Pandas DateTime index resampling not working - python

I have a pandas dataframe as shown in the code below. I am trying to "resample"
the data to get daily count of the ticket column. It does not give any error but the
resampling it not wokring. This is a sample of a much larger dataset. I want to be
able to get counts by day, week, month quarter etc. But the .resample option is
not giving me a solution. What am I doing wrong?
import pandas as pd
df = pd.DataFrame([['2019-07-30T00:00:00','22:15:00','car'],
['2013-10-12T00:00:00','0:10:00','bus'],
['2014-03-31T00:00:00','9:06:00','ship'],
['2014-03-31T00:00:00','8:15:00','ship'],
['2014-03-31T00:00:00','12:06:00','ship'],
['2014-03-31T00:00:00','9:24:00','ship'],
['2013-10-12T00:00:00','9:06:00','ship'],
['2018-03-31T00:00:00','9:06:00','ship']],
columns=['date_field','time_field','transportation'])
df['date_field2'] = pd.to_datetime(df['date_field'])
df['time_field2'] = pd.to_datetime(df['time_field'],unit = 'ns').dt.time
df['date_time_field'] = df.apply(lambda df : pd.datetime.combine(df['date_field2'],df['time_field2']),1)
df.set_index(['date_time_field'],inplace=True)
df.drop(columns=['date_field','time_field','date_field2','time_field2'],inplace=True)
df['tickets']=1
df.sort_index(inplace=True)
df.drop(columns=['transportation'],inplace=True)
df.resample('D').sum()
print('\ndaily resampling:')
print(df)

I think you forget assign output to variable like:
df1 = df.resample('D').sum()
print (df1)
Also your code should be simplify:
#join columns together with space and pop for extract column
df['date_field'] = pd.to_datetime(df['date_field']+ ' ' + df.pop('time_field'))
#create and sorting DatetimeIndex, remove column
df = df.set_index(['date_field']).sort_index().drop(columns=['transportation'])
#resample counts
df1 = df.resample('D').size()
print (df1)
date_field
2013-10-12 2
2013-10-13 0
2013-10-14 0
2013-10-15 0
2013-10-16 0
..
2019-07-26 0
2019-07-27 0
2019-07-28 0
2019-07-29 0
2019-07-30 1
Freq: D, Length: 2118, dtype: int64
Also I think inplace is not good practice, check this and this.

Related

Convert the values in dataframe to more usable format for Time series modeling

My dataframe has values of how many red cars are sold on a specific month. I have to build a predictive model to predict monthly sale
I want the current data frame to be converted into the format below for time series modeling.
How can I read the column and row header to create a date column? I am hoping for a new data frame.
You can use melt() to transform the dataframe from the wide to the long format. Then we combine the Year and month information to make an actual date:
import pandas as pd
df = pd.DataFrame({'YEAR' : [2021,2022],
'JAN' : [5, 232],
'FEB':[545, 48]})
df2 = df.melt(id_vars = ['YEAR'], var_name = 'month', value_name = 'sales')
df2['date'] = df2.apply(lambda row: pd.to_datetime(str(row['YEAR']) + row['month'], format = '%Y%b'), axis = 1)
df2.sort_values('date')[['date', 'sales']]
this gives the output:
date sales
0 2021-01-01 5
2 2021-02-01 545
1 2022-01-01 232
3 2022-02-01 48
(for time series analysis you would probably want to set the date column as index)

How to get calendar years as column names and month and day as index for one timeseries

I have looked for solutions but seem to find none that point me in the right direction, hopefully, someone on here can help. I have a stock price data set, with a frequency of Month Start. I am trying to get an output where the calendar years are the column names, and the day and month will be the index (there will only be 12 rows since it is monthly data). The rows will be filled with the stock prices corresponding to the year and month. I, unfortunately, have no code since I have looked at for loops, groupby, etc but can't seem to figure this one out.
You might want to split the date into month and year and to apply a pivot:
s = pd.to_datetime(df.index)
out = (df
.assign(year=s.year, month=s.month)
.pivot_table(index='month', columns='year', values='Close', fill_value=0)
)
output:
year 2003 2004
month
1 0 2
2 0 3
3 0 4
12 1 0
Used input:
df = pd.DataFrame({'Close': [1,2,3,4]},
index=['2003-12-01', '2004-01-01', '2004-02-01', '2004-03-01'])
You need multiple steps to do that.
First split your column into the right format.
Then convert this column into two separate columns.
Then pivot the table accordingly.
import pandas as pd
# Test Dataframe
df = pd.DataFrame({'Date': ['2003-12-01', '2004-01-01', '2004-02-01', '2004-12-01'],
'Close': [6.661, 7.053, 6.625, 8.999]})
# Split datestring into list of form [year, month-day]
df = df.assign(Date=df.Date.str.split(pat='-', n=1))
# Separate date-list column into two columns
df = pd.DataFrame(df.Date.to_list(), columns=['Year', 'Date'], index=df.index).join(df.Close)
# Pivot the table
df = df.pivot(columns='Year', index='Date')
df
Output:
Close
Year 2003 2004
Date
01-01 NaN 7.053
02-01 NaN 6.625
12-01 6.661 8.999

Sorting data by day and month (ignoring year) python pandas

I found many questions similar to mine, but none of them answer it exactly (this one comes closest, but it focusses on ruby).
I have a pandas DataFrame like this:
import pandas as pd
import numpy as np
df = pd.DataFrame({'Date': pd.date_range('2014-10-03', '2015-10-02', freq='1D'), 'Variable': np.random.randn(365)})
df.head()
Out[272]:
Date Variable
0 2014-10-03 0.637167
1 2014-10-04 0.562135
2 2014-10-05 -1.069769
3 2014-10-06 0.556997
4 2014-10-07 0.253468
I want to sort the data from January 1st to December 31st, ignoring the year component of the Date column. The background is that I want to track changes in Variable over the year, but my period starts and ends in October.
I thought of creating a seperate column for month and year and then sorting by those. But I am unsure how to do this in a "correct" and concise way.
Expected output:
Date Variable
0 01-01 0.637167 # (Placeholder-values)
1 01-02 0.562135
2 01-03 -1.069769
3 01-04 0.556997
4 01-05 0.253468
On way from argsort
yourdf=df.loc[df.Date.dt.strftime('%m%d').astype(int).argsort()]
You can create the day and month columns by simply doing the following
df = pd.DataFrame(data=pd.date_range('2014-10-03', '2015-10-02', freq='1D'), columns=['date'])
df['day'] = df['date'].apply(lambda x: x.day)
df['month'] = df['date'].apply(lambda x: x.month)
You could make it even more compact. But quick analysis, you can use the above.

Convert and Assign Pandas Series to a dataframe to create CSV

I've got order data with SKUs inside and would like to find out, how often a SKU has been bought per month over the last 3 years.
for row in df_skus.iterrows():
df_filtered = df_orders.loc[df_orders['item_sku'] == row[1]['sku']]
# Remove unwanted rows:
df_filtered = df_filtered[['txn_id', 'date', 'item_sku']].copy()
# Group by year and date:
df_result = df_filtered['date'].groupby([df_filtered.date.dt.year, df_filtered.date.dt.month]).agg('count')
print ( df_result )
print ( type ( df_result ) )
The (shortened) result looks good so far:
date date
2017 3 1
Name: date, dtype: int64
date date
2017 2 1
3 6
4 1
6 1
Name: date, dtype: int64
Now, I'd like to create a CSV which looks like that:
SKU 2017-01 2017-02 2017-03
17 0 0 1
18 0 1 3
Is it possible to simply 'convert' my data into the desired structure?
I do these kind of calculations all the time and this seems to be the fastest.
import pandas as pd
df_orders = df_orders[df_orders["item_sku"].isin(df_skus["sku"])]
monthly_sales = df_orders.groupby(["item_sku", pd.Grouper(key="date",freq="M")]).size()
monthly_sales = monthly_sales.unstack(0)
monthly_sales.to_csv("my_csv.csv")
first line filters to the SKUs you want
the second line does a groupby and counts the number of sales per sku per month
the next line changes the dataframe from a multi index to the format you want
exports to csv

pandas how to use groupby to group columns by date in the label?

I have a dataframe 10730 rows × 249 columns, i have columns:
Index(['RegionID', 'Metro', 'CountyName', 'SizeRank', '1996-04', '1996-05',
'1996-06', '1996-07', '1996-08', '1996-09',
...
'2015-11', '2015-12', '2016-01', '2016-02', '2016-03', '2016-04',
'2016-05', '2016-06', '2016-07', '2016-08'],
dtype='object', length=249)
so what i need to do is group the columns by the quarter, jan to march Q1, and so on till Q4(using mean for the values). i know how to group 3 columns for example, but how do i group all the columns since i cannot specify the name of the column one by one.
This is the dataframe head in csv to use for testing:
'State,RegionName,RegionID,Metro,CountyName,SizeRank,1996-04,1996-05,1996-06,1996-07,1996-08,1996-09,1996-10,1996-11,1996-12,1997-01,1997-02,1997-03,1997-04,1997-05,1997-06,1997-07,1997-08,1997-09,1997-10,1997-11,1997-12,1998-01,1998-02,1998-03,1998-04,1998-05,1998-06,1998-07,1998-08,1998-09,1998-10,1998-11,1998-12,1999-01,1999-02,1999-03,1999-04,1999-05,1999-06,1999-07,1999-08,1999-09,1999-10,1999-11,1999-12,2000-01,2000-02,2000-03,2000-04,2000-05,2000-06,2000-07,2000-08,2000-09,2000-10,2000-11,2000-12,2001-01,2001-02,2001-03,2001-04,2001-05,2001-06,2001-07,2001-08,2001-09,2001-10,2001-11,2001-12,2002-01,2002-02,2002-03,2002-04,2002-05,2002-06,2002-07,2002-08,2002-09,2002-10,2002-11,2002-12,2003-01,2003-02,2003-03,2003-04,2003-05,2003-06,2003-07,2003-08,2003-09,2003-10,2003-11,2003-12,2004-01,2004-02,2004-03,2004-04,2004-05,2004-06,2004-07,2004-08,2004-09,2004-10,2004-11,2004-12,2005-01,2005-02,2005-03,2005-04,2005-05,2005-06,2005-07,2005-08,2005-09,2005-10,2005-11,2005-12,2006-01,2006-02,2006-03,2006-04,2006-05,2006-06,2006-07,2006-08,2006-09,2006-10,2006-11,2006-12,2007-01,2007-02,2007-03,2007-04,2007-05,2007-06,2007-07,2007-08,2007-09,2007-10,2007-11,2007-12,2008-01,2008-02,2008-03,2008-04,2008-05,2008-06,2008-07,2008-08,2008-09,2008-10,2008-11,2008-12,2009-01,2009-02,2009-03,2009-04,2009-05,2009-06,2009-07,2009-08,2009-09,2009-10,2009-11,2009-12,2010-01,2010-02,2010-03,2010-04,2010-05,2010-06,2010-07,2010-08,2010-09,2010-10,2010-11,2010-12,2011-01,2011-02,2011-03,2011-04,2011-05,2011-06,2011-07,2011-08,2011-09,2011-10,2011-11,2011-12,2012-01,2012-02,2012-03,2012-04,2012-05,2012-06,2012-07,2012-08,2012-09,2012-10,2012-11,2012-12,2013-01,2013-02,2013-03,2013-04,2013-05,2013-06,2013-07,2013-08,2013-09,2013-10,2013-11,2013-12,2014-01,2014-02,2014-03,2014-04,2014-05,2014-06,2014-07,2014-08,2014-09,2014-10,2014-11,2014-12,2015-01,2015-02,2015-03,2015-04,2015-05,2015-06,2015-07,2015-08,2015-09,2015-10,2015-11,2015-12,2016-01,2016-02,2016-03,2016-04,2016-05,2016-06,2016-07,2016-08\nNY,New York,6181,New York,Queens,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,432600.0,438700.0,440500.0,433900.0,422000.0,415700.0,421200.0,431100.0,435100.0,431900.0,428400.0,430700.0,438800.0,446800.0,455400.0,465500.0,472600.0,478200.0,487600.0,498600.0,508800.0,515300.0,517000.0,517800.0,520800.0,521500.0,523000.0,526300.0,524800.0,519100.0,516200.0,516400.0,516300.0,515500.0,512200.0,509200.0,509800.0,511600.0,512700.0,514000.0,513400.0,510700.0,508100.0,506700.0,505200.0,503700.0,502900.0,502400.0,500500.0,496400.0,491900.0,487500.0,484400.0,481700.0,477900.0,473600.0,469700.0,466100.0,461700.0,457700.0,455300.0,454800.0,456000.0,457800.0,461300.0,466100.0,470200.0,472800.0,475300.0,477100.0,478400.0,479100.0,478900.0,477700.0,476700.0,477100.0,478000.0,478000.0,476800.0,475300.0,473800.0,472000.0,470600.0,469900.0,469500.0,468200.0,465800.0,463500.0,461800.0,460100.0,459700.0,460800.0,461700.0,462500.0,463900.0,466000.0,467500.0,468200.0,468700.0,469400.0,469400,469100.0,468700,469300,470300,472100,474300,477600,481400,485100,488800,492600,495900,499500,503500,506400,509900,515700,520800,522200,522400,523800,526200,528400,529600,530800,532200,533800,536200,540600,545600,551400,557200,563000,568700,573600,576200,578400,582200,588000,592200,592500,590200,588000,586400\nCA,Los Angeles,12447,Los Angeles-Long Beach-Anaheim,Los Angeles,2,155000.0,154600.0,154400.0,154200.0,154100.0,154300.0,154300.0,154200.0,154800.0,155900.0,157000.0,157700.0,158200.0,158600.0,158800.0,158900.0,159100.0,159800.0,160700.0,161900.0,163400.0,165400.0,167000.0,168500.0,169900.0,171400.0,172900.0,174300.0,175800.0,177800.0,180100.0,182600.0,184400.0,185600.0,186900.0,188200.0,189600.0,191300.0,193100.0,194700.0,196300.0,197700.0,199100.0,200700.0,202300.0,204400.0,207000.0,209800.0,212300.0,214500.0,216600.0,219000.0,221100.0,222800.0,224300.0,226100.0,228100.0,230600.0,233000.0,235400.0,237300.0,239100.0,240900.0,242900.0,245000.0,247300.0,250100.0,253100.0,255900.0,258800.0,261900.0,265200.0,268600.0,272600.0,276900.0,281800.0,287000.0,292200.0,297000.0,302100.0,307600.0,313400.0,319000.0,324300.0,329600.0,334600.0,339300.0,344500.0,350600.0,356800.0,363400.0,370700.0,378400.0,386500.0,394900.0,404300.0,414600.0,425500.0,436600.0,447400.0,456700.0,464400.0,471200.0,477400.0,483500.0,489100.0,494700.0,501400.0,509700.0,518300.0,527200.0,536100.0,545400.0,555200.0,564500.0,571900.0,576800.0,579700.0,581800.0,583800.0,585300.0,587300.0,589900.0,592200.0,593300.0,593400.0,593100.0,592900.0,591600.0,590900.0,591800.0,592600.0,592100.0,590200.0,586200.0,581600.0,577500.0,572800.0,567600.0,562100.0,554400.0,545000.0,535500.0,525400.0,513600.0,502000.0,491200.0,480200.0,469000.0,459300.0,451200.0,443900.0,436800.0,430900.0,426100.0,421800.0,417800.0,413700.0,410200.0,407900.0,406300.0,404900.0,404200.0,402900.0,405900.0,412000.0,415000.0,413100.0,412100.0,411300.0,410100.0,408400.0,406800.0,405100.0,403300.0,401900.0,401000.0,399200.0,397100.0,395000.0,392700.0,390200.0,387400.0,384700.0,382100.0,379500.0,377200.0,375700.0,373800.0,371500.0,370000.0,370300.0,372100.0,375300.0,378600.0,382100.0,385600.0,389000.0,391800.0,396400.0,401500,405700.0,410700,418200,425500,432700,440400,448100,455200,461900,467800,472300,475700,479400,484000,489400,494200,498100,501800,505600,509000,512600,516000,518900,521700,525100,528900,532400,535300,538200,541000,544000,547200,550600,554200,558200,560800,562800,565600,569700,574000,577800,580600,583000,585100\nIL,Chicago,17426,Chicago,Cook,3,109700.0,109400.0,109300.0,109300.0,109100.0,109000.0,109000.0,109600.0,110200.0,110800.0,111300.0,111700.0,112200.0,112300.0,112100.0,112200.0,113000.0,113700.0,114200.0,114800.0,115500.0,116200.0,117100.0,117600.0,117800.0,118300.0,119200.0,120000.0,120600.0,121500.0,122300.0,122700.0,122900.0,123300.0,123700.0,124500.0,125700.0,127300.0,128800.0,130200.0,131400.0,132600.0,133700.0,134600.0,135500.0,136800.0,138300.0,140100.0,141900.0,143700.0,145300.0,146700.0,147900.0,149000.0,150400.0,152000.0,154000.0,155600.0,157000.0,158200.0,159900.0,161800.0,163700.0,165300.0,166400.0,167500.0,168800.0,170400.0,172100.0,173900.0,175600.0,177000.0,177800.0,177600.0,177300.0,177700.0,178800.0,180400.0,182300.0,183800.0,185000.0,185600.0,186800.0,188900.0,191300.0,194100.0,197500.0,200200.0,202300.0,203700.0,204000.0,204000.0,204400.0,205300.0,206300.0,207000.0,207600.0,208600.0,209600.0,210900.0,212800.0,214600.0,216400.0,218300.0,220300.0,222300.0,224000.0,225400.0,226900.0,228600.0,230100.0,231800.0,233200.0,234500.0,236000.0,237500.0,239000.0,240800.0,242500.0,243900.0,244900.0,245300.0,245400.0,245800.0,245800.0,245500.0,245900.0,246900.0,247300.0,247400.0,247300.0,247000.0,246700.0,246400.0,246100.0,246100.0,246300.0,246400.0,246700.0,247100.0,246700.0,245300.0,243900.0,242000.0,239800.0,237900.0,236000.0,233500.0,231800.0,230700.0,229200.0,226700.0,225200.0,224500.0,223800.0,223000.0,221900.0,219700.0,217500.0,215600.0,213800.0,212900.0,212300.0,211900.0,210800.0,209300.0,207300.0,205300.0,204200.0,204100.0,203100.0,201100.0,199000.0,196700.0,193800.0,191100.0,189200.0,188100.0,187600.0,186500.0,184400.0,181700.0,178700.0,175900.0,174100.0,172800.0,171400.0,170100.0,169100.0,167900.0,166700.0,166200.0,166400.0,166800.0,167900.0,168900.0,168400.0,167100.0,166900.0,167300.0,167500,167700.0,168300,169100,170400,172400,175100,178200,181000,183200,184600,185800,187200,189100,191100,192500,192600,192400,192900,193900,195600,197800,200100,201700,202000,201200,200500,201500,204000,206500,207600,207700,208100,209100,209000,207800,206900,206200,205800,206200,207300,208200,209100,211000,213000\nPA,Philadelphia,13271,Philadelphia,Philadelphia,4,50000.0,49900.0,49600.0,49400.0,49400.0,49300.0,49300.0,49400.0,49700.0,49600.0,49500.0,49700.0,49800.0,49700.0,49700.0,49800.0,49700.0,49700.0,49800.0,49900.0,49900.0,50000.0,50300.0,50600.0,50800.0,50800.0,50800.0,50800.0,50700.0,50500.0,50500.0,50700.0,50700.0,50800.0,50900.0,51100.0,51200.0,51400.0,51500.0,51400.0,51500.0,51800.0,52100.0,52100.0,52300.0,52700.0,53100.0,53200.0,53400.0,53700.0,53800.0,53800.0,54100.0,54500.0,54700.0,54600.0,54800.0,55100.0,55400.0,55500.0,55400.0,55500.0,55700.0,55900.0,56300.0,56600.0,57000.0,57500.0,58100.0,58600.0,59100.0,59700.0,60300.0,60700.0,61200.0,61800.0,62200.0,62500.0,63000.0,63600.0,63900.0,64200.0,64700.0,65300.0,65700.0,66100.0,66800.0,67700.0,68500.0,69200.0,69800.0,70700.0,71700.0,72800.0,73700.0,74700.0,75700.0,76700.0,77800.0,79100.0,80500.0,82100.0,84000.0,85600.0,87000.0,88200.0,89600.0,91300.0,93000.0,94900.0,96700.0,98400.0,100200.0,101900.0,103400.0,104900.0,106400.0,107500.0,108200.0,109300.0,110800.0,112500.0,113800.0,114800.0,115600.0,116000.0,116400.0,116700.0,116800.0,116900.0,117300.0,117800.0,118200.0,118600.0,119300.0,120200.0,120900.0,121400.0,121300.0,120900.0,120200.0,119600.0,119600.0,119500.0,118800.0,118100.0,117500.0,117100.0,117000.0,116700.0,116300.0,115800.0,115500.0,115900.0,116300.0,116400.0,116400.0,116100.0,116000.0,116200.0,116700.0,117300.0,118000.0,118200.0,119500.0,120900.0,121300.0,121300.0,122100.0,123000.0,123300.0,122300.0,120000.0,118200.0,117600.0,117900.0,117800.0,117400.0,117000.0,116900.0,116700.0,116500.0,115700.0,115300.0,115500.0,115600.0,115200.0,114800.0,114100.0,113500.0,112900.0,111800.0,110800.0,110400.0,110400.0,110200.0,109900.0,109700.0,110000.0,110700.0,111800,112100.0,111900,112000,112200,111800,111200,111000,110900,111100,111800,112700,112900,113100,113900,114200,113600,113500,114100,114900,115500,115500,115400,115600,116000,116100,116100,116400,117000,117900,119000,120100,121300,122300,122700,122300,121600,121800,123300,125200,126400,127000,127400,128300,129100\nAZ,Phoenix,40326,Phoenix,Maricopa,5,87200.0,87700.0,88200.0,88400.0,88500.0,88900.0,89400.0,89700.0,90100.0,90700.0,91400.0,91700.0,91800.0,92000.0,92300.0,92600.0,93000.0,93400.0,94000.0,94600.0,95300.0,96100.0,96800.0,97300.0,97700.0,98400.0,99200.0,100100.0,100500.0,100700.0,100900.0,101700.0,102600.0,103400.0,103900.0,104400.0,105100.0,105900.0,106200.0,106600.0,107400.0,108300.0,109000.0,109700.0,110400.0,111000.0,111700.0,112800.0,113700.0,114300.0,115100.0,115600.0,115900.0,116500.0,117200.0,117400.0,117600.0,118400.0,119700.0,120700.0,121200.0,121500.0,122000.0,122400.0,122700.0,123000.0,123600.0,124300.0,125000.0,125800.0,126600.0,127200.0,127900.0,128400.0,128800.0,129500.0,130500.0,131600.0,132500.0,133200.0,134000.0,134900.0,135700.0,136500.0,137200.0,138000.0,138600.0,138900.0,139200.0,139400.0,139600.0,140300.0,141400.0,142500.0,143700.0,144900.0,145900.0,147100.0,148400.0,150300.0,153100.0,156200.0,159400.0,162900.0,166500.0,170000.0,173900.0,178800.0,185000.0,192300.0,200700.0,209400.0,217000.0,223600.0,229800.0,234900.0,238600.0,241300.0,243000.0,244100.0,244800.0,245400.0,245600.0,245600.0,245300.0,244600.0,243800.0,243400.0,243400.0,243600.0,243200.0,242200.0,241300.0,240200.0,238400.0,236400.0,234700.0,233300.0,231600.0,229100.0,226100.0,222800.0,218800.0,214300.0,209500.0,205200.0,201100.0,197300.0,193700.0,190300.0,186700.0,182800.0,180500.0,179600.0,178000.0,175100.0,172100.0,168400.0,164200.0,160000.0,156000.0,151800.0,147600.0,143900.0,138900.0,133400.0,130200.0,129200.0,127700.0,126200.0,124800.0,123100.0,120700.0,118500.0,117000.0,115800.0,114800.0,114100.0,113200.0,111800.0,110100.0,108000.0,105900.0,104100.0,102900.0,102300.0,102400.0,103000.0,104100.0,105800.0,107600.0,109100.0,111200.0,114000.0,117200.0,120400.0,123300.0,125800.0,128300.0,130500.0,132500,134400.0,136200,138400,141600,144700,147400,150500,153600,156100,158100,160000,161600,162700,163300,163700,164100,164200,164500,164700,165200,166200,167200,168400,169900,171000,171500,172100,172900,174100,175500,177100,179100,181000,182400,183800,185300,186600,188000,189100,190200,191300,192800,194500,195900\n'
I changed the column index to date by dropping the non dates from the df quarter = df.drop(['RegionID','Metro','CountyName','SizeRank'],axis=1)
then change the columns to date quarter.columns = pd.to_datetime(quarter.columns) then i would like to do something likequarter = quarter.groupby(pd.TimeGrouper(freq='3M'),axis=1) but it's not working, then i would merge it back to the non-date columns. Also with this approach i wouldnt know how to put the right label for it like [2015Q4,2016Q1,2016Q2,2016Q3,2016Q4]
Here is a vectorized solution which uses pd.PeriodIndex and groupby(..., axis=1):
Data:
In [69]: x
Out[69]:
2016-01 2016-02 2016-03 2016-04 2016-05 2016-06
0 1 0 1 0 0 0
1 2 0 1 0 0 0
2 1 1 2 0 1 0
Solution:
In [70]: x.groupby(pd.PeriodIndex(x.columns, freq='Q'), axis=1).mean()
Out[70]:
2016Q1 2016Q2
0 0.666667 0.000000
1 1.000000 0.000000
2 1.333333 0.333333
Explanation:
In [71]: pd.PeriodIndex(x.columns, freq='Q')
Out[71]: PeriodIndex(['2016Q1', '2016Q1', '2016Q1', '2016Q2', '2016Q2', '2016Q2'], dtype='period[Q-DEC]', freq='Q-DEC')
It's not pretty, but this is the first thing I thought of. It sounds like the date columns can be manipulated separately. Break those out into a separate dataframe of the form below. If the other fields are kept, the conversion to datetime will throw an error.
import numpy as np
import pandas as pd
csv_df = pd.DataFrame({'2016-01':[1,2,1], '2016-02':[0,0,1], '2016-03':[1,1,2], '2016-04':[0,0,0], '2016-05':[0,0,1], '2016-06':[0,0,0]})
# convert columns into datetime format
csv_df.rename(columns=lambda x: pd.to_datetime(x, format='%Y-%m'), inplace=True)
# now strip out the year and the quarter
csv_df.rename(columns=lambda x: str(x.year) + 'Q' + str(x.quarter), inplace=True)
# #lucarlig improved my suggestion by using groupby as follows
csv_df = csv_df.groupby(csv_df.columns, axis=1).mean()
Consider melting the dataframe from the wide format to long format, parse out the quarter and year using datetime and run a pivot_table() to transform back from long to wide aggregating the values with mean:
import pandas as pd
import datetime as dt
import numpy as np
...
# MELT DATAFRAME
meltdf = pd.melt(df, id_vars = ['State','RegionName','RegionID',
'Metro','CountyName','SizeRank'],
var_name = 'Date', value_name = 'Data')
# EXTRACT QUARTER
meltdf['Date'] = pd.to_datetime(meltdf['Date'] + '-01')
meltdf['YearQuarter'] = meltdf['Date'].dt.year.astype(str) + 'Q' + \
meltdf['Date'].dt.quarter.astype(str)
# PIVOT DATAFRAME
pivotdf = pd.pivot_table(meltdf, index=['State','RegionName','RegionID',
'Metro','CountyName','SizeRank'],
columns=['YearQuarter'], values='Data', aggfunc=np.mean)
Output
print(pivotdf.head())
# State RegionName RegionID Metro CountyName SizeRank 1996Q2 1996Q3 1996Q4 1997Q1 1997Q2 1997Q3 ...
# AZ Phoenix 40326 Phoenix Maricopa 5 87700 88600 89733.33333 91266.66667 92033.33333 93000
# CA Los Angeles 12447 Los Angeles...Los Angeles 2 154666.6667 154200 154433.3333 156866.6667 158533.3333 159266.6667
# IL Chicago 17426 Chicago Cook 3 109466.6667 109133.3333 109600 111266.6667 112200 112966.6667
# NY New York 6181 New York Queens 1
# PA Philadelphia 13271 Philadelphia Philadelphia 4 49833.33333 49366.66667 49466.66667 49600 49733.33333 49733.33333

Categories

Resources