I am trying to set an instance so that dropout is compute only during the training session, but somehow it seems that the model doesn't see the dropout layer, as when modifying the probabilities nothing happens. I suspect it's a logic issue in my code, but I can't spot where. Also, I'm relatively new to this world, so please cope with my inexperience. Any help will be much appreciated.
Here's the code. I first create a Boolean placeholder
Train = tf.placeholder(tf.bool,shape=())
which will be then passed into a dictionary value as true(training) or False(test). Then I implemented the forward propagation as follows.
def forward_prop_cost(X, parameters,string,drop_probs,Train):
"""
Implements the forward propagation for the model: LINEAR -> RELU -> LINEAR -> RELU -> LINEAR -> SOFTMAX
Arguments:
X -- input dataset placeholder, of shape (input size, number of examples)
parameters -- python dictionary containing your parameters "W1", "b1", ...
string - ReLU or tanh
drop_probs = drop probabilities for each layer. First and last == 0
Train = boolean
Returns:
ZL -- the output of the last LINEAR unit
"""
L = len(drop_probs)-1
activations = []
activations.append(X)
if string == 'ReLU':
for i in range(1,L):
Zi = tf.matmul(parameters['W'+str(i)],activations[i-1]) + parameters['b'+str(i)]
if (Train == True and drop_probs[i] != 0):
Ai = tf.nn.dropout(tf.nn.relu(Zi),drop_probs[i])
else:
Ai = tf.nn.relu(Zi)
activations.append(Ai)
elif string == 'tanh': #needs update!
for i in range(1,L):
Zi = tf.matmul(parameters['W'+str(i)],activations[i-1]) + parameters['b'+str(i)]
Ai = tf.nn.dropout(tf.nn.tanh(Zi),drop_probs[i])
activations.append(Ai)
ZL = tf.matmul(parameters['W'+str(L)],activations[L-1]) + parameters['b'+str(L)]
logits = tf.transpose(ZL)
labels = tf.transpose(Y)
return ZL
Then I call the model function, where just at the end I pass the values of the Train as true or false, depending on the data set I'm using.
def model(X_train, Y_train, X_test, Y_test,hidden = [12288,25,12,6], string = 'ReLU',drop_probs = [0.,0.4,0.2,0.],
regular_param = 0.0, starter_learning_rate = 0.0001,
num_epochs = 1500, minibatch_size = 32, print_cost = True, learning_decay = False):
'''
Returns:
parameters -- parameters learnt by the model. They can then be used to predict.
'''
ops.reset_default_graph()
tf.set_random_seed(1)
seed = 3
(n_x, m) = X_train.shape # (n_x: input size, m : number of examples in the train set)
n_y = Y_train.shape[0] # n_y : output size
costs = [] # To keep track of the cost
graph = tf.Graph()
X, Y ,Train = create_placeholders(n_x, n_y)
parameters = initialize_parameters(hidden)
#print([n.name for n in tf.get_default_graph().as_graph_def().node])
ZL = forward_prop_cost(X, parameters,'ReLU',drop_probs,Train)
#cost = forward_prop_cost(X, parameters,'ReLU',drop_probs,regular_param )
cost = compute_cost(ZL,Y,parameters,regular_param)
#optimizer = tf.train.AdamOptimizer(learning_rate = starter_learning_rate).minimize(cost)
if learning_decay == True:
increasing = tf.Variable(0, trainable=False)
learning_rate = tf.train.exponential_decay(starter_learning_rate,increasing * minibatch_size,m, 0.95, staircase=True)
optimizer = tf.train.AdamOptimizer(learning_rate = learning_rate).minimize(cost,global_step=increasing)
else:
optimizer = tf.train.AdamOptimizer(learning_rate = starter_learning_rate).minimize(cost)
# Initialize all the variables
init = tf.global_variables_initializer()
# Start the session to compute the tensorflow graph
with tf.Session() as sess:
# Run the initialization
sess.run(init, { Train: True } )
# Do the training loop
for epoch in range(num_epochs):
epoch_cost = 0.
num_minibatches = int(m / minibatch_size)
seed = seed + 1
minibatches = random_mini_batches(X_train, Y_train, minibatch_size, seed)
for minibatch in minibatches:
(minibatch_X, minibatch_Y) = minibatch
_ , minibatch_cost = sess.run([optimizer, cost], feed_dict={X: minibatch_X, Y: minibatch_Y})
epoch_cost += minibatch_cost / num_minibatches
# Print the cost every 100 epoch
if print_cost == True and epoch % 100 == 0:
print ("Cost after epoch %i: %f" % (epoch, epoch_cost))
if print_cost == True and epoch % 5 == 0:
costs.append(epoch_cost)
# plot the cost
plt.plot(np.squeeze(costs))
plt.ylabel('cost')
plt.xlabel('iterations (per fives)')
plt.title("Learning rate =" + str(learning_rate))
plt.show()
parameters = sess.run(parameters)
print ("Parameters have been trained!")
# Calculate accuracy on the test set
correct_prediction = tf.equal(tf.argmax(ZL), tf.argmax(Y))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
print ("Train Accuracy:", accuracy.eval({X: X_train, Y: Y_train, Train: True}))
print ("Test Accuracy:", accuracy.eval({X: X_test, Y: Y_test, Train: False}))
return parameters
Related
I am building several simple networks to predict the bike rentals at 500 stations in the upcoming hour, given rentals at all stations in the previous 24 hours. I am working with two architectures, one with a graph convolution (which amounts to updating each station with a learned linear combination of other stations, at each hour) and a FNN layer to prediction, and a second with a graph convolution -> LSTM -> FNN to prediction.
Before I describe more, I'm getting poorer performance for my model which includes an LSTM unit, which is confusing me.
See these two images for a description of each architecture, for each architecture I also add hourly meta-data (weather, time, etc) as variation, they are in the images in red, and not relevant to my question. Image links at the bottom of the post.
[Architecture 1: GCNN + FNN][1]
[Architecture 2: GCNN + LSTM + FNN][2]
Confusingly, the test RMSE for the first model is 3.46, for the second model its 3.57. Could someone please explain to me why the second wouldn't be lower, as it seems to be running the exact same processes, except with an additional LSTM unit.
Here are relevant snippets of my code for the GCNN+FNN model:
def gcnn_ddgf(hidden_layer, node_num, feature_in, horizon, learning_rate, beta, batch_size, early_stop_th, training_epochs, X_training, Y_training, X_val, Y_val, X_test, Y_test, scaler, display_step):
n_output_vec = node_num * horizon # length of output vector at the final layer
early_stop_k = 0 # early stop patience
best_val = 10000
traing_error = 0
test_error = 0
pred_Y = []
tf.reset_default_graph()
batch_size = batch_size
early_stop_th = early_stop_th
training_epochs = training_epochs
# tf Graph input and output
X = tf.placeholder(tf.float32, [None, node_num, feature_in]) # X is the input signal
Y = tf.placeholder(tf.float32, [None, n_output_vec]) # y is the regression output
# define dictionaries to store layers weight & bias
weights_hidden = {}
weights_A = {}
biases = {}
vec_length = feature_in
weights_hidden['h1'] = tf.Variable(tf.random_normal([vec_length, hidden_layer], stddev=0.5))
biases['b1'] = tf.Variable(tf.random_normal([1, hidden_layer], stddev=0.5))
weights_A['A1'] = tf.Variable(tf.random_normal([node_num, node_num], stddev=0.5))
weights_hidden['out'] = tf.Variable(tf.random_normal([hidden_layer, horizon], stddev=0.5))
biases['bout'] = tf.Variable(tf.random_normal([1, horizon], stddev=0.5))
# Construct model
pred= gcn(X, weights_hidden, weights_A, biases, node_num, horizon) #see below
pred = scaler.inverse_transform(pred)
Y_original = scaler.inverse_transform(Y)
cost = tf.sqrt(tf.reduce_mean(tf.pow(pred - Y_original, 2)))
#optimizer = tf.train.RMSPropOptimizer(learning_rate, decay).minimize(cost)
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate, beta1=beta).minimize(cost)
# Initializing the variables
init = tf.global_variables_initializer()
with tf.Session() as sess:
sess.run(init)
for epoch in range(training_epochs):
avg_cost_sq = 0.
num_train = X_training.shape[0]
total_batch = int(num_train/batch_size)
for i in range(total_batch):
_, c = sess.run([optimizer, cost], feed_dict={X: X_training[i*batch_size:(i+1)*batch_size,],
Y: Y_training[i*batch_size:(i+1)*batch_size,]})
avg_cost_sq += np.square(c) * batch_size #/ total_batch
# rest part of training dataset
if total_batch * batch_size != num_train:
_, c = sess.run([optimizer, cost], feed_dict={X: X_training[total_batch*batch_size:num_train,],
Y: Y_training[total_batch*batch_size:num_train,]})
avg_cost_sq += np.square(c) * (num_train - total_batch*batch_size)
avg_cost = np.sqrt(avg_cost_sq / num_train)
# validation
c_val, = sess.run([cost], feed_dict={X: X_val, Y: Y_val})
if c_val < best_val:
# testing
c_tes, preds, Y_true = sess.run([cost, pred, Y_original], feed_dict={X: X_test,Y: Y_test})
best_val = c_val
test_error = c_tes
traing_error = avg_cost
pred_Y = preds
early_stop_k = 0 # reset to 0
# update early stopping patience
if c_val >= best_val:
early_stop_k += 1
# threshold
if early_stop_k == early_stop_th:
break
if epoch % display_step == 0:
print ("Epoch:", '%04d' % (epoch+1), "Training RMSE: ","{:.9f}".format(avg_cost))
print("Validation RMSE: ", c_val)
print("Lowest test RMSE: ", test_error)
print("epoch is ", epoch)
print("training RMSE is ", traing_error)
print("Optimization Finished! the lowest validation RMSE is ", best_val)
print("The test RMSE is ", test_error)
return best_val, pred_Y ,Y_true,test_error
# code that creates the model
def gcn(signal_in, weights_hidden, weights_A, biases, node_num, horizon):
signal_in = tf.transpose(signal_in, [1, 0, 2]) # node_num, batch, feature_in
feature_len = signal_in.shape[2] # feature vector length at the node of the input graph
signal_in = tf.reshape(signal_in, [node_num, -1]) # node_num, batch*feature_in
Adj = 0.5*(weights_A['A1'] + tf.transpose(weights_A['A1']))
Adj = normalize_adj(Adj)
Z = tf.matmul(Adj, signal_in) # node_num, batch*feature_in
Z = tf.reshape(Z, [-1, int(feature_len)]) # node_num * batch, feature_in
signal_output = tf.add(tf.matmul(Z, weights_hidden['h1']), biases['b1'])
signal_output = tf.nn.relu(signal_output) # node_num * batch, hidden_vec
final_output = tf.add(tf.matmul(signal_output, weights_hidden['out']), biases['bout']) # node_num * batch, horizon
# final_output = tf.nn.relu(final_output)
final_output = tf.reshape(final_output, [node_num, -1, horizon]) # node_num, batch, horizon
final_output = tf.transpose(final_output, [1, 0, 2]) # batch, node_num, horizon
final_output = tf.reshape(final_output, [-1, node_num*horizon]) # batch, node_num*horizon
return final_output
And the code for the GCNN+LSTM+FNN model:
def gcnn_ddgf_lstm(node_num, feature_in, learning_rate, beta, batch_size, early_stop_th, training_epochs, X_training,
Y_training, X_val, Y_val, X_test, Y_test, scaler, lstm_layer):
n_output_vec = node_num # length of output vector at the final layer
early_stop_k = 0 # early stop patience
display_step = 1 # frequency of printing results
best_val = 10000
traing_error = 0
test_error = 0
predic_res = []
tf.reset_default_graph()
batch_size = batch_size
early_stop_th = early_stop_th
training_epochs = training_epochs
# tf Graph input and output
X = tf.placeholder(tf.float32, [None, node_num, feature_in]) # X is the input signal
Y = tf.placeholder(tf.float32, [None, n_output_vec]) # y is the regression output
lstm_cell = tf.nn.rnn_cell.LSTMCell(lstm_layer, state_is_tuple=True)
# define dictionaries to store layers weight & bias
weights_hidden = {}
weights_A = {}
biases = {}
weights_A['A1'] = tf.Variable(tf.random_normal([node_num, node_num], stddev=0.5))
weights_hidden['h1'] = tf.Variable(tf.random_normal([lstm_layer, node_num], stddev=0.5))
biases['h1'] = tf.Variable(tf.random_normal([1, node_num], stddev=0.5))
weights_hidden['out'] = tf.Variable(tf.random_normal([node_num, node_num], stddev=0.5))
biases['bout'] = tf.Variable(tf.random_normal([1, node_num], stddev=0.5))
# Construct model
pred= gcn_lstm(X, weights_hidden, weights_A, biases, node_num, lstm_cell)
# pred = scaler.inverse_transform(pred)
# Y_original = scaler.inverse_transform(Y)
cost = tf.sqrt(tf.reduce_mean(tf.pow(pred - Y, 2)))
#optimizer = tf.train.RMSPropOptimizer(learning_rate, decay).minimize(cost)
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate, beta1=beta).minimize(cost)
# Initializing the variables
init = tf.global_variables_initializer()
with tf.Session() as sess:
sess.run(init)
for epoch in range(training_epochs):
avg_cost_sq = 0.
num_train = X_training.shape[0]
total_batch = int(num_train/batch_size)
for i in range(total_batch):
_, c = sess.run([optimizer, cost], feed_dict={X: X_training[i*batch_size:(i+1)*batch_size,],
Y: Y_training[i*batch_size:(i+1)*batch_size,]})
avg_cost_sq += np.square(c) * batch_size #/ total_batch
# rest part of training dataset
if total_batch * batch_size != num_train:
_, c = sess.run([optimizer, cost], feed_dict={X: X_training[total_batch*batch_size:num_train,],
Y: Y_training[total_batch*batch_size:num_train,]})
avg_cost_sq += np.square(c) * (num_train - total_batch*batch_size)
avg_cost = np.sqrt(avg_cost_sq / num_train)
# validation
c_val, = sess.run([cost], feed_dict={X: X_val, Y: Y_val})
if c_val < best_val:
c_tes, preds = sess.run([cost, pred], feed_dict={X: X_test,Y: Y_test})
best_val = c_val
# save model
#saver.save(sess, './bikesharing_gcnn_ddgf')
test_error = c_tes
traing_error = avg_cost
early_stop_k = 0 # reset to 0
# update early stopping patience
if c_val >= best_val:
early_stop_k += 1
# threshold
if early_stop_k == early_stop_th:
pred_Y = scaler.inverse_transform(preds)
Y_true = scaler.inverse_transform(Y_test)
test_err = tf.sqrt(tf.reduce_mean(tf.pow(pred_Y - Y_true, 2)))
break
if epoch % display_step == 0:
print ("Epoch:", '%04d' % (epoch+1), "Training RMSE: ","{:.9f}".format(avg_cost))
print("Validation RMSE: ", c_val)
print("Lowest test RMSE: ", test_error)
print("epoch is ", epoch)
print("training RMSE is ", traing_error)
print("Optimization Finished! the lowest validation RMSE is ", best_val)
print("The scaled test RMSE is ", test_error)
return pred_Y, Y_true
def gcn_lstm(signal_in, weights_hidden, weights_A, biases, node_num, lstm_cell):
signal_in = tf.transpose(signal_in, [1, 0, 2]) # node_num, batch, feature_in
feature_len = signal_in.shape[2] # feature vector length at the node of the input graph
signal_in = tf.reshape(signal_in, [node_num, -1]) # node_num, batch*feature_in
Adj = 0.5*(weights_A['A1'] + tf.transpose(weights_A['A1']))
Adj = normalize_adj(Adj)
Z = tf.matmul(Adj, signal_in) # node_num, batch*feature_in
Z = tf.reshape(Z, [node_num, -1, int(feature_len)]) # node_num, batch, feature_in
Z = tf.transpose(Z,[1,2,0]) # batch, feature_in, node_num
# init_state = cell.zero_state(batch_size, tf.float32)
_, Z = tf.nn.dynamic_rnn(lstm_cell, Z, dtype = tf.float32) # init_state?
dense_output = tf.add(tf.matmul(Z[1], weights_hidden['h1']), biases['h1'])
dense_output = tf.nn.relu(dense_output)
final_output = tf.add(tf.matmul(dense_output, weights_hidden['out']), biases['bout']) # batch, node_num*horizon
return final_output
In particular, should I be weary that _, Z = tf.nn.dynamic_rnn(lstm_cell, Z, dtype = tf.float32) causes my variables defined elsewhere not to train?
Thanks a lot for any help :)
[1]: https://i.stack.imgur.com/MAO2t.png
[2]: https://i.stack.imgur.com/UDjHw.png
I resolved this.
I have three years of bike use data to make the prediction, and was using the ~last three months as my validation/test set. The last few months were winter with lower bike use. I got expected results (GCNN+LSTM outperforms GCNN, though not by much) when I shuffled my training data prior to allocating to sets (with sequences preserved for LSTM)
I have a training data, with 1000 rows. I am using Tensorflow for training this data. Also trying to divide this into mini-batches of size 32. While Training the data, i am getting the error as mentioned below
InvalidArgumentError: Incompatible shapes: [1000] vs. [32]
[[{{node logistic_loss_1/mul}}]]
On the contrary, if i don't divide my training data into minibatches, or use a single minibatch of size 1000, the code works fine.
I have defined weights as tf.Variables and running the tensorflow session. See the code below
def sigmoid_cost(z,Y):
print("Entered Cost")
z = tf.squeeze(z)
Y = tf.cast(Y_train,tf.float64)
logits = tf.transpose(z)
labels = (Y)
print(logits.shape)
print(labels.shape)
return tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(labels=labels,logits=logits))
def model(X_train, Y_train, X_test, Y_test, learning_rate = 0.0001,
num_epochs = 1500, minibatch_size = 32, print_cost = True):
hidden_layer = 4
m,n = X_train.shape
n_y = Y_train.shape[0]
X = tf.placeholder(tf.float64,shape=(None,n), name="X")
Y = tf.placeholder(tf.float64,shape=(None),name="Y")
parameters = init_params(n)
z4, parameters = fwd_model(X,parameters)
cost = sigmoid_cost(z4,Y)
num_minibatch = m/minibatch_size
print("Getting Minibatches")
num_minibatch = tf.cast(num_minibatch,tf.int32)
optimizer = tf.train.GradientDescentOptimizer(learning_rate = learning_rate).minimize(cost)
print("Gradient Defination Done")
init = tf.global_variables_initializer()
init_op = tf.initialize_all_variables()
with tf.Session() as sess:
sess.run(init)
sess.run(init_op)
for epoch in range(0,num_epochs):
minibatches = []
minibatches = minibatch(X_train,Y_train,minibatch_size)
minibatch_cost = 0
for i in range (0,len(minibatches)):
(X_m,Y_m) = minibatches[i]
Y_m = np.squeeze(Y_m)
print("Minibatch %d X shape Y Shape ",i, X_m.shape,Y_m.shape)
_ , minibatch_cost = sess.run([optimizer, cost], feed_dict={X: X_m, Y: Y_m})
print("Mini Batch Cost is ",minibatch_cost)
epoch_cost = minibatch_cost/num_minibatch
if print_cost == True and epoch % 100 == 0:
print ("Cost after epoch %i: %f" % (epoch, epoch_cost))
print(epoch_cost)
For some reason, while running the cost function the size of either X or Y batch is being taken as 32, 100 or vice-versa. Any help would be appreciated.
I think you are getting above error because of Y = tf.cast(Y_train, tf.float64) line inside sigmoid_cost function. Here, Y_train has 1000 rows, but loss function is expecting 32(which is your batch size).
It should be Y = tf.cast(Y, tf.float64). Infact, there is no need to cast data type here as Y is already of type tf.float64. Check below line:
Y = tf.placeholder(tf.float64,shape=(None),name="Y")
That's why, when you were using a single minibatch of size 1000(full Y_train data), your code was working fine.
I'm trying to create a RNN to guess what notes are being played on a piano, given a sound file of piano notes (WAV format). I'm currently cutting the WAV clips into ten-second chunks (2D), padding shorter sections to 10 seconds with zeroes so the input is all regular. However, when I pass in the clips to the RNN, it gives an output of one less dimension (1D) (when taking the last state - should I be taking the state series?).
I've created a simpler RNN to analyze single notes files (2D) and produce one output (1D), which has been successful. However, when trying to apply this same technique to full clips with multiple notes and notes starting/stopping it seems to break down, as I can't seem to change the output shape.
def weight_variable(shape):
initer = tf.truncated_normal_initializer(stddev=0.01)
return tf.get_variable('W', dtype=tf.float32, shape=shape, initializer=initer)
def bias_variable(shape):
initial = tf.constant(0., shape=shape, dtype=tf.float32)
return tf.get_variable('b', dtype=tf.float32,initializer=initial)
def RNN(x, weights, biases, timesteps, num_hidden):
x = tf.unstack(x, timesteps, 1)
# Define a rnn cell with tensorflow
lstm_cell = rnn.LSTMCell(num_hidden)
states_series, current_state = rnn.static_rnn(lstm_cell, x, dtype=tf.float32)
return tf.matmul(current_state[1], weights) + biases
# return [tf.matmul(temp,weights) + biases for temp in states_series]
# does this even make sense
# x is for data, y is for targets, shapes are [index, time, frequency], [index, time, output note (s)] respectively
x_train, x_valid, y_train, y_valid = load_data() # removed test
print("Size of:")
print("- Training-set:\t\t{}".format(y_train.shape[0]))
print("- Validation-set:\t{}".format(y_valid.shape[0]))
# print("- Test-set\t{}".format(len(y_test)))
learning_rate = 0.001 # The optimization initial learning rate
epochs = 1000 # Total number of training epochs
batch_size = 100 # Training batch size
display_freq = 100 # Frequency of displaying the training results
threshold = 0.7 # Threshold for determining a "note"
num_hidden_units = 15 # Number of hidden units of the RNN
# Placeholders for inputs (x) and outputs(y)
x = tf.placeholder(tf.float32, shape=(None, stepCount, num_input))
y = tf.placeholder(tf.float32, shape=(None, stepCount, n_classes))
# create weight matrix initialized randomly from N~(0, 0.01)
W = weight_variable(shape=[num_hidden_units, n_classes])
# create bias vector initialized as zero
b = bias_variable(shape=[n_classes])
output_logits = RNN(x, W, b, stepCount, num_hidden_units)
y_pred = tf.nn.softmax(output_logits)
# Define the loss function, optimizer, and accuracy, etc.
# (code removed, irrelevant)
# Creating the op for initializing all variables
init = tf.global_variables_initializer()
sess = tf.InteractiveSession()
sess.run(init)
global_step = 0
# Number of training iterations in each epoch
num_tr_iter = int(y_train.shape[0] / batch_size)
for epoch in range(epochs):
print('Training epoch: {}'.format(epoch + 1))
x_train, y_train = randomize(x_train, y_train)
for iteration in range(num_tr_iter):
global_step += 1
start = iteration * batch_size
end = (iteration + 1) * batch_size
x_batch, y_batch = get_next_batch(x_train, y_train, start, end)
# Run optimization op (backprop)
feed_dict_batch = {x: x_batch, y: y_batch}
sess.run(optimizer, feed_dict=feed_dict_batch)
if iteration % display_freq == 0:
# Calculate and display the batch loss and accuracy
loss_batch, acc_batch = sess.run([loss, accuracy],
feed_dict=feed_dict_batch)
print("iter {0:3d}:\t Loss={1:.2f},\tTraining Accuracy={2:.01%}".
format(iteration, loss_batch, acc_batch))
testLoss.append(loss_batch)
testAcc.append(acc_batch)
# Run validation after every epoch
feed_dict_valid = {x: x_valid[:1000].reshape((-1, stepCount, num_input)), y: y_valid[:1000]}
loss_valid, acc_valid = sess.run([loss, accuracy], feed_dict=feed_dict_valid)
print('---------------------------------------------------------')
print("Epoch: {0}, validation loss: {1:.2f}, validation accuracy: {2:.01%}".
format(epoch + 1, loss_valid, acc_valid))
print('---------------------------------------------------------')
validLoss.append(loss_valid)
validAcc.append(acc_batch)
Currently, this is outputting a 1D array of predictions, which really does not make sense in my scenario, but I'm not sure how to change it (it should be outputting predictions for each timestep - i.e. predictions of what notes are playing at each moment in time).
I'm using this word level RNN langauge model here: https://github.com/hunkim/word-rnn-tensorflow
How to calculate the accuracy of RNN model in each epoch.
Following is the code in training that shows training loss and other things in each epoch:
for e in range(model.epoch_pointer.eval(), args.num_epochs):
sess.run(tf.assign(model.lr, args.learning_rate * (args.decay_rate ** e)))
data_loader.reset_batch_pointer()
state = sess.run(model.initial_state)
speed = 0
if args.init_from is None:
assign_op = model.epoch_pointer.assign(e)
sess.run(assign_op)
if args.init_from is not None:
data_loader.pointer = model.batch_pointer.eval()
args.init_from = None
for b in range(data_loader.pointer, data_loader.num_batches):
start = time.time()
x, y = data_loader.next_batch()
feed = {model.input_data: x, model.targets: y, model.initial_state: state,
model.batch_time: speed}
summary, train_loss, state, _, _ = sess.run([merged, model.cost, model.final_state,
model.train_op, model.inc_batch_pointer_op], feed)
train_writer.add_summary(summary, e * data_loader.num_batches + b)
speed = time.time() - start
if (e * data_loader.num_batches + b) % args.batch_size == 0:
print("{}/{} (epoch {}), train_loss = {:.3f}, time/batch = {:.3f}" \
.format(e * data_loader.num_batches + b,
args.num_epochs * data_loader.num_batches,
e, train_loss, speed))
if (e * data_loader.num_batches + b) % args.save_every == 0 \
or (e==args.num_epochs-1 and b == data_loader.num_batches-1): # save for the last result
checkpoint_path = os.path.join(args.save_dir, 'model.ckpt')
saver.save(sess, checkpoint_path, global_step = e * data_loader.num_batches + b)
print("model saved to {}".format(checkpoint_path))
train_writer.close()
Since the model has both targets and prediction probabilities for each class.
You can reduce the probabilities tensor to keep the class index of the highest probability.
predictions = tf.cast(tf.argmax(model.probs, axis=2), tf.int32)
Then you can compare to the targets, to know if it successfully predicted or not:
correct_preds = tf.equal(predictions, model.targets)
Finally the accuracy is the ratio between correct prediction over the size of input, aka mean of this boolean tensor.
accuracy = tf.reduce_mean(tf.cast(correct_preds, tf.float32))
You can also use Tensorflow's tf.metrics.accuracy function.
accuracy, accuracy_update_op = tf.metrics.accuracy(labels = tf.argmax(y, axis = 2), predictions = tf.argmax(predictions, axis = 2), name = 'accuracy')
running_vars_accuracy = tf.get_collection(tf.GraphKeys.LOCAL_VARIABLES, scope="LSTM/Accuracy")
accuracy_update_op operation will update the two local variables in each batch:
[<tf.Variable 'accuracy/total:0' shape=() dtype=float32_ref>,
<tf.Variable 'accuracy/count:0' shape=() dtype=float32_ref>]
Then, just calling accuracy op will print overall accuracy in each epoch:
for epoch in range(num_epochs):
avg_cost_train = 0.
total_train_batch = int((len(X_train)/(batch_size)) + 1)
running_vars_initializer_accuracy.run()
for _ in range(total_train_batch):
_, miniBatchCost_train, miniBatchAccuracy_train = sess.run([trainer, loss, accuracy_update_op], feed_dict = {X: Xtrain, y: ytrain})
avg_cost_train += miniBatchCost_train / total_train_batch
accuracy_train = sess.run(accuracy)
A note here is that do not call the tf_metric and tf_metric_update in the same session.run() function call.
I am doing this project in which i applied minibatches in neural network and calculating epoch cost:-
def model(X_train, Y_train, X_test, Y_test, learning_rate = 0.0001, num_epochs = 1500,
minibatch_size = 32, print_cost = True):
ops.reset_default_graph()
tf.set_random_seed(1)
seed = 3
costs = []
(n_x, m) = X_train.shape
n_y = Y_train.shape[0]
#create placeholder
X, Y = create_placeholder(n_x, n_y)
# init parameter
parameters = init_parameter()
# forward prop
Z3 = forward_prop(X, parameters)
# compute cost
cost = compute_cost(Z3, Y)
# optimizer
optimizer = tf.train.AdamOptimizer(learning_rate= learning_rate).minimize(cost)
# Initialize all variables
init = tf.global_variables_initializer()
with tf.Session() as sess:
sess.run(init)
for epoch in range(num_epochs):
epoch_cost = 0
num_minibatche = int(m/ minibatch_size)
seed = seed + 1
minibatches = random_mini_batches(X_train, Y_train,
minibatch_size, seed)
for minibatch in minibatches:
(minibatch_X, minibatch_Y) = minibatch
_, minibatch_cost = sess.run([optimizer, cost], feed_dict
= {X: minibatch_X, Y: minibatch_Y})
epoch_cost += minibatch_cost / num_minibatche
# Print the cost every epoch
if print_cost == True and epoch % 100 == 0:
print ("Cost after epoch " ,epoch, np.mean(epoch_cost))
if print_cost == True and epoch % 5 == 0:
costs.append(epoch_cost)
# plot the cost
plt.plot(np.squeeze(costs))
plt.ylabel('cost')
plt.xlabel('iterations (per tens)')
plt.title("Learning rate =" + str(learning_rate))
plt.show()
# save the parameters
parameters = sess.run(parameters)
print ("Parameters have been trained!")
# Calculate the correct predictions
correct_prediction = tf.equal(tf.argmax(Z3), tf.argmax(Y))
# Calculate accuracy on the test set
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
print ("Train Accuracy:", accuracy.eval({X: X_train, Y: Y_train}))
print ("Test Accuracy:", accuracy.eval({X: X_test, Y: Y_test}))
return parameters
SO when i run this code i am getting this error on line:-
---->epoch_cost += minibatch_cost / num_minibatche
---->ValueError: operands could not be broadcast together with shapes (32,) (5,) (32,)
I took minibatche_size = 32 and number of training examples = 1381
But i am totally confused why i am getting this error.
The code you've posted is missing a lot of parts, like the whole model() function, so it's difficult to debug. But based on just what we have, some things here that are supposed to be scalars are in fact, arrays.
epoch_cost starts out as a scalar zero with epoch_cost = 0. Then you add some value to it, then try to print np.mean( epoch_cost ). Why do you take the mean of a scalar? Looks like the code was different earlier, and the migration to a scalar epoch_cost was not successful.
It is easy to imagine that minibatch_cost is returned as an array from TensorFlow - one cost value for each member of the batch. In that case you would need to apply np.mean() right there, like
epoch_cost += np.mean( minibatch_cost ) / num_minibatche
Maybe even num_minibatche somehow became a vector. It comes from
num_minibatche = int(m/ minibatch_size)
and minibatch_size is supposedly 32, so that's all right. But m comes from
(n_x, m) = X_train.shape
and we know nothing of X_train. Maybe m somehow became a vector, and in turn num_minibatche too. You will need to print the value for num_minibatche once calculated and make sure it's what it's supposed to be.
Hope this helps. If you post the whole code, I can help you more.