Got ValueError when calling cross_val_score - python

I am trying to make a project for Machine Learning and I wanted to perform an accuracy evaluation of multiple alhorithms. I am using this CSV and I am loading only Date, Time and CO columns ( I manually renamed it in the CSV). After I prepare my training data, I am trying to perform the evaluations, but I am getting:
ValueError: Supported target types are: ('binary', 'multiclass'). Got 'unknown' instead.
The shapes for the vectors used for evaluations (X_train and Y_train) are:
(9357, 2)
(9357,)
The class:
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split, StratifiedKFold, cross_val_score
from sklearn.naive_bayes import GaussianNB
from sklearn.neighbors import KNeighborsClassifier
from sklearn.svm import SVC
from sklearn.tree import DecisionTreeClassifier
class Models:
test_size: float
random_state: int
def __init__(self, test_size: float = 0.20, random_state: int = 1) -> None:
super().__init__()
self.test_size = test_size
self.random_state = random_state
#staticmethod
def init_models() -> []:
return [
('LR', LogisticRegression(solver='liblinear', multi_class='ovr')),
('LDA', LinearDiscriminantAnalysis()),
('KNN', KNeighborsClassifier()),
('CART', DecisionTreeClassifier()),
('NB', GaussianNB()),
('SVM', SVC(gamma='auto'))
]
def train(self, x: [], y: []):
x_train, x_validation, y_train, y_validation = train_test_split(x, y, test_size=self.test_size,
random_state=self.random_state)
return x_train, x_validation, y_train, y_validation
def evaluate(self, x_train: [], y_train: [], splits: int = 10, random_state: int = 1):
results = []
names = []
models = self.init_models()
for name, model in models:
kfold = StratifiedKFold(n_splits=splits, random_state=random_state)
cv_results = cross_val_score(estimator=model, X=x_train, y=y_train, cv=kfold, scoring='accuracy')
results.append(cv_results)
names.append(name)
print('%s: %f (%f)' % (name, cv_results.mean(), cv_results.std()))
And I am calling my class as:
models_helper = Models()
array = dataset.values
X = array[:, 1:3]
Y = array[:, 2]
prepared = models_helper.train(X, Y)
classification = models_helper.evaluate(prepared[0], prepared[2])

I avoided this problem by first calculating predicted values with cross_val_predict and then using the predicted values with y_test to get score with metrics.accuracy_score.
# Function that runs the requested algorithm and returns the accuracy metrics.
# Passing the sklearn model as an argument along with cv values and training data.
def fit_ml_algo(algo, X_train, y_train, cv):
# One Pass
model = algo.fit(X_train, y_train)
acc = round(model.score(X_train, y_train) * 100, 2)
# Cross Validation
train_pred = model_selection.cross_val_predict(algo,
X_train,
y_train,
cv=cv,
n_jobs = -1)
# Cross-validation accuracy metric
acc_cv = round(metrics.accuracy_score(y_train, train_pred) * 100, 2)
return train_pred, acc, acc_cv

Related

How do I return the result of each cross validation prediction

I have a task that requires me to analyse a model but I need the output predictions for each cross validation step- and the data that the cross validation used in that step.
Here is my code:
results= cross_validate(MLPClassifier, X_train, y_train, cv=5,return_estimator = True)
Which did not work. Also,
results= cross_val_predict(MLPClassifier, X_train, y_train, cv=5)
Neither worked, however the second method gave me the a set of predictions that are the shape of y_train (labels). However I expected a smaller value to be returned say 10% the size of y_train.
Also I'm unsure how to obtain the data used for each cross validation step.
How about using one of the Cross Validation iterators?
from sklearn.datasets import make_classification
from sklearn.model_selection import ShuffleSplit
from sklearn.neural_network import MLPClassifier
X, y = make_classification(n_samples=1000, random_state=0)
datasets = {} # [(X_train, y_train), (X_test, y_test)]
results = {}
ss = ShuffleSplit(n_splits=5, test_size=0.25, random_state=0)
for idx, (train_index, test_index) in enumerate(ss.split(X)):
X_train, y_train = X[train_index], y[train_index]
X_test, y_test = X[test_index], y[test_index]
datasets[f"train_{idx}"] = X_train, y_train
datasets[f"test_{idx}"] = X_test, y_test
model = MLPClassifier(random_state=0).fit(X_train, y_train)
results[f"accuracy_{idx}"] = model.score(X_test, y_test)
results
Output:
{'accuracy_0': 0.968,
'accuracy_1': 0.924,
'accuracy_2': 0.94,
'accuracy_3': 0.944,
'accuracy_4': 0.964}

Scikit-Learn: Supported target types are: ('binary', 'multiclass'). Got 'unknown' instead

I have 2 nominal values of a product (category and producer) and its price and try to identify if in any given category a producer has usually a higher price. In another word, I try to measure the impact of a brand on price. I used below Python code and couldn't manage to run and get this error:
Supported target types are: ('binary', 'multiclass'). Got 'unknown' instead.
Could you please help me to resolve this?
# Load dataset
path = "Sales.xlsx"
names = ['Category', 'Producer', 'Average_base_price']
dataset = read_excel(path, dtype={'Average_base_price':float} ,names=names)
# creating instance of labelencoder
labelencoder = LabelEncoder()
array = dataset.values
# Split-out validation dataset
X, y = array[:, :-1], array[:, -1]
X[:, 0] = labelencoder.fit_transform(X[:, 0])
X[:, 1] = labelencoder.fit_transform(X[:, 1])
X_train, X_validation, Y_train, Y_validation = train_test_split(X, y, test_size=0.20, random_state=1)
# Spot Check Algorithms
models = []
models.append(('LR', LogisticRegression(solver='liblinear', multi_class='ovr')))
models.append(('LDA', LinearDiscriminantAnalysis()))
models.append(('KNN', KNeighborsClassifier()))
models.append(('CART', DecisionTreeClassifier()))
models.append(('NB', GaussianNB()))
models.append(('SVM', SVC(gamma='auto')))
# evaluate each model in turn
results = []
names = []
for name, model in models:
kfold = StratifiedKFold(n_splits=10, random_state=1, shuffle=True)
cv_results = cross_val_score(model, X_train, Y_train, cv=kfold, scoring='accuracy')
results.append(cv_results)
names.append(name)
print('%s: %f (%f)' % (name, cv_results.mean(), cv_results.std()))
You get that error because your dependent variable is continuous and you are trying to do a stratified kfold which doesn't make sense
If it is like you said:
In another word, I try to measure the impact of a brand on price.
Then your dependent variable should be price. Your independent variables would be the nominal values. And you should do one-hot encoding instead of label encoding because these are not predictors, not labels.
Using an example dataset:
from sklearn.preprocessing import OneHotEncoder
from sklearn.model_selection import train_test_split, StratifiedKFold
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import cross_val_score
import numpy as np
import pandas as pd
dataset = pd.DataFrame({'Category':np.random.choice(['A','B','C'],100),
'Producer':np.random.choice(['l','m','n'],100),
'Average_base_price':np.random.uniform(0,1,100)})
Onehot encode the predictor:
enc = OneHotEncoder(handle_unknown='ignore')
X = enc.fit_transform(dataset[['Category','Producer']])
y = dataset[['Average_base_price']]
X_train, X_validation, Y_train, Y_validation = train_test_split(X, y, test_size=0.20, random_state=1)
Then fit the model, in this case you can use for example a simple linear regression:
model = LinearRegression()
cv_results = cross_val_score(model, X_train, Y_train, cv=10)

Build SVMs with different kernels (RBF)

I have this in python
from sklearn.svm import SVC
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, roc_auc_score
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.3)
# The gamma parameter is the kernel coefficient for kernels rbf/poly/sigmoid
svm = SVC(gamma='auto', probability=True)
svm.fit(X_train,y_train.values.ravel())
prediction = svm.predict(X_test)
prediction_prob = svm.predict_proba(X_test)
print('Accuracy:', accuracy_score(y_test,prediction))
print('AUC:',roc_auc_score(y_test,prediction_prob[:,1]))
print(X_train)
print(y_train)
Now I want to build this with a different kernel rbf and store the values into arrays.
so something like this
def svm_grid_search(parameters, cv):
# Store the outcome of the folds in these lists
means = []
stds = []
params = []
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.3)
for parameter in parameters:
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.3)
# The gamma parameter is the kernel coefficient for kernels rbf/poly/sigmoid
svm = SVC(gamma=1,kernel ='rbf',probability=True)
svm.fit(X_train,y_train.values.ravel())
prediction = svm.predict(X_test)
prediction_prob = svm.predict_proba(X_test)
return means, stddevs, params
I know I want to loop around the parameters and then store the values into the lists.
But I struggle how to do so ...
So what I try to do is to loop and then store the results of the SVM in the arrays with the
kernel = parameter
I would be very thankful if you could help me out here.
This is what GridSearchCV is for. Link here
See here for an example

UndefinedMetricWarning in Sklearn

I'm not able to see my resultant accuracy score in my final graph and I get precision/recall being ill-defined where I don't see any 0's.
I'm using this yeast data: https://archive.ics.uci.edu/ml/machine-learning-databases/yeast/yeast.data
I've tried making the whole set my training set by making train_frac=1.
import pandas as pd
import numpy as np
%matplotlib inline
from matplotlib import pyplot as plt
from sklearn.naive_bayes import GaussianNB
df = pd.read_csv("<my_dir>",names = ['sample','mcg', 'gvh', 'alm', 'mit', 'erl', 'pox', 'vac', 'nuc','site'])
df=df.drop(columns=['sample'])
model_type = GaussianNB()
target = 'site'
train_frac = 0.5
Y = df[target]
df2 = df.drop(columns=[target])
dtype='object'). Everything but site.
X = df[df2.columns[:]]
def naive_split(X, Y, n):
# Take first n lines of X and Y for training and the rest for testing
X_train = X[:n]
X_test = X[n:]
Y_train = Y[:n]
Y_test = Y[n:]
return (X_train, X_test, Y_train, Y_test)
def train_model(n=int(train_frac*df.shape[0])):
X_train, X_test, Y_train, Y_test = naive_split(X, Y, n)
clf = model_type
clf = clf.fit(X_train, Y_train)
return (X_test, Y_test, clf)
X_test, Y_test, clf = train_model()
import sklearn.metrics as metrics
from sklearn import model_selection
sizes = np.arange(0.98,0.01, -0.02)
result = {}
for size in sizes:
X_train, X_test, Y_train, Y_test = model_selection.train_test_split(
X, Y, test_size=size, random_state=200)
clf = model_type
clf = clf.fit(X_train, Y_train)
score = clf.score(X_test, Y_test)
precision = metrics.precision_score(Y_test, clf.predict(X_test), average='weighted')
recall = metrics.recall_score(Y_test, clf.predict(X_test), average='weighted')
result[len(Y_train)] = (score, precision, recall)
result = pd.DataFrame(result).transpose()
result.columns = ['Accuracy','Precision', 'Recall']
result.plot(marker='*', figsize=(15,5))
plt.title('Metrics measures using random train/test splitting')
plt.xlabel('Size of training set')
plt.ylabel('Value');
I get the following results when I expect it to run without error:
C:\Users\<user>\AppData\Local\Continuum\anaconda3\lib\site-packages\sklearn\metrics\classification.py:1135: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples.'precision', 'predicted', average, warn_for)
C:\Users\<user>\AppData\Local\Continuum\anaconda3\lib\site-packages\sklearn\metrics\classification.py:1137: UndefinedMetricWarning: Recall is ill-defined and being set to 0.0 in labels with no true samples. 'recall', 'true', average, warn_for)

Python Bayes heart prediction, results are not accurate

I'm trying to make a heart disease prediction program using Naive Bayes. When I finished the classifier, the cross validation showed a mean accuracy of 80% However when I try to make a prediction on a given sample, the prediction is all wrong! The dataset is the heart disease dataset from UCI repository, it contains 303 samples. There are two classes 0: healthy and 1: ill, when I try making a prediction on a sample from the dataset, it doesn't predicts its true value, except for very few samples. Here is the code:
import pandas as pd
import numpy as np
from sklearn.naive_bayes import GaussianNB
from sklearn.model_selection import cross_val_score, train_test_split
from sklearn.preprocessing import Imputer, StandardScaler
class Predict:
def Read_Clean(self,dataset):
header_row = ['Age', 'Gender', 'Chest_Pain', 'Resting_Blood_Pressure', 'Serum_Cholestrol',
'Fasting_Blood_Sugar', 'Resting_ECG', 'Max_Heart_Rate',
'Exercise_Induced_Angina', 'OldPeak',
'Slope', 'CA', 'Thal', 'Num']
df = pd.read_csv(dataset, names=header_row)
df = df.replace('[?]', np.nan, regex=True)
df = pd.DataFrame(Imputer(missing_values='NaN', strategy='mean', axis=0)
.fit_transform(df), columns=header_row)
df = df.astype(float)
return df
def Train_Test_Split_data(self,dataset):
Y = dataset['Num'].apply(lambda x: 1 if x > 0 else 0)
X = dataset.drop('Num', axis=1)
validation_size = 0.20
seed = 42
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=validation_size, random_state=seed)
return X_train, X_test, Y_train, Y_test
def Scaler(self, X_train, X_test):
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)
return X_train, X_test
def Cross_Validate(self, clf, X_train, Y_train, cv=5):
scores = cross_val_score(clf, X_train, Y_train, cv=cv, scoring='f1')
score = scores.mean()
print("CV scores mean: %.4f " % (score))
return score, scores
def Fit_Score(self, clf, X_train, Y_train, X_test, Y_test, label='x'):
clf.fit(X_train, Y_train)
fit_score = clf.score(X_train, Y_train)
pred_score = clf.score(X_test, Y_test)
print("%s: fit score %.5f, predict score %.5f" % (label, fit_score, pred_score))
return pred_score
def ReturnPredictionValue(self, clf, sample):
y = clf.predict([sample])
return y[0]
def PredictionMain(self, sample, dataset_path='dataset/processed.cleveland.data'):
data = self.Read_Clean(dataset_path)
X_train, X_test, Y_train, Y_test = self.Train_Test_Split_data(data)
X_train, X_test = self.Scaler(X_train, X_test)
self.NB = GaussianNB()
self.Fit_Score(self.NB, X_train, Y_train, X_test, Y_test, label='NB')
self.Cross_Validate(self.NB, X_train, Y_train, 10)
return self.ReturnPredictionValue(self.NB, sample)
When I run:
if __name__ == '__main__':
sample = [41.0, 0.0, 2.0, 130.0, 204.0, 0.0, 2.0, 172.0, 0.0, 1.4, 1.0, 0.0, 3.0]
p = Predict()
print "Prediction value: {}".format(p.PredictionMain(sample))
The result is:
NB: fit score 0.84711, predict score 0.83607 CV scores mean: 0.8000
Prediction value: 1
I get 1 instead of 0 (this sample is already one of the dataset samples).
I did this for more than one sample from the dataset and I get wrong result most of the time, it's as if the accuracy is not 80%!
Any help would be appreciated.
Thanks in advance.
Edit:
Problem solved using Pipeline. The final code is:
import pandas as pd
import numpy as np
from sklearn.naive_bayes import GaussianNB
from sklearn.model_selection import cross_val_score, train_test_split
from sklearn.preprocessing import Imputer, StandardScaler, OneHotEncoder
from sklearn.pipeline import Pipeline
class Predict:
def __init__(self):
self.X = []
self.Y = []
def Read_Clean(self,dataset):
header_row = ['Age', 'Gender', 'Chest_Pain', 'Resting_Blood_Pressure', 'Serum_Cholestrol',
'Fasting_Blood_Sugar', 'Resting_ECG', 'Max_Heart_Rate',
'Exercise_Induced_Angina', 'OldPeak',
'Slope', 'CA', 'Thal', 'Num']
df = pd.read_csv(dataset, names=header_row)
df = df.replace('[?]', np.nan, regex=True)
df = pd.DataFrame(Imputer(missing_values='NaN', strategy='mean', axis=0)
.fit_transform(df), columns=header_row)
df = df.astype(float)
return df
def Split_Dataset(self, df):
self.Y = df['Num'].apply(lambda x: 1 if x > 0 else 0)
self.X = df.drop('Num', axis=1)
def Create_Pipeline(self):
estimators = []
estimators.append(('standardize', StandardScaler()))
estimators.append(('bayes', GaussianNB()))
model = Pipeline(estimators)
return model
def Cross_Validate(self, clf, cv=5):
scores = cross_val_score(clf, self.X, self.Y, cv=cv, scoring='f1')
score = scores.mean()
print("CV scores mean: %.4f " % (score))
def Fit_Score(self, clf, label='x'):
clf.fit(self.X, self.Y)
fit_score = clf.score(self.X, self.Y)
print("%s: fit score %.5f" % (label, fit_score))
def ReturnPredictionValue(self, clf, sample):
y = clf.predict([sample])
return y[0]
def PredictionMain(self, sample, dataset_path='dataset/processed.cleveland.data'):
print "dataset: "+ dataset_path
data = self.Read_Clean(dataset_path)
self.Split_Dataset(data)
self.model = self.Create_Pipeline()
self.Fit_Score(self.model, label='NB')
self.Cross_Validate(self.model, 10)
return self.ReturnPredictionValue(self.model, sample)
Now making a prediction on the same sample in the question returns [0] which is the true value. Actually by running the following method:
def CheckTrue(self):
clf = self.Create_Pipeline()
out = cross_val_predict(clf, self.X, self.Y)
p = [out == self.Y]
c = 0
for i in range(303):
if p[0][i] == True:
c += 1
print "Samples with true values: {}".format(c)
I get 249 true samples using the pipeline code, whereas I got only 150 before.
You're not applying StandardScaler to the sample. Classifier expects scaled data as it was trained on StandardScaler.transform output, but sample is not scaled the same way as in training.
It is easy to make such mistakes when combining multiple steps (scaling, preprocessing, classification) manually. To avoid such issues it is a good idea to use scikit-learn Pipeline.

Categories

Resources