LinkedList [\n' +str(current.value) +'\n'
while current.next != None:
current = current.next
out += str(current.value) + '\n'
return out + ']'
return 'LinkedList []'
def clear(self):
self.__init__()
Immutable lists are best represented through two-tuples, with None representing NIL. To allow simple formulation of such lists, you can use this function:
def mklist(*args):
result = None
for element in reversed(args):
result = (element, result)
return result
To work with such lists, I'd rather provide the whole collection of LISP functions (i.e. first, second, nth, etc), than introducing methods.
Here's a slightly more complex version of a linked list class, with a similar interface to python's sequence types (ie. supports indexing, slicing, concatenation with arbitrary sequences etc). It should have O(1) prepend, doesn't copy data unless it needs to and can be used pretty interchangably with tuples.
It won't be as space or time efficient as lisp cons cells, as python classes are obviously a bit more heavyweight (You could improve things slightly with "__slots__ = '_head','_tail'" to reduce memory usage). It will have the desired big O performance characteristics however.
Example of usage:
>>> l = LinkedList([1,2,3,4])
>>> l
LinkedList([1, 2, 3, 4])
>>> l.head, l.tail
(1, LinkedList([2, 3, 4]))
# Prepending is O(1) and can be done with:
LinkedList.cons(0, l)
LinkedList([0, 1, 2, 3, 4])
# Or prepending arbitrary sequences (Still no copy of l performed):
[-1,0] + l
LinkedList([-1, 0, 1, 2, 3, 4])
# Normal list indexing and slice operations can be performed.
# Again, no copy is made unless needed.
>>> l[1], l[-1], l[2:]
(2, 4, LinkedList([3, 4]))
>>> assert l[2:] is l.next.next
# For cases where the slice stops before the end, or uses a
# non-contiguous range, we do need to create a copy. However
# this should be transparent to the user.
>>> LinkedList(range(100))[-10::2]
LinkedList([90, 92, 94, 96, 98])
Implementation:
import itertools
class LinkedList(object):
"""Immutable linked list class."""
def __new__(cls, l=[]):
if isinstance(l, LinkedList): return l # Immutable, so no copy needed.
i = iter(l)
try:
head = i.next()
except StopIteration:
return cls.EmptyList # Return empty list singleton.
tail = LinkedList(i)
obj = super(LinkedList, cls).__new__(cls)
obj._head = head
obj._tail = tail
return obj
#classmethod
def cons(cls, head, tail):
ll = cls([head])
if not isinstance(tail, cls):
tail = cls(tail)
ll._tail = tail
return ll
# head and tail are not modifiable
#property
def head(self): return self._head
#property
def tail(self): return self._tail
def __nonzero__(self): return True
def __len__(self):
return sum(1 for _ in self)
def __add__(self, other):
other = LinkedList(other)
if not self: return other # () + l = l
start=l = LinkedList(iter(self)) # Create copy, as we'll mutate
while l:
if not l._tail: # Last element?
l._tail = other
break
l = l._tail
return start
def __radd__(self, other):
return LinkedList(other) + self
def __iter__(self):
x=self
while x:
yield x.head
x=x.tail
def __getitem__(self, idx):
"""Get item at specified index"""
if isinstance(idx, slice):
# Special case: Avoid constructing a new list, or performing O(n) length
# calculation for slices like l[3:]. Since we're immutable, just return
# the appropriate node. This becomes O(start) rather than O(n).
# We can't do this for more complicated slices however (eg [l:4]
start = idx.start or 0
if (start >= 0) and (idx.stop is None) and (idx.step is None or idx.step == 1):
no_copy_needed=True
else:
length = len(self) # Need to calc length.
start, stop, step = idx.indices(length)
no_copy_needed = (stop == length) and (step == 1)
if no_copy_needed:
l = self
for i in range(start):
if not l: break # End of list.
l=l.tail
return l
else:
# We need to construct a new list.
if step < 1: # Need to instantiate list to deal with -ve step
return LinkedList(list(self)[start:stop:step])
else:
return LinkedList(itertools.islice(iter(self), start, stop, step))
else:
# Non-slice index.
if idx < 0: idx = len(self)+idx
if not self: raise IndexError("list index out of range")
if idx == 0: return self.head
return self.tail[idx-1]
def __mul__(self, n):
if n <= 0: return Nil
l=self
for i in range(n-1): l += self
return l
def __rmul__(self, n): return self * n
# Ideally we should compute the has ourselves rather than construct
# a temporary tuple as below. I haven't impemented this here
def __hash__(self): return hash(tuple(self))
def __eq__(self, other): return self._cmp(other) == 0
def __ne__(self, other): return not self == other
def __lt__(self, other): return self._cmp(other) < 0
def __gt__(self, other): return self._cmp(other) > 0
def __le__(self, other): return self._cmp(other) <= 0
def __ge__(self, other): return self._cmp(other) >= 0
def _cmp(self, other):
"""Acts as cmp(): -1 for self<other, 0 for equal, 1 for greater"""
if not isinstance(other, LinkedList):
return cmp(LinkedList,type(other)) # Arbitrary ordering.
A, B = iter(self), iter(other)
for a,b in itertools.izip(A,B):
if a<b: return -1
elif a > b: return 1
try:
A.next()
return 1 # a has more items.
except StopIteration: pass
try:
B.next()
return -1 # b has more items.
except StopIteration: pass
return 0 # Lists are equal
def __repr__(self):
return "LinkedList([%s])" % ', '.join(map(repr,self))
class EmptyList(LinkedList):
"""A singleton representing an empty list."""
def __new__(cls):
return object.__new__(cls)
def __iter__(self): return iter([])
def __nonzero__(self): return False
#property
def head(self): raise IndexError("End of list")
#property
def tail(self): raise IndexError("End of list")
# Create EmptyList singleton
LinkedList.EmptyList = EmptyList()
del EmptyList
llist — Linked list datatypes for Python
llist module implements linked list data structures. It supports a doubly linked list, i.e. dllist and a singly linked data structure sllist.
dllist objects
This object represents a doubly linked list data structure.
first
First dllistnode object in the list. None if list is empty.
last
Last dllistnode object in the list. None if list is empty.
dllist objects also support the following methods:
append(x)
Add x to the right side of the list and return inserted dllistnode.
appendleft(x)
Add x to the left side of the list and return inserted dllistnode.
appendright(x)
Add x to the right side of the list and return inserted dllistnode.
clear()
Remove all nodes from the list.
extend(iterable)
Append elements from iterable to the right side of the list.
extendleft(iterable)
Append elements from iterable to the left side of the list.
extendright(iterable)
Append elements from iterable to the right side of the list.
insert(x[, before])
Add x to the right side of the list if before is not specified, or insert x to the left side of dllistnode before. Return inserted dllistnode.
nodeat(index)
Return node (of type dllistnode) at index.
pop()
Remove and return an element’s value from the right side of the list.
popleft()
Remove and return an element’s value from the left side of the list.
popright()
Remove and return an element’s value from the right side of the list
remove(node)
Remove node from the list and return the element which was stored in it.
dllistnode objects
class llist.dllistnode([value])
Return a new doubly linked list node, initialized (optionally) with value.
dllistnode objects provide the following attributes:
next
Next node in the list. This attribute is read-only.
prev
Previous node in the list. This attribute is read-only.
value
Value stored in this node.
Compiled from this reference
sllist
class llist.sllist([iterable])
Return a new singly linked list initialized with elements from iterable. If iterable is not specified, the new sllist is empty.
A similar set of attributes and operations are defined for this sllist object. See this reference for more information.
class Node(object):
def __init__(self, data=None, next=None):
self.data = data
self.next = next
def setData(self, data):
self.data = data
return self.data
def setNext(self, next):
self.next = next
def getNext(self):
return self.next
def hasNext(self):
return self.next != None
class singleLinkList(object):
def __init__(self):
self.head = None
def isEmpty(self):
return self.head == None
def insertAtBeginning(self, data):
newNode = Node()
newNode.setData(data)
if self.listLength() == 0:
self.head = newNode
else:
newNode.setNext(self.head)
self.head = newNode
def insertAtEnd(self, data):
newNode = Node()
newNode.setData(data)
current = self.head
while current.getNext() != None:
current = current.getNext()
current.setNext(newNode)
def listLength(self):
current = self.head
count = 0
while current != None:
count += 1
current = current.getNext()
return count
def print_llist(self):
current = self.head
print("List Start.")
while current != None:
print(current.getData())
current = current.getNext()
print("List End.")
if __name__ == '__main__':
ll = singleLinkList()
ll.insertAtBeginning(55)
ll.insertAtEnd(56)
ll.print_llist()
print(ll.listLength())
I based this additional function on Nick Stinemates
def add_node_at_end(self, data):
new_node = Node()
node = self.curr_node
while node:
if node.next == None:
node.next = new_node
new_node.next = None
new_node.data = data
node = node.next
The method he has adds the new node at the beginning while I have seen a lot of implementations which usually add a new node at the end but whatever, it is fun to do.
The following is what I came up with. It's similer to Riccardo C.'s, in this thread, except it prints the numbers in order instead of in reverse. I also made the LinkedList object a Python Iterator in order to print the list out like you would a normal Python list.
class Node:
def __init__(self, data=None):
self.data = data
self.next = None
def __str__(self):
return str(self.data)
class LinkedList:
def __init__(self):
self.head = None
self.curr = None
self.tail = None
def __iter__(self):
return self
def next(self):
if self.head and not self.curr:
self.curr = self.head
return self.curr
elif self.curr.next:
self.curr = self.curr.next
return self.curr
else:
raise StopIteration
def append(self, data):
n = Node(data)
if not self.head:
self.head = n
self.tail = n
else:
self.tail.next = n
self.tail = self.tail.next
# Add 5 nodes
ll = LinkedList()
for i in range(1, 6):
ll.append(i)
# print out the list
for n in ll:
print n
"""
Example output:
$ python linked_list.py
1
2
3
4
5
"""
I just did this as a fun toy. It should be immutable as long as you don't touch the underscore-prefixed methods, and it implements a bunch of Python magic like indexing and len.
Here is my solution:
Implementation
class Node:
def __init__(self, initdata):
self.data = initdata
self.next = None
def get_data(self):
return self.data
def set_data(self, data):
self.data = data
def get_next(self):
return self.next
def set_next(self, node):
self.next = node
# ------------------------ Link List class ------------------------------- #
class LinkList:
def __init__(self):
self.head = None
def is_empty(self):
return self.head == None
def traversal(self, data=None):
node = self.head
index = 0
found = False
while node is not None and not found:
if node.get_data() == data:
found = True
else:
node = node.get_next()
index += 1
return (node, index)
def size(self):
_, count = self.traversal(None)
return count
def search(self, data):
node, _ = self.traversal(data)
return node
def add(self, data):
node = Node(data)
node.set_next(self.head)
self.head = node
def remove(self, data):
previous_node = None
current_node = self.head
found = False
while current_node is not None and not found:
if current_node.get_data() == data:
found = True
if previous_node:
previous_node.set_next(current_node.get_next())
else:
self.head = current_node
else:
previous_node = current_node
current_node = current_node.get_next()
return found
Usage
link_list = LinkList()
link_list.add(10)
link_list.add(20)
link_list.add(30)
link_list.add(40)
link_list.add(50)
link_list.size()
link_list.search(30)
link_list.remove(20)
Original Implementation Idea
http://interactivepython.org/runestone/static/pythonds/BasicDS/ImplementinganUnorderedListLinkedLists.html
When using immutable linked lists, consider using Python's tuple directly.
ls = (1, 2, 3, 4, 5)
def first(ls): return ls[0]
def rest(ls): return ls[1:]
Its really that ease, and you get to keep the additional funcitons like len(ls), x in ls, etc.
class LL(object):
def __init__(self,val):
self.val = val
self.next = None
def pushNodeEnd(self,top,val):
if top is None:
top.val=val
top.next=None
else:
tmp=top
while (tmp.next != None):
tmp=tmp.next
newNode=LL(val)
newNode.next=None
tmp.next=newNode
def pushNodeFront(self,top,val):
if top is None:
top.val=val
top.next=None
else:
newNode=LL(val)
newNode.next=top
top=newNode
def popNodeFront(self,top):
if top is None:
return
else:
sav=top
top=top.next
return sav
def popNodeEnd(self,top):
if top is None:
return
else:
tmp=top
while (tmp.next != None):
prev=tmp
tmp=tmp.next
prev.next=None
return tmp
top=LL(10)
top.pushNodeEnd(top, 20)
top.pushNodeEnd(top, 30)
pop=top.popNodeEnd(top)
print (pop.val)
I've put a Python 2.x and 3.x singly-linked list class at https://pypi.python.org/pypi/linked_list_mod/
It's tested with CPython 2.7, CPython 3.4, Pypy 2.3.1, Pypy3 2.3.1, and Jython 2.7b2, and comes with a nice automated test suite.
It also includes LIFO and FIFO classes.
They aren't immutable though.
class LinkedStack:
'''LIFO Stack implementation using a singly linked list for storage.'''
_ToList = []
#---------- nested _Node class -----------------------------
class _Node:
'''Lightweight, nonpublic class for storing a singly linked node.'''
__slots__ = '_element', '_next' #streamline memory usage
def __init__(self, element, next):
self._element = element
self._next = next
#--------------- stack methods ---------------------------------
def __init__(self):
'''Create an empty stack.'''
self._head = None
self._size = 0
def __len__(self):
'''Return the number of elements in the stack.'''
return self._size
def IsEmpty(self):
'''Return True if the stack is empty'''
return self._size == 0
def Push(self,e):
'''Add element e to the top of the Stack.'''
self._head = self._Node(e, self._head) #create and link a new node
self._size +=1
self._ToList.append(e)
def Top(self):
'''Return (but do not remove) the element at the top of the stack.
Raise exception if the stack is empty
'''
if self.IsEmpty():
raise Exception('Stack is empty')
return self._head._element #top of stack is at head of list
def Pop(self):
'''Remove and return the element from the top of the stack (i.e. LIFO).
Raise exception if the stack is empty
'''
if self.IsEmpty():
raise Exception('Stack is empty')
answer = self._head._element
self._head = self._head._next #bypass the former top node
self._size -=1
self._ToList.remove(answer)
return answer
def Count(self):
'''Return how many nodes the stack has'''
return self.__len__()
def Clear(self):
'''Delete all nodes'''
for i in range(self.Count()):
self.Pop()
def ToList(self):
return self._ToList
Here is my simple implementation:
class Node:
def __init__(self):
self.data = None
self.next = None
def __str__(self):
return "Data %s: Next -> %s"%(self.data, self.next)
class LinkedList:
def __init__(self):
self.head = Node()
self.curNode = self.head
def insertNode(self, data):
node = Node()
node.data = data
node.next = None
if self.head.data == None:
self.head = node
self.curNode = node
else:
self.curNode.next = node
self.curNode = node
def printList(self):
print self.head
l = LinkedList()
l.insertNode(1)
l.insertNode(2)
l.insertNode(34)
Output:
Data 1: Next -> Data 2: Next -> Data 34: Next -> Data 4: Next -> None
I did also write a Single Linked List based on some tutorial, which has the basic two Node and Linked List classes, and some additional methods for insertion, delete, reverse, sorting, and such.
It's not the best or easiest, works OK though.
"""
🍎🍏🍎🍏🍎🍏🍎🍏🍎🍏🍎🍏🍎🍏🍎🍏
Single Linked List (SLL):
A simple object-oriented implementation of Single Linked List (SLL)
with some associated methods, such as create list, count nodes, delete nodes, and such.
🍎🍏🍎🍏🍎🍏🍎🍏🍎🍏🍎🍏🍎🍏🍎🍏
"""
class Node:
"""
Instantiates a node
"""
def __init__(self, value):
"""
Node class constructor which sets the value and link of the node
"""
self.info = value
self.link = None
class SingleLinkedList:
"""
Instantiates the SLL class
"""
def __init__(self):
"""
SLL class constructor which sets the value and link of the node
"""
self.start = None
def create_single_linked_list(self):
"""
Reads values from stdin and appends them to this list and creates a SLL with integer nodes
"""
try:
number_of_nodes = int(input("👉 Enter a positive integer between 1-50 for the number of nodes you wish to have in the list: "))
if number_of_nodes <= 0 or number_of_nodes > 51:
print("💛 The number of nodes though must be an integer between 1 to 50!")
self.create_single_linked_list()
except Exception as e:
print("💛 Error: ", e)
self.create_single_linked_list()
try:
for _ in range(number_of_nodes):
try:
data = int(input("👉 Enter an integer for the node to be inserted: "))
self.insert_node_at_end(data)
except Exception as e:
print("💛 Error: ", e)
except Exception as e:
print("💛 Error: ", e)
def count_sll_nodes(self):
"""
Counts the nodes of the linked list
"""
try:
p = self.start
n = 0
while p is not None:
n += 1
p = p.link
if n >= 1:
print(f"💚 The number of nodes in the linked list is {n}")
else:
print(f"💛 The SLL does not have a node!")
except Exception as e:
print("💛 Error: ", e)
def search_sll_nodes(self, x):
"""
Searches the x integer in the linked list
"""
try:
position = 1
p = self.start
while p is not None:
if p.info == x:
print(f"💚 YAAAY! We found {x} at position {position}")
return True
#Increment the position
position += 1
#Assign the next node to the current node
p = p.link
else:
print(f"💔 Sorry! We couldn't find {x} at any position. Maybe, you might want to use option 9 and try again later!")
return False
except Exception as e:
print("💛 Error: ", e)
def display_sll(self):
"""
Displays the list
"""
try:
if self.start is None:
print("💛 Single linked list is empty!")
return
display_sll = "💚 Single linked list nodes are: "
p = self.start
while p is not None:
display_sll += str(p.info) + "\t"
p = p.link
print(display_sll)
except Exception as e:
print("💛 Error: ", e)
def insert_node_in_beginning(self, data):
"""
Inserts an integer in the beginning of the linked list
"""
try:
temp = Node(data)
temp.link = self.start
self.start = temp
except Exception as e:
print("💛 Error: ", e)
def insert_node_at_end(self, data):
"""
Inserts an integer at the end of the linked list
"""
try:
temp = Node(data)
if self.start is None:
self.start = temp
return
p = self.start
while p.link is not None:
p = p.link
p.link = temp
except Exception as e:
print("💛 Error: ", e)
def insert_node_after_another(self, data, x):
"""
Inserts an integer after the x node
"""
try:
p = self.start
while p is not None:
if p.info == x:
break
p = p.link
if p is None:
print(f"💔 Sorry! {x} is not in the list.")
else:
temp = Node(data)
temp.link = p.link
p.link = temp
except Exception as e:
print("💛 Error: ", e)
def insert_node_before_another(self, data, x):
"""
Inserts an integer before the x node
"""
try:
# If list is empty
if self.start is None:
print("💔 Sorry! The list is empty.")
return
# If x is the first node, and new node should be inserted before the first node
if x == self.start.info:
temp = Node(data)
temp.link = p.link
p.link = temp
# Finding the reference to the prior node containing x
p = self.start
while p.link is not None:
if p.link.info == x:
break
p = p.link
if p.link is not None:
print(f"💔 Sorry! {x} is not in the list.")
else:
temp = Node(data)
temp.link = p.link
p.link = temp
except Exception as e:
print("💛 Error: ", e)
def insert_node_at_position(self, data, k):
"""
Inserts an integer in k position of the linked list
"""
try:
# if we wish to insert at the first node
if k == 1:
temp = Node(data)
temp.link = self.start
self.start = temp
return
p = self.start
i = 1
while i < k-1 and p is not None:
p = p.link
i += 1
if p is None:
print(f"💛 The max position is {i}")
else:
temp = Node(data)
temp.link = self.start
self.start = temp
except Exception as e:
print("💛 Error: ", e)
def delete_a_node(self, x):
"""
Deletes a node of a linked list
"""
try:
# If list is empty
if self.start is None:
print("💔 Sorry! The list is empty.")
return
# If there is only one node
if self.start.info == x:
self.start = self.start.link
# If more than one node exists
p = self.start
while p.link is not None:
if p.link.info == x:
break
p = p.link
if p.link is None:
print(f"💔 Sorry! {x} is not in the list.")
else:
p.link = p.link.link
except Exception as e:
print("💛 Error: ", e)
def delete_sll_first_node(self):
"""
Deletes the first node of a linked list
"""
try:
if self.start is None:
return
self.start = self.start.link
except Exception as e:
print("💛 Error: ", e)
def delete_sll_last_node(self):
"""
Deletes the last node of a linked list
"""
try:
# If the list is empty
if self.start is None:
return
# If there is only one node
if self.start.link is None:
self.start = None
return
# If there is more than one node
p = self.start
# Increment until we find the node prior to the last node
while p.link.link is not None:
p = p.link
p.link = None
except Exception as e:
print("💛 Error: ", e)
def reverse_sll(self):
"""
Reverses the linked list
"""
try:
prev = None
p = self.start
while p is not None:
next = p.link
p.link = prev
prev = p
p = next
self.start = prev
except Exception as e:
print("💛 Error: ", e)
def bubble_sort_sll_nodes_data(self):
"""
Bubble sorts the linked list on integer values
"""
try:
# If the list is empty or there is only one node
if self.start is None or self.start.link is None:
print("💛 The list has no or only one node and sorting is not required.")
end = None
while end != self.start.link:
p = self.start
while p.link != end:
q = p.link
if p.info > q.info:
p.info, q.info = q.info, p.info
p = p.link
end = p
except Exception as e:
print("💛 Error: ", e)
def bubble_sort_sll(self):
"""
Bubble sorts the linked list
"""
try:
# If the list is empty or there is only one node
if self.start is None or self.start.link is None:
print("💛 The list has no or only one node and sorting is not required.")
end = None
while end != self.start.link:
r = p = self.start
while p.link != end:
q = p.link
if p.info > q.info:
p.link = q.link
q.link = p
if p != self.start:
r.link = q.link
else:
self.start = q
p, q = q, p
r = p
p = p.link
end = p
except Exception as e:
print("💛 Error: ", e)
def sll_has_cycle(self):
"""
Tests the list for cycles using Tortoise and Hare Algorithm (Floyd's cycle detection algorithm)
"""
try:
if self.find_sll_cycle() is None:
return False
else:
return True
except Exception as e:
print("💛 Error: ", e)
def find_sll_cycle(self):
"""
Finds cycles in the list, if any
"""
try:
# If there is one node or none, there is no cycle
if self.start is None or self.start.link is None:
return None
# Otherwise,
slowR = self.start
fastR = self.start
while slowR is not None and fastR is not None:
slowR = slowR.link
fastR = fastR.link.link
if slowR == fastR:
return slowR
return None
except Exception as e:
print("💛 Error: ", e)
def remove_cycle_from_sll(self):
"""
Removes the cycles
"""
try:
c = self.find_sll_cycle()
# If there is no cycle
if c is None:
return
print(f"💛 There is a cycle at node: ", c.info)
p = c
q = c
len_cycles = 0
while True:
len_cycles += 1
q = q.link
if p == q:
break
print(f"💛 The cycle length is {len_cycles}")
len_rem_list = 0
p = self.start
while p != q:
len_rem_list += 1
p = p.link
q = q.link
print(f"💛 The number of nodes not included in the cycle is {len_rem_list}")
length_list = len_rem_list + len_cycles
print(f"💛 The SLL length is {length_list}")
# This for loop goes to the end of the SLL, and set the last node to None and the cycle is removed.
p = self.start
for _ in range(length_list-1):
p = p.link
p.link = None
except Exception as e:
print("💛 Error: ", e)
def insert_cycle_in_sll(self, x):
"""
Inserts a cycle at a node that contains x
"""
try:
if self.start is None:
return False
p = self.start
px = None
prev = None
while p is not None:
if p.info == x:
px = p
prev = p
p = p.link
if px is not None:
prev.link = px
else:
print(f"💔 Sorry! {x} is not in the list.")
except Exception as e:
print("💛 Error: ", e)
def merge_using_new_list(self, list2):
"""
Merges two already sorted SLLs by creating new lists
"""
merge_list = SingleLinkedList()
merge_list.start = self._merge_using_new_list(self.start, list2.start)
return merge_list
def _merge_using_new_list(self, p1, p2):
"""
Private method of merge_using_new_list
"""
if p1.info <= p2.info:
Start_merge = Node(p1.info)
p1 = p1.link
else:
Start_merge = Node(p2.info)
p2 = p2.link
pM = Start_merge
while p1 is not None and p2 is not None:
if p1.info <= p2.info:
pM.link = Node(p1.info)
p1 = p1.link
else:
pM.link = Node(p2.info)
p2 = p2.link
pM = pM.link
#If the second list is finished, yet the first list has some nodes
while p1 is not None:
pM.link = Node(p1.info)
p1 = p1.link
pM = pM.link
#If the second list is finished, yet the first list has some nodes
while p2 is not None:
pM.link = Node(p2.info)
p2 = p2.link
pM = pM.link
return Start_merge
def merge_inplace(self, list2):
"""
Merges two already sorted SLLs in place in O(1) of space
"""
merge_list = SingleLinkedList()
merge_list.start = self._merge_inplace(self.start, list2.start)
return merge_list
def _merge_inplace(self, p1, p2):
"""
Merges two already sorted SLLs in place in O(1) of space
"""
if p1.info <= p2.info:
Start_merge = p1
p1 = p1.link
else:
Start_merge = p2
p2 = p2.link
pM = Start_merge
while p1 is not None and p2 is not None:
if p1.info <= p2.info:
pM.link = p1
pM = pM.link
p1 = p1.link
else:
pM.link = p2
pM = pM.link
p2 = p2.link
if p1 is None:
pM.link = p2
else:
pM.link = p1
return Start_merge
def merge_sort_sll(self):
"""
Sorts the linked list using merge sort algorithm
"""
self.start = self._merge_sort_recursive(self.start)
def _merge_sort_recursive(self, list_start):
"""
Recursively calls the merge sort algorithm for two divided lists
"""
# If the list is empty or has only one node
if list_start is None or list_start.link is None:
return list_start
# If the list has two nodes or more
start_one = list_start
start_two = self._divide_list(self_start)
start_one = self._merge_sort_recursive(start_one)
start_two = self._merge_sort_recursive(start_two)
start_merge = self._merge_inplace(start_one, start_two)
return start_merge
def _divide_list(self, p):
"""
Divides the linked list into two almost equally sized lists
"""
# Refers to the third nodes of the list
q = p.link.link
while q is not None and p is not None:
# Increments p one node at the time
p = p.link
# Increments q two nodes at the time
q = q.link.link
start_two = p.link
p.link = None
return start_two
def concat_second_list_to_sll(self, list2):
"""
Concatenates another SLL to an existing SLL
"""
# If the second SLL has no node
if list2.start is None:
return
# If the original SLL has no node
if self.start is None:
self.start = list2.start
return
# Otherwise traverse the original SLL
p = self.start
while p.link is not None:
p = p.link
# Link the last node to the first node of the second SLL
p.link = list2.start
def test_merge_using_new_list_and_inplace(self):
"""
"""
LIST_ONE = SingleLinkedList()
LIST_TWO = SingleLinkedList()
LIST_ONE.create_single_linked_list()
LIST_TWO.create_single_linked_list()
print("1️⃣ The unsorted first list is: ")
LIST_ONE.display_sll()
print("2️⃣ The unsorted second list is: ")
LIST_TWO.display_sll()
LIST_ONE.bubble_sort_sll_nodes_data()
LIST_TWO.bubble_sort_sll_nodes_data()
print("1️⃣ The sorted first list is: ")
LIST_ONE.display_sll()
print("2️⃣ The sorted second list is: ")
LIST_TWO.display_sll()
LIST_THREE = LIST_ONE.merge_using_new_list(LIST_TWO)
print("The merged list by creating a new list is: ")
LIST_THREE.display_sll()
LIST_FOUR = LIST_ONE.merge_inplace(LIST_TWO)
print("The in-place merged list is: ")
LIST_FOUR.display_sll()
def test_all_methods(self):
"""
Tests all methods of the SLL class
"""
OPTIONS_HELP = """
📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗
Select a method from 1-19:
🍒🍒🍒🍒🍒🍒🍒🍒🍒🍒🍒🍒🍒🍒🍒🍒🍒🍒🍒🍒🍒🍒🍒🍒🍒🍒🍒🍒🍒🍒🍒🍒🍒🍒🍒🍒🍒🍒🍒🍒🍒
ℹ️ (1) 👉 Create a single liked list (SLL).
ℹ️ (2) 👉 Display the SLL.
ℹ️ (3) 👉 Count the nodes of SLL.
ℹ️ (4) 👉 Search the SLL.
ℹ️ (5) 👉 Insert a node at the beginning of the SLL.
ℹ️ (6) 👉 Insert a node at the end of the SLL.
ℹ️ (7) 👉 Insert a node after a specified node of the SLL.
ℹ️ (8) 👉 Insert a node before a specified node of the SLL.
ℹ️ (9) 👉 Delete the first node of SLL.
ℹ️ (10) 👉 Delete the last node of the SLL.
ℹ️ (11) 👉 Delete a node you wish to remove.
ℹ️ (12) 👉 Reverse the SLL.
ℹ️ (13) 👉 Bubble sort the SLL by only exchanging the integer values.
ℹ️ (14) 👉 Bubble sort the SLL by exchanging links.
ℹ️ (15) 👉 Merge sort the SLL.
ℹ️ (16) 👉 Insert a cycle in the SLL.
ℹ️ (17) 👉 Detect if the SLL has a cycle.
ℹ️ (18) 👉 Remove cycle in the SLL.
ℹ️ (19) 👉 Test merging two bubble-sorted SLLs.
ℹ️ (20) 👉 Concatenate a second list to the SLL.
ℹ️ (21) 👉 Exit.
📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗📗
"""
self.create_single_linked_list()
while True:
print(OPTIONS_HELP)
UI_OPTION = int(input("👉 Enter an integer for the method you wish to run using the above help: "))
if UI_OPTION == 1:
data = int(input("👉 Enter an integer to be inserted at the end of the list: "))
x = int(input("👉 Enter an integer to be inserted after that: "))
self.insert_node_after_another(data, x)
elif UI_OPTION == 2:
self.display_sll()
elif UI_OPTION == 3:
self.count_sll_nodes()
elif UI_OPTION == 4:
data = int(input("👉 Enter an integer to be searched: "))
self.search_sll_nodes(data)
elif UI_OPTION == 5:
data = int(input("👉 Enter an integer to be inserted at the beginning: "))
self.insert_node_in_beginning(data)
elif UI_OPTION == 6:
data = int(input("👉 Enter an integer to be inserted at the end: "))
self.insert_node_at_end(data)
elif UI_OPTION == 7:
data = int(input("👉 Enter an integer to be inserted: "))
x = int(input("👉 Enter an integer to be inserted before that: "))
self.insert_node_before_another(data, x)
elif UI_OPTION == 8:
data = int(input("👉 Enter an integer for the node to be inserted: "))
k = int(input("👉 Enter an integer for the position at which you wish to insert the node: "))
self.insert_node_before_another(data, k)
elif UI_OPTION == 9:
self.delete_sll_first_node()
elif UI_OPTION == 10:
self.delete_sll_last_node()
elif UI_OPTION == 11:
data = int(input("👉 Enter an integer for the node you wish to remove: "))
self.delete_a_node(data)
elif UI_OPTION == 12:
self.reverse_sll()
elif UI_OPTION == 13:
self.bubble_sort_sll_nodes_data()
elif UI_OPTION == 14:
self.bubble_sort_sll()
elif UI_OPTION == 15:
self.merge_sort_sll()
elif UI_OPTION == 16:
data = int(input("👉 Enter an integer at which a cycle has to be formed: "))
self.insert_cycle_in_sll(data)
elif UI_OPTION == 17:
if self.sll_has_cycle():
print("💛 The linked list has a cycle. ")
else:
print("💚 YAAAY! The linked list does not have a cycle. ")
elif UI_OPTION == 18:
self.remove_cycle_from_sll()
elif UI_OPTION == 19:
self.test_merge_using_new_list_and_inplace()
elif UI_OPTION == 20:
list2 = self.create_single_linked_list()
self.concat_second_list_to_sll(list2)
elif UI_OPTION == 21:
break
else:
print("💛 Option must be an integer, between 1 to 21.")
print()
if __name__ == '__main__':
# Instantiates a new SLL object
SLL_OBJECT = SingleLinkedList()
SLL_OBJECT.test_all_methods()
I think the implementation below fill the bill quite gracefully.
'''singly linked lists, by Yingjie Lan, December 1st, 2011'''
class linkst:
'''Singly linked list, with pythonic features.
The list has pointers to both the first and the last node.'''
__slots__ = ['data', 'next'] #memory efficient
def __init__(self, iterable=(), data=None, next=None):
'''Provide an iterable to make a singly linked list.
Set iterable to None to make a data node for internal use.'''
if iterable is not None:
self.data, self.next = self, None
self.extend(iterable)
else: #a common node
self.data, self.next = data, next
def empty(self):
'''test if the list is empty'''
return self.next is None
def append(self, data):
'''append to the end of list.'''
last = self.data
self.data = last.next = linkst(None, data)
#self.data = last.next
def insert(self, data, index=0):
'''insert data before index.
Raise IndexError if index is out of range'''
curr, cat = self, 0
while cat < index and curr:
curr, cat = curr.next, cat+1
if index<0 or not curr:
raise IndexError(index)
new = linkst(None, data, curr.next)
if curr.next is None: self.data = new
curr.next = new
def reverse(self):
'''reverse the order of list in place'''
current, prev = self.next, None
while current: #what if list is empty?
next = current.next
current.next = prev
prev, current = current, next
if self.next: self.data = self.next
self.next = prev
def delete(self, index=0):
'''remvoe the item at index from the list'''
curr, cat = self, 0
while cat < index and curr.next:
curr, cat = curr.next, cat+1
if index<0 or not curr.next:
raise IndexError(index)
curr.next = curr.next.next
if curr.next is None: #tail
self.data = curr #current == self?
def remove(self, data):
'''remove first occurrence of data.
Raises ValueError if the data is not present.'''
current = self
while current.next: #node to be examined
if data == current.next.data: break
current = current.next #move on
else: raise ValueError(data)
current.next = current.next.next
if current.next is None: #tail
self.data = current #current == self?
def __contains__(self, data):
'''membership test using keyword 'in'.'''
current = self.next
while current:
if data == current.data:
return True
current = current.next
return False
def __iter__(self):
'''iterate through list by for-statements.
return an iterator that must define the __next__ method.'''
itr = linkst()
itr.next = self.next
return itr #invariance: itr.data == itr
def __next__(self):
'''the for-statement depends on this method
to provide items one by one in the list.
return the next data, and move on.'''
#the invariance is checked so that a linked list
#will not be mistakenly iterated over
if self.data is not self or self.next is None:
raise StopIteration()
next = self.next
self.next = next.next
return next.data
def __repr__(self):
'''string representation of the list'''
return 'linkst(%r)'%list(self)
def __str__(self):
'''converting the list to a string'''
return '->'.join(str(i) for i in self)
#note: this is NOT the class lab! see file linked.py.
def extend(self, iterable):
'''takes an iterable, and append all items in the iterable
to the end of the list self.'''
last = self.data
for i in iterable:
last.next = linkst(None, i)
last = last.next
self.data = last
def index(self, data):
'''TODO: return first index of data in the list self.
Raises ValueError if the value is not present.'''
#must not convert self to a tuple or any other containers
current, idx = self.next, 0
while current:
if current.data == data: return idx
current, idx = current.next, idx+1
raise ValueError(data)
class LinkedList:
def __init__(self, value):
self.value = value
self.next = None
def insert(self, node):
if not self.next:
self.next = node
else:
self.next.insert(node)
def __str__(self):
if self.next:
return '%s -> %s' % (self.value, str(self.next))
else:
return ' %s ' % self.value
if __name__ == "__main__":
items = ['a', 'b', 'c', 'd', 'e']
ll = None
for item in items:
if ll:
next_ll = LinkedList(item)
ll.insert(next_ll)
else:
ll = LinkedList(item)
print('[ %s ]' % ll)
First of all, I assume you want linked lists. In practice, you can use collections.deque, whose current CPython implementation is a doubly linked list of blocks (each block contains an array of 62 cargo objects). It subsumes linked list's functionality. You can also search for a C extension called llist on pypi. If you want a pure-Python and easy-to-follow implementation of the linked list ADT, you can take a look at my following minimal implementation.
class Node (object):
""" Node for a linked list. """
def __init__ (self, value, next=None):
self.value = value
self.next = next
class LinkedList (object):
""" Linked list ADT implementation using class.
A linked list is a wrapper of a head pointer
that references either None, or a node that contains
a reference to a linked list.
"""
def __init__ (self, iterable=()):
self.head = None
for x in iterable:
self.head = Node(x, self.head)
def __iter__ (self):
p = self.head
while p is not None:
yield p.value
p = p.next
def prepend (self, x): # 'appendleft'
self.head = Node(x, self.head)
def reverse (self):
""" In-place reversal. """
p = self.head
self.head = None
while p is not None:
p0, p = p, p.next
p0.next = self.head
self.head = p0
if __name__ == '__main__':
ll = LinkedList([6,5,4])
ll.prepend(3); ll.prepend(2)
print list(ll)
ll.reverse()
print list(ll)
Linked List Class
class LinkedStack:
# Nested Node Class
class Node:
def __init__(self, element, next):
self.__element = element
self.__next = next
def get_next(self):
return self.__next
def get_element(self):
return self.__element
def __init__(self):
self.head = None
self.size = 0
self.data = []
def __len__(self):
return self.size
def __str__(self):
return str(self.data)
def is_empty(self):
return self.size == 0
def push(self, e):
newest = self.Node(e, self.head)
self.head = newest
self.size += 1
self.data.append(newest)
def top(self):
if self.is_empty():
raise Empty('Stack is empty')
return self.head.__element
def pop(self):
if self.is_empty():
raise Empty('Stack is empty')
answer = self.head.element
self.head = self.head.next
self.size -= 1
return answer
Usage
from LinkedStack import LinkedStack
x = LinkedStack()
x.push(10)
x.push(25)
x.push(55)
for i in range(x.size - 1, -1, -1):
print '|', x.data[i].get_element(), '|' ,
#next object
if x.data[i].get_next() == None:
print '--> None'
else:
print x.data[i].get_next().get_element(), '-|----> ',
Output
| 55 | 25 -|----> | 25 | 10 -|----> | 10 | --> None
Sample of a doubly linked list (save as linkedlist.py):
class node:
def __init__(self, before=None, cargo=None, next=None):
self._previous = before
self._cargo = cargo
self._next = next
def __str__(self):
return str(self._cargo) or None
class linkedList:
def __init__(self):
self._head = None
self._length = 0
def add(self, cargo):
n = node(None, cargo, self._head)
if self._head:
self._head._previous = n
self._head = n
self._length += 1
def search(self,cargo):
node = self._head
while (node and node._cargo != cargo):
node = node._next
return node
def delete(self,cargo):
node = self.search(cargo)
if node:
prev = node._previous
nx = node._next
if prev:
prev._next = node._next
else:
self._head = nx
nx._previous = None
if nx:
nx._previous = prev
else:
prev._next = None
self._length -= 1
def __str__(self):
print 'Size of linked list: ',self._length
node = self._head
while node:
print node
node = node._next
Testing (save as test.py):
from linkedlist import node, linkedList
def test():
print 'Testing Linked List'
l = linkedList()
l.add(10)
l.add(20)
l.add(30)
l.add(40)
l.add(50)
l.add(60)
print 'Linked List after insert nodes:'
l.__str__()
print 'Search some value, 30:'
node = l.search(30)
print node
print 'Delete some value, 30:'
node = l.delete(30)
l.__str__()
print 'Delete first element, 60:'
node = l.delete(60)
l.__str__()
print 'Delete last element, 10:'
node = l.delete(10)
l.__str__()
if __name__ == "__main__":
test()
Output:
Testing Linked List
Linked List after insert nodes:
Size of linked list: 6
60
50
40
30
20
10
Search some value, 30:
30
Delete some value, 30:
Size of linked list: 5
60
50
40
20
10
Delete first element, 60:
Size of linked list: 4
50
40
20
10
Delete last element, 10:
Size of linked list: 3
50
40
20
Expanding Nick Stinemates's answer
class Node(object):
def __init__(self):
self.data = None
self.next = None
class LinkedList:
def __init__(self):
self.head = None
def prepend_node(self, data):
new_node = Node()
new_node.data = data
new_node.next = self.head
self.head = new_node
def append_node(self, data):
new_node = Node()
new_node.data = data
current = self.head
while current.next:
current = current.next
current.next = new_node
def reverse(self):
""" In-place reversal, modifies exiting list"""
previous = None
current_node = self.head
while current_node:
temp = current_node.next
current_node.next = previous
previous = current_node
current_node = temp
self.head = previous
def search(self, data):
current_node = self.head
try:
while current_node.data != data:
current_node = current_node.next
return True
except:
return False
def display(self):
if self.head is None:
print("Linked list is empty")
else:
current_node = self.head
while current_node:
print(current_node.data)
current_node = current_node.next
def list_length(self):
list_length = 0
current_node = self.head
while current_node:
list_length += 1
current_node = current_node.next
return list_length
def main():
linked_list = LinkedList()
linked_list.prepend_node(1)
linked_list.prepend_node(2)
linked_list.prepend_node(3)
linked_list.append_node(24)
linked_list.append_node(25)
linked_list.display()
linked_list.reverse()
linked_list.display()
print(linked_list.search(1))
linked_list.reverse()
linked_list.display()
print("Lenght of singly linked list is: " + str(linked_list.list_length()))
if __name__ == "__main__":
main()
My 2 cents
class Node:
def __init__(self, value=None, next=None):
self.value = value
self.next = next
def __str__(self):
return str(self.value)
class LinkedList:
def __init__(self):
self.first = None
self.last = None
def add(self, x):
current = Node(x, None)
try:
self.last.next = current
except AttributeError:
self.first = current
self.last = current
else:
self.last = current
def print_list(self):
node = self.first
while node:
print node.value
node = node.next
ll = LinkedList()
ll.add("1st")
ll.add("2nd")
ll.add("3rd")
ll.add("4th")
ll.add("5th")
ll.print_list()
# Result:
# 1st
# 2nd
# 3rd
# 4th
# 5th
enter code here
enter code here
class node:
def __init__(self):
self.data = None
self.next = None
class linked_list:
def __init__(self):
self.cur_node = None
self.head = None
def add_node(self,data):
new_node = node()
if self.head == None:
self.head = new_node
self.cur_node = new_node
new_node.data = data
new_node.next = None
self.cur_node.next = new_node
self.cur_node = new_node
def list_print(self):
node = self.head
while node:
print (node.data)
node = node.next
def delete(self):
node = self.head
next_node = node.next
del(node)
self.head = next_node
a = linked_list()
a.add_node(1)
a.add_node(2)
a.add_node(3)
a.add_node(4)
a.delete()
a.list_print()
my double Linked List might be understandable to noobies.
If you are familiar with DS in C, this is quite readable.
# LinkedList..
class node:
def __init__(self): ##Cluster of Nodes' properties
self.data=None
self.next=None
self.prev=None
class linkedList():
def __init__(self):
self.t = node() // for future use
self.cur_node = node() // current node
self.start=node()
def add(self,data): // appending the LL
self.new_node = node()
self.new_node.data=data
if self.cur_node.data is None:
self.start=self.new_node //For the 1st node only
self.cur_node.next=self.new_node
self.new_node.prev=self.cur_node
self.cur_node=self.new_node
def backward_display(self): //Displays LL backwards
self.t=self.cur_node
while self.t.data is not None:
print(self.t.data)
self.t=self.t.prev
def forward_display(self): //Displays LL Forward
self.t=self.start
while self.t.data is not None:
print(self.t.data)
self.t=self.t.next
if self.t.next is None:
print(self.t.data)
break
def main(self): //This is kind of the main
function in C
ch=0
while ch is not 4: //Switch-case in C
ch=int(input("Enter your choice:"))
if ch is 1:
data=int(input("Enter data to be added:"))
ll.add(data)
ll.main()
elif ch is 2:
ll.forward_display()
ll.main()
elif ch is 3:
ll.backward_display()
ll.main()
else:
print("Program ends!!")
return
ll=linkedList()
ll.main()
Though many more simplifications can be added to this code, I thought a raw implementation would me more grabbable.
Current Implementation of Linked List in Python requires for creation of a separate class, called Node, so that they can be connected using a main Linked List class. In the provided implementation, the Linked List is created without defining a separate class for a node. Using the proposed implementation, Linked Lists are easier to understand and can be simply visualized using the print function.
class Linkedlist:
def __init__(self):
self.outer = None
def add_outermost(self, dt):
self.outer = [dt, self.outer]
def add_innermost(self, dt):
p = self.outer
if not p:
self.outer = [dt, None]
return
while p[1]:
p = p[1]
p[1] = [dt, None]
def visualize(self):
p = self.outer
l = 'Linkedlist: '
while p:
l += (str(p[0])+'->')
p = p[1]
print(l + 'None')
ll = Linkedlist()
ll.add_innermost(8)
ll.add_outermost(3)
ll.add_outermost(5)
ll.add_outermost(2)
ll.add_innermost(7)
print(ll.outer)
ll.visualize()
If you want to just create a simple liked list then refer this code
l=[1,[2,[3,[4,[5,[6,[7,[8,[9,[10]]]]]]]]]]
for visualize execution for this cod Visit http://www.pythontutor.com/visualize.html#mode=edit

Categories

Resources