This question already has answers here:
How to add a constant column in a Spark DataFrame?
(3 answers)
Closed 3 years ago.
I have two pyspark dataframes:
1st dataframe: plants
+-----+--------+
|plant|station |
+-----+--------+
|Kech | st1 |
|Casa | st2 |
+-----+--------+
2nd dataframe: stations
+-------+--------+
|program|station |
+-------+--------+
|pr1 | null|
|pr2 | st1 |
+-------+--------+
What i want is to replace the null values in the second dataframe stations with all the column station in the first dataframe. Like this :
+-------+--------------+
|program|station |
+-------+--------------+
|pr1 | [st1, st2]|
|pr2 | st1 |
+-------+--------------+
I did this:
stList = plants.select(F.col('station')).rdd.map(lambda x: x[0]).collect()
stations = stations.select(
F.col('program')
F.when(stations.station.isNull(), stList).otherwise(stations.station).alias('station')
)
but it gives me an error when doesn't accept python list as a parameter
Thanks for your replies.
I've found the solution by converting the column to pandas.
stList = list(plants.select(F.col('station')).toPandas()['station'])
and then use:
F.when(stations.station.isNull(), F.array([F.lit(x) for x in station])).otherwise(stations['station']).alias('station')
it gives directly an array.
quick work around is
F.lit(str(stList))
this should work.
For better type casting use below mentioned code.
stations = stations.select(
F.col('program'),
F.when(stations.station.isNull(), func.array([func.lit(x) for x in stList]))
.otherwise(func.array(stations.station)).alias('station')
)
Firstly, you can't keep different datatypes in station column, it needs to be consistent.
+-------+--------------+
|program|station |
+-------+--------------+
|pr1 | [st1, st2]| # this is array
|pr2 | st1 | # this is string
+-------+--------------+
Secondly, this should do the trick:
from pyspark.sql import functions as F
# Create the stList as a string.
stList = ",".join(plants.select(F.col('station')).rdd.map(lambda x: x[0]).collect())
# coalesce the variables and then apply pyspark.sql.functions.split function
stations = (stations.select(
F.col('program'),
F.split(F.coalesce(stations.station, F.lit(stList)), ",").alias('station')))
stations.show()
Output:
+-------+----------+
|program| station|
+-------+----------+
| pr1|[st1, st2]|
| pr2| [st1]|
+-------+----------+
Related
I'm using the code bellow to collect some info:
df = (
df
.select(
date_format(date_trunc('month', col("reference_date")), 'yyyy-MM-dd').alias("month"),
col("id"),
col("name"),
col("item_type"),
col("sub_group"),
col("latitude"),
col("longitude")
)
My latitude and longitude are values with dots, like this: -30.130307 -51.2060018 but I must replace the dot for a comma. I've tried both .replace() and .regexp_replace() but none of them are working. Could you guys help me please?
With the following dataframe as an example.
df.show()
+-------------------+-------------------+
| latitude| longitude|
+-------------------+-------------------+
| 85.70708380916193| -68.05674981929877|
| 57.074495803252404|-42.648691976080215|
| 2.944303748172473| -62.66186439333423|
| 119.76923402031701|-114.41179457810185|
|-138.52573939229234| 54.38429596238362|
+-------------------+-------------------+
You should be able to use spark.sql functions like the following
from pyspark.sql import functions
df = df.withColumn("longitude", functions.regexp_replace('longitude',r'[.]',","))
df = df.withColumn("latitude", functions.regexp_replace('latitude',r'[.]',","))
df.show()
+-------------------+-------------------+
| latitude| longitude|
+-------------------+-------------------+
| 85,70708380916193| -68,05674981929877|
| 57,074495803252404|-42,648691976080215|
| 2,944303748172473| -62,66186439333423|
| 119,76923402031701|-114,41179457810185|
|-138,52573939229234| 54,38429596238362|
+-------------------+-------------------+
For each set of coordinates in a pyspark dataframe, I need to find closest set of coordinates in another dataframe
I have one pyspark dataframe with coordinate data like so (dataframe a):
+------------------+-------------------+
| latitude_deg| longitude_deg|
+------------------+-------------------+
| 40.07080078125| -74.93360137939453|
| 38.704022| -101.473911|
| 59.94919968| -151.695999146|
| 34.86479949951172| -86.77030181884766|
| 35.6087| -91.254898|
| 34.9428028| -97.8180194|
And another like so (dataframe b): (only few rows are shown for understanding)
+-----+------------------+-------------------+
|ident| latitude_deg| longitude_deg|
+-----+------------------+-------------------+
| 00A| 30.07080078125| -24.93360137939453|
| 00AA| 56.704022| -120.473911|
| 00AK| 18.94919968| -109.695999146|
| 00AL| 76.86479949951172| -67.77030181884766|
| 00AR| 10.6087| -87.254898|
| 00AS| 23.9428028| -10.8180194|
Is it possible to somehow merge the dataframes to have a result that a has the closest ident from dataframe b for each row in dataframe a:
+------------------+-------------------+-------------+
| latitude_deg| longitude_deg|closest_ident|
+------------------+-------------------+-------------+
| 40.07080078125| -74.93360137939453| 12A|
| 38.704022| -101.473911| 14BC|
| 59.94919968| -151.695999146| 278A|
| 34.86479949951172| -86.77030181884766| 56GH|
| 35.6087| -91.254898| 09HJ|
| 34.9428028| -97.8180194| 09BV|
What I have tried so far:
I have a pyspark UDF to calculate the haversine distance between 2 pairs of coordinates defined.
udf_get_distance = F.udf(get_distance)
It works like this:
df = (df.withColumn(“ABS_DISTANCE”, udf_get_distance(
df.latitude_deg_a, df.longitude_deg_a,
df.latitude_deg_b, df.longitude_deg_b,)
))
I'd appreciate any kind of help. Thanks so much
You need to do a crossJoin first. something like this
joined_df=source_df1.crossJoin(source_df2)
Then you can call your udf like you have mentioned, generate rownum based on distance and filter out the close one
from pyspark.sql.functions import row_number,Window
rwindow=Window.partitionBy("latitude_deg_a","latitude_deg_b").orderBy("ABS_DISTANCE")
udf_result_df = joined_df.withColumn(“ABS_DISTANCE”, udf_get_distance(
df.latitude_deg_a, df.longitude_deg_a,
df.latitude_deg_b, df.longitude_deg_b).withColumn("rownum",row_number().over(rwindow)).filter("rownum = 1")
Note: add return type to your udf
I have a pyspark dataframe, with text column.
I wanted to map the values which with a regex expression.
df = df.withColumn('mapped_col', regexp_replace('mapped_col', '.*-RH', 'RH'))
df = df.withColumn('mapped_col', regexp_replace('mapped_col', '.*-FI, 'FI'))
Plus I wanted to map specifics values according to a dictionnary, I did the following (mapper is from create_map()):
df = df.withColumn("mapped_col",mapper.getItem(F.col("action")))
Finaly the values which has not been mapped by the dictionnary or the regex expression, will be set null. I do not know how to do this part in accordance to the two others.
Is it possible to have like a dictionnary of regex expression so I can regroup the two 'functions'?
{".*-RH": "RH", ".*FI" : "FI"}
Original Output Example
+-----------------------------+
|message |
+-----------------------------+
|GDF2009 |
|GDF2014 |
|ADS-set |
|ADS-set |
|XSQXQXQSDZADAA5454546a45a4-FI|
|dadaccpjpifjpsjfefspolamml-FI|
|dqdazdaapijiejoajojp565656-RH|
|kijipiadoa
+-----------------------------+
Expected Output Example
+-----------------------------+-----------------------------+
|message |status|
+-----------------------------+-----------------------------+
|GDF2009 | GDF
|GDF2014 | GDF
|ADS/set | ADS
|ADS-set | ADS
|XSQXQXQSDZADAA5454546a45a4-FI| FI
|dadaccpjpifjpsjfefspolamml-FI| FI
|dqdazdaapijiejoajojp565656-RH| RH
|kijipiadoa | null or ??
So first 4th line are mapped with a dict, and the other are mapped using regex. Unmapped are null or ??
Thank you,
You can achieve it using contains function:
from pyspark.sql.types import StringType
df = spark.createDataFrame(
["GDF2009", "GDF2014", "ADS-set", "ADS-set", "XSQXQXQSDZADAA5454546a45a4-FI", "dadaccpjpifjpsjfefspolamml-FI",
"dqdazdaapijiejoajojp565656-RH", "kijipiadoa"], StringType()).toDF("message")
df.show()
names = ("GDF", "ADS", "FI", "RH")
def c(col, names):
return [f.when(f.col(col).contains(i), i).otherwise("") for i in names]
df.select("message", f.concat_ws("", f.array_remove(f.array(*c("message", names)), "")).alias("status")).show()
output:
+--------------------+
| message|
+--------------------+
| GDF2009|
| GDF2014|
| ADS-set|
| ADS-set|
|XSQXQXQSDZADAA545...|
|dadaccpjpifjpsjfe...|
|dqdazdaapijiejoaj...|
| kijipiadoa|
+--------------------+
+--------------------+------+
| message|status|
+--------------------+------+
| GDF2009| GDF|
| GDF2014| GDF|
| ADS-set| ADS|
| ADS-set| ADS|
|XSQXQXQSDZADAA545...| FI|
|dadaccpjpifjpsjfe...| FI|
|dqdazdaapijiejoaj...| RH|
| kijipiadoa| |
+--------------------+------+
In my Spark application I have a dataframe with informations like
+------------------+---------------+
| labels | labels_values |
+------------------+---------------+
| ['l1','l2','l3'] | 000 |
| ['l3','l4','l5'] | 100 |
+------------------+---------------+
What I am trying to achieve is to create, given a label name as input a single_label_value column that takes the value for that label from the labels_values column.
For example, for label='l3' I would like to retrieve this output:
+------------------+---------------+--------------------+
| labels | labels_values | single_label_value |
+------------------+---------------+--------------------+
| ['l1','l2','l3'] | 000 | 0 |
| ['l3','l4','l5'] | 100 | 1 |
+------------------+---------------+--------------------+
Here's what I am attempting to use:
selected_label='l3'
label_position = F.array_position(my_df.labels, selected_label)
my_df= my_df.withColumn(
"single_label_value",
F.substring(my_df.labels_values, label_position, 1)
)
But I am getting an error because the substring function does not like the label_position argument.
Is there any way to combine these function outputs without writing an udf?
Hope, this will work for you.
from pyspark.sql import SparkSession
from pyspark.sql.functions import *
spark=SparkSession.builder.getOrCreate()
mydata=[[['l1','l2','l3'],'000'], [['l3','l4','l5'],'100']]
df = spark.createDataFrame(mydata,schema=["lebels","lebel_values"])
selected_label='l3'
df2=df.select(
"*",
(array_position(df.lebels,selected_label)-1).alias("pos_val"))
df2.createOrReplaceTempView("temp_table")
df3=spark.sql("select *,substring(lebel_values,pos_val,1) as val_pos from temp_table")
df3.show()
+------------+------------+-------+-------+
| lebels|lebel_values|pos_val|val_pos|
+------------+------------+-------+-------+
|[l1, l2, l3]| 000| 2| 0|
|[l3, l4, l5]| 100| 0| 1|
+------------+------------+-------+-------+
This is giving location of the value. If you want exact index then you can use -1 from this value.
--Edited anser -> Worked with temp view. Still looking for solution using withColumn option. I hope, it will help you for now.
Edit2 -> Answer using dataframe.
df2=df.select(
"*",
(array_position(df.lebels,selected_label)-1).astype("int").alias("pos_val")
)
df3=df2.withColumn("asked_col",expr("substring(lebel_values,pos_val,1)"))
df3.show()
Try maybe:
import pyspark.sql.functions as f
from pyspark.sql.functions import *
selected_label='l3'
df=df.withColumn('single_label_value', f.substring(f.col('labels_values'), array_position(f.col('labels'), lit(selected_label))-1, 1))
df.show()
(for spark version >=2.4)
I think lit() was the function you were missing - you can use it to pass constant values to spark dataframes.
I'm trying to concatenate two data frames and write said data-frame to an excel file. The concatenation is performed somewhat successfully, but I'm having a difficult time eliminating the index row that also gets appended.
I would appreciate it if someone could highlight what it is I'm doing wrong. I thought providing the "index = False" argument at every excel call would eliminate the issue, but it has not.
enter image description here
Hopefully you can see the image, if not please let me know.
# filenames
file_name = "C:\\Users\\ga395e\\Desktop\\TEST_FILE.xlsx"
file_name2 = "C:\\Users\\ga395e\\Desktop\\TEST_FILE_2.xlsx"
#create data frames
df = pd.read_excel(file_name, index = False)
df2 = pd.read_excel(file_name2,index =False)
#filter frame
df3 = df2[['WDDT', 'Part Name', 'Remove SN']]
#concatenate values
df4 = df3['WDDT'].map(str) + '-' +df3['Part Name'].map(str) + '-' + 'SN:'+ df3['Remove SN'].map(str)
test=pd.DataFrame(df4)
test=test.transpose()
df = pd.concat([df, test], axis=1)
df.to_excel("C:\\Users\\ga395e\\Desktop\\c.xlsx", index=False)
Thanks
so as the other users also wrote I dont see the index in your image as well because in this case you would have an output which would be like the following:
| Index | Column1 | Column2 |
|-------+----------+----------|
| 0 | Entry1_1 | Entry1_2 |
| 1 | Entry2_1 | Entry2_2 |
| 2 | Entry3_1 | Entry3_2 |
if you pass the index=False option the index will be removed:
| Column1 | Column2 |
|----------+----------|
| Entry1_1 | Entry1_2 |
| Entry2_1 | Entry2_2 |
| Entry3_1 | Entry3_2 |
| | |
which looks like it your case. Your problem be could related to the concatenation and the transposed matrix.
Did you check here you temporary dataframe before exporting it?
You might want to check if pandas imports the time column as a time index
if you want to delete those time columns you could use df.drop and pass an array of columns into this function, e.g. with df.drop(df.columns[:3]). Does this maybe solve your problem?