python IO isn't fast enough - python

I'm trying to answer a competitive programming question on kattis that can be found here My algorithm is correct, however there is one of the test cases that has a lot of inputs and my code times out. Is there a more optimized way to do IO in python?
from sys import stdin, stdout
import atexit, io, sys
buffer = io.BytesIO()
sys.stdout = buffer
#atexit.register
def write():
sys.__stdout__.write(buffer.getvalue())
def main():
teque = []
for i in range(int(stdin.readline())):
l = stdin.readline().split()
if l[0] == 'push_back':
teque.append(int(l[1]))
if l[0] == 'push_front':
teque.insert(0, int(l[1]))
if l[0] == 'push_middle':
if len(teque)%2==0:
mid = len(teque)/2
else:
mid = (len(teque)+1)/2
teque.insert(int(mid), int(l[1]))
if l[0] == 'get':
stdout.write(str(teque[int(l[1])])+'\n')
if __name__ == "__main__":
main()

So as I learned in the comments, I wasn't actually doing the program in O(1) time for insert, I fixed invoking 2 queues. This solution still isn't fast enough for python 3 run time, however it passes the python 2 run time.
from sys import stdin, stdout
from collections import deque
class Teque:
def __init__(self):
self._teque1 = deque()
self._teque2 = deque()
def push_back(self, x):
self._teque2.append(x)
if len(self._teque2) > len(self._teque1):
self._teque1.append((self._teque2.popleft()))
def push_front(self, x):
self._teque1.appendleft(x)
if len(self._teque1) > len(self._teque2):
self._teque2.appendleft((self._teque1.pop()))
def push_middle(self, x):
if len(self._teque2) > len(self._teque1):
self._teque1.append(self._teque2.popleft())
self._teque2.appendleft(x)
def get(self, i):
if i >= len(self._teque1):
return self._teque2[i-len(self._teque1)]
return self._teque1[i]
def main():
teque = Teque()
for i in range(int(stdin.readline())):
l = stdin.readline().split()
if l[0] == 'push_back':
teque.push_back(int(l[1]))
elif l[0] == 'push_front':
teque.push_front(int(l[1]))
elif l[0] == 'push_middle':
teque.push_middle(int(l[1]))
else:
stdout.write(str(teque.get(int(l[1])))+'\n')
if __name__ == "__main__":
main()

Related

Python multithreading- memory leak when use an shared object(so)

I have a python programs that gets memory leaks when use an third-party SO.
I simplify my code like this:
import time
import sys
import threading
import codecs
import ctypes
sys.stdout = codecs.getwriter("utf-8")(sys.stdout.detach())
class TestThirdPartySo(object):
def __init__(self):
# this so uses thread-specific data
self.call_stat_so = ctypes.CDLL("./third_party_fun.so")
self.handle = self.call_stat_so._handle
def test_fun(self):
self.call_stat_so.fun_xxx()
def thread_fun():
TestThirdPartySo().test_fun()
def test_main(num):
count = 0
while True:
# create 3 * num threads
thread_num = 3
thread_list = []
for _ in range(thread_num):
thread_list.append(threading.Thread(target=thread_fun))
for thread in thread_list:
thread.start()
for thread in thread_list:
thread.join()
count += thread_num
time.sleep(0.01)
if count % 100 == 0:
print("finied %s" % count)
if count > num:
break
print("end !!!!")
if __name__ == '__main__':
num = sys.argv[1]
test_main(int(num))
Now, I know this shared object uses thread-specific data.And I have tried to close the SO after called it like this:
class TestThirdPartySo(object):
def __init__(self):
# this so uses thread-specific data
self.call_stat_so = ctypes.CDLL("./third_party_fun.so")
self.handle = self.call_stat_so._handle
def test_fun(self):
self.call_stat_so.fun_xxx()
def __del__(self):
dlclose_func(self.handle)
def dlclose_func(_handle):
dlclose_func_tmp = ctypes.cdll.LoadLibrary('libdl.so').dlclose
dlclose_func_tmp.argtypes = [ctypes.c_void_p]
dlclose_func_tmp(_handle)
But I failed to close the so. And I'm also not sure if the leaked memory will be freed after closing the so.
If the program not uses multi-threads or creates a fixed number of threads(threadpool), it works ok.
For some reason,I need create threads constantly in my program. What can I do to prevent this memory leaks?

Python product of ascii, wrong start

I wrote a simple script in order to check the availability of some domains, but I can't understand why it starts with abns not aaaa.
Here is the code :
import whois
import eventlet
from itertools import product
from string import ascii_lowercase
f = open('4-letter.txt', 'w')
k = (''.join(x) for x in product(ascii_lowercase, repeat=4))
def fetch(url):
for x in k:
if whois.whois(x+".ro").status == "OK":
print(x+" bad")
else:
f.write(x+".ro\n")
pool = eventlet.GreenPool()
for status in pool.imap(fetch, k):
print(status)
f.close()
You access the global generator k in this function:
def fetch(url):
for x in k:
if whois.whois(x+".ro").status == "OK":
print(x+" bad")
else:
f.write(x+".ro\n")
But you also hand k to pool.imap(fetch, k). So k is already iterated over several steps before fetch() is called.

Stop a python thread from destructor

I am somewhat new to Python programming. I am trying to make a script which will continously read a USB device in a separate thread (as this class will be imported into some GUI apps) using a dll, If there are any data it will call the callback function.
My problem is I want to stop the thread using the destructor and I am not sure about other better design to do it? Could any body please point me out if there are better methods?
My design is planned where my class can be imported and then, call the run through start, once the last object is destroyed the thread stops.
# -*- coding: utf-8 -*-
import ctypes
import threading
import time
USB_VENDOR_ID = 0x23ef
USB_PRODUCT_ID = 0x0001
class usb_dev_comm(threading.Thread):
def __init__(self, callback_fun):
self.hidDll = ctypes.WinDLL("AtUsbHid.dll")
self.usb_dev_connected = 0
self.usb_stopall = 0
self.callback = callback_fun
return
def usb_dev_present(self):
self.res = self.hidDll.findHidDevice(USB_VENDOR_ID, USB_PRODUCT_ID)
if (self.res == True):
self.usb_dev_connected = 1
else:
self.usb_dev_connected = 0
return self.res
def usb_dev_tx(self,data):
self.res = self.hidDll.writeData(data)
return self.res
def usb_dev_rx(self):
data = 0
result = self.hidDll.readData(data)
if (result == False):
return False
else:
return data
def run(self):
while 1:
self.usb_dev_present()
print self.usb_dev_connected
if(self.usb_dev_connected):
data_rx = self.usb_dev_rx()
print data_rx
#time.sleep(0.001)
time.sleep(1)
def __del__(self):
print "del:cleanup required"
#TODO
if __name__ == "__main__":
def data_print(data):
print data
device = usb_dev_comm(data_print)
result = device.run()
print result
print device.usb_dev_connected
I tried introducing
def run(self):
while self.stop_thread:
self.usb_dev_present()
print self.usb_dev_connected
if(self.usb_dev_connected):
data_rx = self.usb_dev_rx()
print data_rx
#time.sleep(0.001)
time.sleep(1)
def __del__(self):
self.stop_thread = 1
print "del:cleanup required"
#TODO
But this is not working as I think this leads to chicken and egg problem

time.sleep hangs multithread function in python

I am having trouble with a sleep statement hanging my multithreading function. I want my function to go about it's buisness while the rest of the program runs. Here is a toy that recreates my problem:
import multiprocessing, sys, time
def f(icount, _sleepTime = 1):
for i in range(icount):
time.sleep(_sleepTime)
print(_sleepTime)
def main(args):
m = multiprocessing.Process(target = f, args=(4, ))
m.run()
# f should be sleeping for 1 second so this print statement should come first
print(m.is_alive())
if __name__ == "__main__":
sys.exit(main(sys.argv[1:]))
can anyone explain why this code outputs:
1
1
1
1
False
instead of:
True
1
1
1
1
#
EDIT
#
I eventually want to run this function on a schedual, and test if it is running before I execute the function. This is an example:
import multiprocessing, sys, time
def f(icount, _sleepTime = 1):
for i in range(icount):
time.sleep(_sleepTime)
print(_sleepTime)
def main(args):
m = multiprocessing.Process(target = f, args=(4, ))
for i in range(15):
time.sleep(.5)
if not m.is_alive():
# m.start throws an error after first run
m.run()
print("{}".format(m.is_alive()))
if __name__ == "__main__":
sys.exit(main(sys.argv[1:]))
Use start and join instead of run:
import multiprocessing, sys, time
def f(icount, _sleepTime = 1):
for i in range(icount):
time.sleep(_sleepTime)
print(_sleepTime)
def main(args):
m = multiprocessing.Process(target = f, args=(4, ))
m.start()
# f should be sleeping for 1 second so this print statement should come first
print(m.is_alive())
m.join()
if __name__ == "__main__":
sys.exit(main(sys.argv[1:]))
#
EDIT
#
Again, use start and join instead of run:
import multiprocessing, sys, time
def f(icount, _sleepTime = 1):
for i in range(icount):
time.sleep(_sleepTime)
print(_sleepTime)
def create_process():
return multiprocessing.Process(target = f, args=(4, ))
def main(args):
m = create_process()
m.start()
for i in range(15):
time.sleep(.5)
if not m.is_alive():
# m.start throws an error after first run
print("restarting")
m.join()
m = create_process()
m.start()
print("{}".format(m.is_alive()))
m.join()
if __name__ == "__main__":
sys.exit(main(sys.argv[1:]))

Multiprocessing: How to use Pool.map on a function defined in a class?

When I run something like:
from multiprocessing import Pool
p = Pool(5)
def f(x):
return x*x
p.map(f, [1,2,3])
it works fine. However, putting this as a function of a class:
class calculate(object):
def run(self):
def f(x):
return x*x
p = Pool()
return p.map(f, [1,2,3])
cl = calculate()
print cl.run()
Gives me the following error:
Exception in thread Thread-1:
Traceback (most recent call last):
File "/sw/lib/python2.6/threading.py", line 532, in __bootstrap_inner
self.run()
File "/sw/lib/python2.6/threading.py", line 484, in run
self.__target(*self.__args, **self.__kwargs)
File "/sw/lib/python2.6/multiprocessing/pool.py", line 225, in _handle_tasks
put(task)
PicklingError: Can't pickle <type 'function'>: attribute lookup __builtin__.function failed
I've seen a post from Alex Martelli dealing with the same kind of problem, but it wasn't explicit enough.
I could not use the code posted so far because code using "multiprocessing.Pool" do not work with lambda expressions and code not using "multiprocessing.Pool" spawn as many processes as there are work items.
I adapted the code s.t. it spawns a predefined amount of workers and only iterates through the input list if there exists an idle worker. I also enabled the "daemon" mode for the workers s.t. ctrl-c works as expected.
import multiprocessing
def fun(f, q_in, q_out):
while True:
i, x = q_in.get()
if i is None:
break
q_out.put((i, f(x)))
def parmap(f, X, nprocs=multiprocessing.cpu_count()):
q_in = multiprocessing.Queue(1)
q_out = multiprocessing.Queue()
proc = [multiprocessing.Process(target=fun, args=(f, q_in, q_out))
for _ in range(nprocs)]
for p in proc:
p.daemon = True
p.start()
sent = [q_in.put((i, x)) for i, x in enumerate(X)]
[q_in.put((None, None)) for _ in range(nprocs)]
res = [q_out.get() for _ in range(len(sent))]
[p.join() for p in proc]
return [x for i, x in sorted(res)]
if __name__ == '__main__':
print(parmap(lambda i: i * 2, [1, 2, 3, 4, 6, 7, 8]))
Multiprocessing and pickling is broken and limited unless you jump outside the standard library.
If you use a fork of multiprocessing called pathos.multiprocesssing, you can directly use classes and class methods in multiprocessing's map functions. This is because dill is used instead of pickle or cPickle, and dill can serialize almost anything in python.
pathos.multiprocessing also provides an asynchronous map function… and it can map functions with multiple arguments (e.g. map(math.pow, [1,2,3], [4,5,6]))
See discussions:
What can multiprocessing and dill do together?
and:
http://matthewrocklin.com/blog/work/2013/12/05/Parallelism-and-Serialization
It even handles the code you wrote initially, without modification, and from the interpreter. Why do anything else that's more fragile and specific to a single case?
>>> from pathos.multiprocessing import ProcessingPool as Pool
>>> class calculate(object):
... def run(self):
... def f(x):
... return x*x
... p = Pool()
... return p.map(f, [1,2,3])
...
>>> cl = calculate()
>>> print cl.run()
[1, 4, 9]
Get the code here:
https://github.com/uqfoundation/pathos
And, just to show off a little more of what it can do:
>>> from pathos.multiprocessing import ProcessingPool as Pool
>>>
>>> p = Pool(4)
>>>
>>> def add(x,y):
... return x+y
...
>>> x = [0,1,2,3]
>>> y = [4,5,6,7]
>>>
>>> p.map(add, x, y)
[4, 6, 8, 10]
>>>
>>> class Test(object):
... def plus(self, x, y):
... return x+y
...
>>> t = Test()
>>>
>>> p.map(Test.plus, [t]*4, x, y)
[4, 6, 8, 10]
>>>
>>> res = p.amap(t.plus, x, y)
>>> res.get()
[4, 6, 8, 10]
I also was annoyed by restrictions on what sort of functions pool.map could accept. I wrote the following to circumvent this. It appears to work, even for recursive use of parmap.
from multiprocessing import Process, Pipe
from itertools import izip
def spawn(f):
def fun(pipe, x):
pipe.send(f(x))
pipe.close()
return fun
def parmap(f, X):
pipe = [Pipe() for x in X]
proc = [Process(target=spawn(f), args=(c, x)) for x, (p, c) in izip(X, pipe)]
[p.start() for p in proc]
[p.join() for p in proc]
return [p.recv() for (p, c) in pipe]
if __name__ == '__main__':
print parmap(lambda x: x**x, range(1, 5))
There is currently no solution to your problem, as far as I know: the function that you give to map() must be accessible through an import of your module. This is why robert's code works: the function f() can be obtained by importing the following code:
def f(x):
return x*x
class Calculate(object):
def run(self):
p = Pool()
return p.map(f, [1,2,3])
if __name__ == '__main__':
cl = Calculate()
print cl.run()
I actually added a "main" section, because this follows the recommendations for the Windows platform ("Make sure that the main module can be safely imported by a new Python interpreter without causing unintended side effects").
I also added an uppercase letter in front of Calculate, so as to follow PEP 8. :)
The solution by mrule is correct but has a bug: if the child sends back a large amount of data, it can fill the pipe's buffer, blocking on the child's pipe.send(), while the parent is waiting for the child to exit on pipe.join(). The solution is to read the child's data before join()ing the child. Furthermore the child should close the parent's end of the pipe to prevent a deadlock. The code below fixes that. Also be aware that this parmap creates one process per element in X. A more advanced solution is to use multiprocessing.cpu_count() to divide X into a number of chunks, and then merge the results before returning. I leave that as an exercise to the reader so as not to spoil the conciseness of the nice answer by mrule. ;)
from multiprocessing import Process, Pipe
from itertools import izip
def spawn(f):
def fun(ppipe, cpipe,x):
ppipe.close()
cpipe.send(f(x))
cpipe.close()
return fun
def parmap(f,X):
pipe=[Pipe() for x in X]
proc=[Process(target=spawn(f),args=(p,c,x)) for x,(p,c) in izip(X,pipe)]
[p.start() for p in proc]
ret = [p.recv() for (p,c) in pipe]
[p.join() for p in proc]
return ret
if __name__ == '__main__':
print parmap(lambda x:x**x,range(1,5))
I've also struggled with this. I had functions as data members of a class, as a simplified example:
from multiprocessing import Pool
import itertools
pool = Pool()
class Example(object):
def __init__(self, my_add):
self.f = my_add
def add_lists(self, list1, list2):
# Needed to do something like this (the following line won't work)
return pool.map(self.f,list1,list2)
I needed to use the function self.f in a Pool.map() call from within the same class and self.f did not take a tuple as an argument. Since this function was embedded in a class, it was not clear to me how to write the type of wrapper other answers suggested.
I solved this problem by using a different wrapper that takes a tuple/list, where the first element is the function, and the remaining elements are the arguments to that function, called eval_func_tuple(f_args). Using this, the problematic line can be replaced by return pool.map(eval_func_tuple, itertools.izip(itertools.repeat(self.f), list1, list2)). Here is the full code:
File: util.py
def add(a, b): return a+b
def eval_func_tuple(f_args):
"""Takes a tuple of a function and args, evaluates and returns result"""
return f_args[0](*f_args[1:])
File: main.py
from multiprocessing import Pool
import itertools
import util
pool = Pool()
class Example(object):
def __init__(self, my_add):
self.f = my_add
def add_lists(self, list1, list2):
# The following line will now work
return pool.map(util.eval_func_tuple,
itertools.izip(itertools.repeat(self.f), list1, list2))
if __name__ == '__main__':
myExample = Example(util.add)
list1 = [1, 2, 3]
list2 = [10, 20, 30]
print myExample.add_lists(list1, list2)
Running main.py will give [11, 22, 33]. Feel free to improve this, for example eval_func_tuple could also be modified to take keyword arguments.
On another note, in another answers, the function "parmap" can be made more efficient for the case of more Processes than number of CPUs available. I'm copying an edited version below. This is my first post and I wasn't sure if I should directly edit the original answer. I also renamed some variables.
from multiprocessing import Process, Pipe
from itertools import izip
def spawn(f):
def fun(pipe,x):
pipe.send(f(x))
pipe.close()
return fun
def parmap(f,X):
pipe=[Pipe() for x in X]
processes=[Process(target=spawn(f),args=(c,x)) for x,(p,c) in izip(X,pipe)]
numProcesses = len(processes)
processNum = 0
outputList = []
while processNum < numProcesses:
endProcessNum = min(processNum+multiprocessing.cpu_count(), numProcesses)
for proc in processes[processNum:endProcessNum]:
proc.start()
for proc in processes[processNum:endProcessNum]:
proc.join()
for proc,c in pipe[processNum:endProcessNum]:
outputList.append(proc.recv())
processNum = endProcessNum
return outputList
if __name__ == '__main__':
print parmap(lambda x:x**x,range(1,5))
I know that this question was asked 8 years and 10 months ago but I want to present you my solution:
from multiprocessing import Pool
class Test:
def __init__(self):
self.main()
#staticmethod
def methodForMultiprocessing(x):
print(x*x)
def main(self):
if __name__ == "__main__":
p = Pool()
p.map(Test.methodForMultiprocessing, list(range(1, 11)))
p.close()
TestObject = Test()
You just need to make your class function into a static method. But it's also possible with a class method:
from multiprocessing import Pool
class Test:
def __init__(self):
self.main()
#classmethod
def methodForMultiprocessing(cls, x):
print(x*x)
def main(self):
if __name__ == "__main__":
p = Pool()
p.map(Test.methodForMultiprocessing, list(range(1, 11)))
p.close()
TestObject = Test()
Tested in Python 3.7.3
I know this was asked over 6 years ago now, but just wanted to add my solution, as some of the suggestions above seem horribly complicated, but my solution was actually very simple.
All I had to do was wrap the pool.map() call to a helper function. Passing the class object along with args for the method as a tuple, which looked a bit like this.
def run_in_parallel(args):
return args[0].method(args[1])
myclass = MyClass()
method_args = [1,2,3,4,5,6]
args_map = [ (myclass, arg) for arg in method_args ]
pool = Pool()
pool.map(run_in_parallel, args_map)
I took klaus se's and aganders3's answer, and made a documented module that is more readable and holds in one file. You can just add it to your project. It even has an optional progress bar !
"""
The ``processes`` module provides some convenience functions
for using parallel processes in python.
Adapted from http://stackoverflow.com/a/16071616/287297
Example usage:
print prll_map(lambda i: i * 2, [1, 2, 3, 4, 6, 7, 8], 32, verbose=True)
Comments:
"It spawns a predefined amount of workers and only iterates through the input list
if there exists an idle worker. I also enabled the "daemon" mode for the workers so
that KeyboardInterupt works as expected."
Pitfalls: all the stdouts are sent back to the parent stdout, intertwined.
Alternatively, use this fork of multiprocessing:
https://github.com/uqfoundation/multiprocess
"""
# Modules #
import multiprocessing
from tqdm import tqdm
################################################################################
def apply_function(func_to_apply, queue_in, queue_out):
while not queue_in.empty():
num, obj = queue_in.get()
queue_out.put((num, func_to_apply(obj)))
################################################################################
def prll_map(func_to_apply, items, cpus=None, verbose=False):
# Number of processes to use #
if cpus is None: cpus = min(multiprocessing.cpu_count(), 32)
# Create queues #
q_in = multiprocessing.Queue()
q_out = multiprocessing.Queue()
# Process list #
new_proc = lambda t,a: multiprocessing.Process(target=t, args=a)
processes = [new_proc(apply_function, (func_to_apply, q_in, q_out)) for x in range(cpus)]
# Put all the items (objects) in the queue #
sent = [q_in.put((i, x)) for i, x in enumerate(items)]
# Start them all #
for proc in processes:
proc.daemon = True
proc.start()
# Display progress bar or not #
if verbose:
results = [q_out.get() for x in tqdm(range(len(sent)))]
else:
results = [q_out.get() for x in range(len(sent))]
# Wait for them to finish #
for proc in processes: proc.join()
# Return results #
return [x for i, x in sorted(results)]
################################################################################
def test():
def slow_square(x):
import time
time.sleep(2)
return x**2
objs = range(20)
squares = prll_map(slow_square, objs, 4, verbose=True)
print "Result: %s" % squares
EDIT: Added #alexander-mcfarlane suggestion and a test function
Functions defined in classes (even within functions within classes) don't really pickle. However, this works:
def f(x):
return x*x
class calculate(object):
def run(self):
p = Pool()
return p.map(f, [1,2,3])
cl = calculate()
print cl.run()
I modified klaus se's method because while it was working for me with small lists, it would hang when the number of items was ~1000 or greater. Instead of pushing the jobs one at a time with the None stop condition, I load up the input queue all at once and just let the processes munch on it until it's empty.
from multiprocessing import cpu_count, Queue, Process
def apply_func(f, q_in, q_out):
while not q_in.empty():
i, x = q_in.get()
q_out.put((i, f(x)))
# map a function using a pool of processes
def parmap(f, X, nprocs = cpu_count()):
q_in, q_out = Queue(), Queue()
proc = [Process(target=apply_func, args=(f, q_in, q_out)) for _ in range(nprocs)]
sent = [q_in.put((i, x)) for i, x in enumerate(X)]
[p.start() for p in proc]
res = [q_out.get() for _ in sent]
[p.join() for p in proc]
return [x for i,x in sorted(res)]
Edit: unfortunately now I am running into this error on my system: Multiprocessing Queue maxsize limit is 32767, hopefully the workarounds there will help.
You can run your code without any issues if you somehow manually ignore the Pool object from the list of objects in the class because it is not pickleable as the error says. You can do this with the __getstate__ function (look here too) as follow. The Pool object will try to find the __getstate__ and __setstate__ functions and execute them if it finds it when you run map, map_async etc:
class calculate(object):
def __init__(self):
self.p = Pool()
def __getstate__(self):
self_dict = self.__dict__.copy()
del self_dict['p']
return self_dict
def __setstate__(self, state):
self.__dict__.update(state)
def f(self, x):
return x*x
def run(self):
return self.p.map(self.f, [1,2,3])
Then do:
cl = calculate()
cl.run()
will give you the output:
[1, 4, 9]
I've tested the above code in Python 3.x and it works.
Here is my solution, which I think is a bit less hackish than most others here. It is similar to nightowl's answer.
someclasses = [MyClass(), MyClass(), MyClass()]
def method_caller(some_object, some_method='the method'):
return getattr(some_object, some_method)()
othermethod = partial(method_caller, some_method='othermethod')
with Pool(6) as pool:
result = pool.map(othermethod, someclasses)
This may not be a very good solution but in my case, I solve it like this.
from multiprocessing import Pool
def foo1(data):
self = data.get('slf')
lst = data.get('lst')
return sum(lst) + self.foo2()
class Foo(object):
def __init__(self, a, b):
self.a = a
self.b = b
def foo2(self):
return self.a**self.b
def foo(self):
p = Pool(5)
lst = [1, 2, 3]
result = p.map(foo1, (dict(slf=self, lst=lst),))
return result
if __name__ == '__main__':
print(Foo(2, 4).foo())
I had to pass self to my function as I have to access attributes and functions of my class through that function. This is working for me. Corrections and suggestions are always welcome.
Here is a boilerplate I wrote for using multiprocessing Pool in python3, specifically python3.7.7 was used to run the tests. I got my fastest runs using imap_unordered. Just plug in your scenario and try it out. You can use timeit or just time.time() to figure out which works best for you.
import multiprocessing
import time
NUMBER_OF_PROCESSES = multiprocessing.cpu_count()
MP_FUNCTION = 'starmap' # 'imap_unordered' or 'starmap' or 'apply_async'
def process_chunk(a_chunk):
print(f"processig mp chunk {a_chunk}")
return a_chunk
map_jobs = [1, 2, 3, 4]
result_sum = 0
s = time.time()
if MP_FUNCTION == 'imap_unordered':
pool = multiprocessing.Pool(processes=NUMBER_OF_PROCESSES)
for i in pool.imap_unordered(process_chunk, map_jobs):
result_sum += i
elif MP_FUNCTION == 'starmap':
pool = multiprocessing.Pool(processes=NUMBER_OF_PROCESSES)
try:
map_jobs = [(i, ) for i in map_jobs]
result_sum = pool.starmap(process_chunk, map_jobs)
result_sum = sum(result_sum)
finally:
pool.close()
pool.join()
elif MP_FUNCTION == 'apply_async':
with multiprocessing.Pool(processes=NUMBER_OF_PROCESSES) as pool:
result_sum = [pool.apply_async(process_chunk, [i, ]).get() for i in map_jobs]
result_sum = sum(result_sum)
print(f"result_sum is {result_sum}, took {time.time() - s}s")
In the above scenario imap_unordered actually seems to perform the worst for me. Try out your case and benchmark it on the machine you plan to run it on. Also read up on Process Pools. Cheers!
I'm not sure if this approach has been taken but a work around i'm using is:
from multiprocessing import Pool
t = None
def run(n):
return t.f(n)
class Test(object):
def __init__(self, number):
self.number = number
def f(self, x):
print x * self.number
def pool(self):
pool = Pool(2)
pool.map(run, range(10))
if __name__ == '__main__':
t = Test(9)
t.pool()
pool = Pool(2)
pool.map(run, range(10))
Output should be:
0
9
18
27
36
45
54
63
72
81
0
9
18
27
36
45
54
63
72
81
class Calculate(object):
# Your instance method to be executed
def f(self, x, y):
return x*y
if __name__ == '__main__':
inp_list = [1,2,3]
y = 2
cal_obj = Calculate()
pool = Pool(2)
results = pool.map(lambda x: cal_obj.f(x, y), inp_list)
There is a possibility that you would want to apply this function for each different instance of the class. Then here is the solution for that also
class Calculate(object):
# Your instance method to be executed
def __init__(self, x):
self.x = x
def f(self, y):
return self.x*y
if __name__ == '__main__':
inp_list = [Calculate(i) for i in range(3)]
y = 2
pool = Pool(2)
results = pool.map(lambda x: x.f(y), inp_list)
From http://www.rueckstiess.net/research/snippets/show/ca1d7d90 and http://qingkaikong.blogspot.com/2016/12/python-parallel-method-in-class.html
We can make an external function and seed it with the class self object:
from joblib import Parallel, delayed
def unwrap_self(arg, **kwarg):
return square_class.square_int(*arg, **kwarg)
class square_class:
def square_int(self, i):
return i * i
def run(self, num):
results = []
results = Parallel(n_jobs= -1, backend="threading")\
(delayed(unwrap_self)(i) for i in zip([self]*len(num), num))
print(results)
OR without joblib:
from multiprocessing import Pool
import time
def unwrap_self_f(arg, **kwarg):
return C.f(*arg, **kwarg)
class C:
def f(self, name):
print 'hello %s,'%name
time.sleep(5)
print 'nice to meet you.'
def run(self):
pool = Pool(processes=2)
names = ('frank', 'justin', 'osi', 'thomas')
pool.map(unwrap_self_f, zip([self]*len(names), names))
if __name__ == '__main__':
c = C()
c.run()
To implement multiprocessing in aws lambda we have two ways.
Note : Threadpool doesn't work in aws lambda
use the example solution which is provided by aws team
please use this link https://aws.amazon.com/blogs/compute/parallel-processing-in-python-with-aws-lambda/
use this package https://pypi.org/project/lambda-multiprocessing/
i have implemented my lambda function with both the solution and both is working fine can't share my code here but this 2 links will help you for sure.
i find 2 nd way more easy to implement.
There are also some libraries to make this easier, for example autothread (only for Python 3.6 and up):
import autothread
class calculate(object):
def run(self):
#autothread.multiprocessed()
def f(x: int):
return x*x
return f([1,2,3])
cl = calculate()
print(cl.run())
You can also take a look at lox.

Categories

Resources