I have data running from a server to Google BigQuery. I would like the data to be analysed in R or Python and have the results presented in Google Data Studio or have resulting tables returned to BigQuery. I've read about the packages bigrquery and googleCloudStorageR, but I don't want to manually run the scripts through R studio every time new data is pushed to the server.
Is there a way to have a R/Python script connected to BigQuery which runs every time new data is pushed to BigQuery. I read this is possible in Power BI, but can't find a solution for Google Data Studio. Summarising; I would like a dashboard with live (or frequently updated) data that needs some analysis in R/Python, but without running the code constantly.
Thanks!
This is now possible via the googleCloudRunner package, which lets you set up pub/sub messages that can be triggered from BigQuery table updates, to run R code then push to another BigQuery table. Its one of the example use cases on the website.
Related
What I basically want to happen is my on demand scheduled query will run when a new file lands in my google cloud storage bucket. This query will load the CSV file into a temporary table, perform some transformation/cleaning and then append to a table.
Just to try and get the first part running, my on demand scheduled query looks like this. The idea being it will pick up the CSV file from the bucket and dump it into a table.
LOAD DATA INTO spreadsheep-20220603.Case_Studies.loading_test
from files
(
format='CSV',
uris=['gs://triggered_upload/*.csv']
);
I was in the process of setting up a Google Cloud Function that triggers when a file lands in the storage bucket, that seems to be fine but I haven't had luck working out how that function will trigger the scheduled query.
Any idea what bit of python code is needed in the function to trigger the query?
It seems to me that it's not really a scheduled query you want at all. You don't want one to run at regular intervals, you want to run a query in response to a certain event.
Now, you've rigged up a cloud function to execute some code whenever a new file is added to a bucket. What this cloud function needs is the BigQuery python client library. Here's an example of how it's used.
All that remains is to wrap this code in an appropriate function and specify dependencies and permissions using the cloud functions python framework. Here is a guide on how to do that.
I am a newbie in ETL. I just managed to extract a lot of information in form of JSONs to GCS. Each JSON file includes identical key-value pairs and now I would like to transform them into dataframes on the basis of certain key values.
The next step would be loading this into a data warehouse like Clickhouse, I guess? I was not able to find any tutorials on this process.
TLDR 1) Is there a way to transform JSON data on GCS in Python without downloading the whole data?
TLDR 2) How can I set this up to run periodically or in real time?
TLDR 3) How can I go about loading the data into a warehouse?
If these are too much, I would love it if you can point me to resources around this. Appreciate the help
There are some ways to do this.
You can add files to storage, then a Cloud Functions is activated every time a new file is added (https://cloud.google.com/functions/docs/calling/storage) and will call an endpoint in Cloud Run (container service - https://cloud.google.com/run/docs/building/containers) running a Python application to transform these JSONs in a dataframe. Note that the container image will be stored in Container Registry. Then the Python notebook running on Cloud Run will save the rows incrementally to BigQuery (warehouse). After that you can have analytics with Looker Studio.
If you need to scale the solution to millions/billions of rows, you can add files to storage, Cloud Functions is activated and calls Dataproc, a service where you can run Python, Anaconda, etc. (How to call google dataproc job from google cloud function). Then this Dataproc cluster will structurate the JSONs as a dataframe and save to the warehouse (BigQuery).
We can basically use databricks as intermediate but I'm stuck on the python script to replicate data from blob storage to azure my sql every 30 second we are using CSV file here.The script needs to store the csv's in current timestamps.
There is no ready stream option for mysql in spark/databricks as it is not stream source/sink technology.
You can use in databricks writeStream .forEach(df) or .forEachBatch(df) option. This way it create temporary dataframe which you can save in place of your choice (so write to mysql).
Personally I would go for simple solution. In Azure Data Factory is enough to create two datasets (can be even without it) - one mysql, one blob and use pipeline with Copy activity to transfer data.
I have connected Python to Google Sheet through API under Google Cloud Platform . My project requires me to retrieve the new data whenever it is added to Google Sheet. Is there a way to trigger Python code to run to get the last row of the Google Sheet?
This depends on how your python script is run.
For example, if it's a cloud function, you can run it pretty easily with something like
function executePythonFunction() {
UrlFetchApp.fetch('<YOUR-PYTHON-CLOUD-FUNCTION-URL>');
}
by creating installable trigger for Change event
I'm working with a small company currently that stores all of their app data in an AWS Redshift cluster. I have been tasked with doing some data processing and machine learning on the data in that Redshift cluster.
The first task I need to do requires some basic transforming of existing data in that cluster into some new tables based on some fairly simple SQL logic. In an MSSQL environment, I would simply put all the logic into a parameterized stored procedure and schedule it via SQL Server Agent Jobs. However, sprocs don't appear to be a thing in Redshift. How would I go about creating a SQL job and scheduling it to run nightly (for example) in an AWS environment?
The other task I have involves developing a machine learning model (in Python) and scoring records in that Redshift database. What's the best way to host my python logic and do the data processing if the plan is to pull data from that Redshift cluster, score it, and then insert it into a new table on the same cluster? It seems like I could spin up an EC2 instance, host my python scripts on there, do the processing on there as well, and schedule the scripts to run via cron?
I see tons of AWS (and non-AWS) products that look like they might be relevant (AWS Glue/Data Pipeline/EMR), but there's so many that I'm a little overwhelmed. Thanks in advance for the assistance!
ETL
Amazon Redshift does not support stored procedures. Also, I should point out that stored procedures are generally a bad thing because you are putting logic into a storage layer, which makes it very hard to migrate to other solutions in the future. (I know of many Oracle customers who have locked themselves into never being able to change technologies!)
You should run your ETL logic external to Redshift, simply using Redshift as a database. This could be as simple as running a script that uses psql to call Redshift, such as:
`psql <authentication stuff> -c 'insert into z select a, b, from x'`
(Use psql v8, upon which Redshift was based.)
Alternatively, you could use more sophisticated ETL tools such as AWS Glue (not currently in every Region) or 3rd-party tools such as Bryte.
Machine Learning
Yes, you could run code on an EC2 instance. If it is small, you could use AWS Lambda (maximum 5 minutes run-time). Many ML users like using Spark on Amazon EMR. It depends upon the technology stack you require.
Amazon CloudWatch Events can schedule Lambda functions, which could then launch EC2 instances that could do your processing and then self-Terminate.
Lots of options, indeed!
The 2 options for running ETL on Redshift
Create some "create table as" type SQL, which will take your source
tables as input and generate your target (transformed table)
Do the transformation outside of the database using an ETL tool. For
example EMR or Glue.
Generally, in an MPP environment such as Redshift, the best practice is to push the ETL to the powerful database (i.e. option 1).
Only consider taking the ETL outside of Redshift (option 2) where SQL is not the ideal tool for the transformation, or the transformation is likely to take a huge amount of compute resource.
There is no inbuilt scheduling or orchestration tool. Apache Airflow is a good option if you need something more full featured than cron jobs.
Basic transforming of existing data
It seems you are a python developer (as you told you are developing Python based ML model), you can do the transformation by following the steps below:
You can use boto3 (https://aws.amazon.com/sdk-for-python/) in order
to talk with Redshift from any workstation of you LAN (make sure
your IP has proper privilege)
You can write your own functions using Python that mimics stored procedures. Inside these functions, you can put / constrict your transformation
logic.
Alternatively, you can create function-using python in Redshift as well that will act like Stored Procedure. See more here
(https://aws.amazon.com/blogs/big-data/introduction-to-python-udfs-in-amazon-redshift/)
Finally, you can use windows scheduler / corn job to schedule your Python scripts with parameters like SQL Server Agent job does
Best way to host my python logic
It seems to me you are reading some data from Redshift then create test and training set and finally get some predicted result (records).If so:
Host the scrip in any of your server (LAN) and connect to Redshift using boto3. If you need to get large number of rows to be transferred over internet, then EC2 in the same region will be an option. Enable the EC2 in ad-hoc basis, complete you job and disable it. It will be cost effective. You can do it using AWS framework. I have done this using .Net framework. I assume boto3 does have this support.
If your result set are relatively smaller you can directly save them into the target redshift table
If result sets are larger save them into CSV (there are several Python libraries) and upload the rows into a staging table using copy command if you need any intermediate calculation. If not, upload them directly into the target table.
Hope this helps.