Related
Given k sorted arrays what is the most efficient way of getting the intersection of these lists
Example
INPUT:
[[1,3,5,7], [1,1,3,5,7], [1,4,7,9]]
Output:
[1,7]
There is a way to get the union of k sorted arrays based on what I read in the Elements of programming interviews book in nlogk time. I was wondering if there is a way to do something similar for the intersection as well
## merge sorted arrays in nlogk time [ regular appending and merging is nlogn time ]
import heapq
def mergeArys(srtd_arys):
heap = []
srtd_iters = [iter(x) for x in srtd_arys]
# put the first element from each srtd array onto the heap
for idx, it in enumerate(srtd_iters):
elem = next(it, None)
if elem:
heapq.heappush(heap, (elem, idx))
res = []
# collect results in nlogK time
while heap:
elem, ary = heapq.heappop(heap)
it = srtd_iters[ary]
res.append(elem)
nxt = next(it, None)
if nxt:
heapq.heappush(heap, (nxt, ary))
EDIT: obviously this is an algorithm question that I am trying to solve so I cannot use any of the inbuilt functions like set intersection etc
Exploiting sort order
Here is a single pass O(n) approach that doesn't require any special data structures or auxiliary memory beyond the fundamental requirement of one iterator per input.
from itertools import cycle, islice
def intersection(inputs):
"Yield the intersection of elements from multiple sorted inputs."
# intersection(['ABBCD', 'BBDE', 'BBBDDE']) --> B B D
n = len(inputs)
iters = cycle(map(iter, inputs))
try:
candidate = next(next(iters))
while True:
for it in islice(iters, n-1):
while (value := next(it)) < candidate:
pass
if value != candidate:
candidate = value
break
else:
yield candidate
candidate = next(next(iters))
except StopIteration:
return
Here's a sample session:
>>> data = [[1,3,5,7], [1,1,3,5,7], [1,4,7,9]]
>>> list(intersection(data))
[1, 7]
>>> data = [[1,1,2,3], [1,1,4,4]]
>>> list(intersection(data))
[1, 1]
Algorithm in words
The algorithm starts by selecting the next value from the next iterator to be a candidate.
The main loop assumes a candidate has been selected and it loops over the next n - 1 iterators. For each of those iterators, it consumes values until it finds a value that is a least as large as the candidate. If that value is larger than the candidate, that value becomes the new candidate and the main loop starts again. If all n - 1 values are equal to the candidate, then the candidate is emitted and a new candidate is fetched.
When any input iterator is exhausted, the algorithm is complete.
Doing it without libraries (core language only)
The same algorithm works fine (though less beautifully) without using itertools. Just replace cycle and islice with their list based equivalents:
def intersection(inputs):
"Yield the intersection of elements from multiple sorted inputs."
# intersection(['ABBCD', 'BBDE', 'BBBDDE']) --> B B D
n = len(inputs)
iters = list(map(iter, inputs))
curr_iter = 0
try:
it = iters[curr_iter]
curr_iter = (curr_iter + 1) % n
candidate = next(it)
while True:
for i in range(n - 1):
it = iters[curr_iter]
curr_iter = (curr_iter + 1) % n
while (value := next(it)) < candidate:
pass
if value != candidate:
candidate = value
break
else:
yield candidate
it = iters[curr_iter]
curr_iter = (curr_iter + 1) % n
candidate = next(it)
except StopIteration:
return
Yes, it is possible! I've modified your example code to do this.
My answer assumes that your question is about the algorithm - if you want the fastest-running code using sets, see other answers.
This maintains the O(n log(k)) time complexity: all the code between if lowest != elem or ary != times_seen: and unbench_all = False is O(log(k)). There is a nested loop inside the main loop (for unbenched in range(times_seen):) but this only runs times_seen times, and times_seen is initially 0 and is reset to 0 after every time this inner loop is run, and can only be incremented once per main loop iteration, so the inner loop cannot do more iterations in total than the main loop. Thus, since the code inside the inner loop is O(log(k)) and runs at most as many times as the outer loop, and the outer loop is O(log(k)) and runs n times, the algorithm is O(n log(k)).
This algorithm relies upon how tuples are compared in Python. It compares the first items of the tuples, and if they are equal it, compares the second items (i.e. (x, a) < (x, b) is true if and only if a < b).
In this algorithm, unlike in the example code in the question, when an item is popped from the heap, it is not necessarily pushed again in the same iteration. Since we need to check if all sub-lists contain the same number, after a number is popped from the heap, it's sublist is what I call "benched", meaning that it is not added back to the heap. This is because we need to check if other sub-lists contain the same item, so adding this sub-list's next item is not needed right now.
If a number is indeed in all sub-lists, then the heap will look something like [(2,0),(2,1),(2,2),(2,3)], with all the first elements of the tuples the same, so heappop will select the one with the lowest sub-list index. This means that first index 0 will be popped and times_seen will be incremented to 1, then index 1 will be popped and times_seen will be incremented to 2 - if ary is not equal to times_seen then the number is not in the intersection of all sub-lists. This leads to the condition if lowest != elem or ary != times_seen:, which decides when a number shouldn't be in the result. The else branch of this if statement is for when it still might be in the result.
The unbench_all boolean is for when all sub-lists need to be removed from the bench - this could be because:
The current number is known to not be in the intersection of the sub-lists
It is known to be in the intersection of the sub-lists
When unbench_all is True, all the sub-lists that were removed from the heap are re-added. It is known that these are the ones with indices in range(times_seen) since the algorithm removes items from the heap only if they have the same number, so they must have been removed in order of index, contiguously and starting from index 0, and there must be times_seen of them. This means that we don't need to store the indices of the benched sub-lists, only the number that have been benched.
import heapq
def mergeArys(srtd_arys):
heap = []
srtd_iters = [iter(x) for x in srtd_arys]
# put the first element from each srtd array onto the heap
for idx, it in enumerate(srtd_iters):
elem = next(it, None)
if elem:
heapq.heappush(heap, (elem, idx))
res = []
# the number of tims that the current number has been seen
times_seen = 0
# the lowest number from the heap - currently checking if the first numbers in all sub-lists are equal to this
lowest = heap[0][0] if heap else None
# collect results in nlogK time
while heap:
elem, ary = heap[0]
unbench_all = True
if lowest != elem or ary != times_seen:
if lowest == elem:
heapq.heappop(heap)
it = srtd_iters[ary]
nxt = next(it, None)
if nxt:
heapq.heappush(heap, (nxt, ary))
else:
heapq.heappop(heap)
times_seen += 1
if times_seen == len(srtd_arys):
res.append(elem)
else:
unbench_all = False
if unbench_all:
for unbenched in range(times_seen):
unbenched_it = srtd_iters[unbenched]
nxt = next(unbenched_it, None)
if nxt:
heapq.heappush(heap, (nxt, unbenched))
times_seen = 0
if heap:
lowest = heap[0][0]
return res
if __name__ == '__main__':
a1 = [[1, 3, 5, 7], [1, 1, 3, 5, 7], [1, 4, 7, 9]]
a2 = [[1, 1], [1, 1, 2, 2, 3]]
for arys in [a1, a2]:
print(mergeArys(arys))
An equivalent algorithm can be written like this, if you prefer:
def mergeArys(srtd_arys):
heap = []
srtd_iters = [iter(x) for x in srtd_arys]
# put the first element from each srtd array onto the heap
for idx, it in enumerate(srtd_iters):
elem = next(it, None)
if elem:
heapq.heappush(heap, (elem, idx))
res = []
# collect results in nlogK time
while heap:
elem, ary = heap[0]
lowest = elem
keep_elem = True
for i in range(len(srtd_arys)):
elem, ary = heap[0]
if lowest != elem or ary != i:
if ary != i:
heapq.heappop(heap)
it = srtd_iters[ary]
nxt = next(it, None)
if nxt:
heapq.heappush(heap, (nxt, ary))
keep_elem = False
i -= 1
break
heapq.heappop(heap)
if keep_elem:
res.append(elem)
for unbenched in range(i+1):
unbenched_it = srtd_iters[unbenched]
nxt = next(unbenched_it, None)
if nxt:
heapq.heappush(heap, (nxt, unbenched))
if len(heap) < len(srtd_arys):
heap = []
return res
You can use builtin sets and sets intersections :
d = [[1,3,5,7],[1,1,3,5,7],[1,4,7,9]]
result = set(d[0]).intersection(*d[1:])
{1, 7}
You can use reduce:
from functools import reduce
a = [[1,3,5,7],[1,1,3,5,7],[1,4,7,9]]
reduce(lambda x, y: x & set(y), a[1:], set(a[0]))
{1, 7}
I've come up with this algorithm. It doesn't exceed O(nk) I don't know if it's good enough for you. the point of this algorithm is that you can have k indexes for each array and each iteration you find the indexes of the next element in the intersection and increase every index until you exceed the bounds of an array and there are no more items in the intersection. the trick is since the arrays are sorted you can look at two elements in two different arrays and if one is bigger than the other you can instantly throw away the other because you know you cant have a smaller number than the one you are looking at. the worst case of this algorithm is that every index will be increased to the bound which takes kn time since an index cannot decrease its value.
inter = []
for n in range(len(arrays[0])):
if indexes[0] >= len(arrays[0]):
return inter
for i in range(1,k):
if indexes[i] >= len(arrays[i]):
return inter
while indexes[i] < len(arrays[i]) and arrays[i][indexes[i]] < arrays[0][indexes[0]]:
indexes[i] += 1
while indexes[i] < len(arrays[i]) and indexes[0] < len(arrays[0]) and arrays[i][indexes[i]] > arrays[0][indexes[0]]:
indexes[0] += 1
if indexes[0] < len(arrays[0]):
inter.append(arrays[0][indexes[0]])
indexes = [idx+1 for idx in indexes]
return inter
You said we can't use sets but how about dicts / hash tables? (yes I know they're basically the same thing) :D
If so, here's a fairly simple approach (please excuse the py2 syntax):
arrays = [[1,3,5,7],[1,1,3,5,7],[1,4,7,9]]
counts = {}
for ar in arrays:
last = None
for i in ar:
if (i != last):
counts[i] = counts.get(i, 0) + 1
last = i
N = len(arrays)
intersection = [i for i, n in counts.iteritems() if n == N]
print intersection
Same as Raymond Hettinger's solution but with more basic python code:
def intersection(arrays, unique: bool=False):
result = []
if not len(arrays) or any(not len(array) for array in arrays):
return result
pointers = [0] * len(arrays)
target = arrays[0][0]
start_step = 0
current_step = 1
while True:
idx = current_step % len(arrays)
array = arrays[idx]
while pointers[idx] < len(array) and array[pointers[idx]] < target:
pointers[idx] += 1
if pointers[idx] < len(array) and array[pointers[idx]] > target:
target = array[pointers[idx]]
start_step = current_step
current_step += 1
continue
if unique:
while (
pointers[idx] + 1 < len(array)
and array[pointers[idx]] == array[pointers[idx] + 1]
):
pointers[idx] += 1
if (current_step - start_step) == len(arrays):
result.append(target)
for other_idx, other_array in enumerate(arrays):
pointers[other_idx] += 1
if pointers[idx] < len(array):
target = array[pointers[idx]]
start_step = current_step
if pointers[idx] == len(array):
return result
current_step += 1
Here's an O(n) answer (where n = sum(len(sublist) for sublist in data)).
from itertools import cycle
def intersection(data):
result = []
maxval = float("-inf")
consecutive = 0
try:
for sublist in cycle(iter(sublist) for sublist in data):
value = next(sublist)
while value < maxval:
value = next(sublist)
if value > maxval:
maxval = value
consecutive = 0
continue
consecutive += 1
if consecutive >= len(data)-1:
result.append(maxval)
consecutive = 0
except StopIteration:
return result
print(intersection([[1,3,5,7], [1,1,3,5,7], [1,4,7,9]]))
[1, 7]
Some of the above methods are not covering the examples when there are duplicates in every subset of the list. The Below code implements this intersection and it will be more efficient if there are lots of duplicates in the subset of the list :) If not sure about duplicates it is recommended to use Counter from collections from collections import Counter. The custom counter function is made for increasing the efficiency of handling large duplicates. But still can not beat Raymond Hettinger's implementation.
def counter(my_list):
my_list = sorted(my_list)
first_val, *all_val = my_list
p_index = my_list.index(first_val)
my_counter = {}
for item in all_val:
c_index = my_list.index(item)
diff = abs(c_index-p_index)
p_index = c_index
my_counter[first_val] = diff
first_val = item
c_index = my_list.index(item)
diff = len(my_list) - c_index
my_counter[first_val] = diff
return my_counter
def my_func(data):
if not data or not isinstance(data, list):
return
# get the first value
first_val, *all_val = data
if not isinstance(first_val, list):
return
# count items in first value
p = counter(first_val) # counter({1: 2, 3: 1, 5: 1, 7: 1})
# collect all common items and calculate the minimum occurance in intersection
for val in all_val:
# collecting common items
c = counter(val)
# calculate the minimum occurance in intersection
inner_dict = {}
for inner_val in set(c).intersection(set(p)):
inner_dict[inner_val] = min(p[inner_val], c[inner_val])
p = inner_dict
# >>>p
# {1: 2, 7: 1}
# Sort by keys of counter
sorted_items = sorted(p.items(), key=lambda x:x[0]) # [(1, 2), (7, 1)]
result=[i[0] for i in sorted_items for _ in range(i[1])] # [1, 1, 7]
return result
Here are the sample Examples
>>> data = [[1,3,5,7],[1,1,3,5,7],[1,4,7,9]]
>>> my_func(data=data)
[1, 7]
>>> data = [[1,1,3,5,7],[1,1,3,5,7],[1,1,4,7,9]]
>>> my_func(data=data)
[1, 1, 7]
You can do the following using the functions heapq.merge, chain.from_iterable and groupby
from heapq import merge
from itertools import groupby, chain
ls = [[1, 3, 5, 7], [1, 1, 3, 5, 7], [1, 4, 7, 9]]
def index_groups(lst):
"""[1, 1, 3, 5, 7] -> [(1, 0), (1, 1), (3, 0), (5, 0), (7, 0)]"""
return chain.from_iterable(((e, i) for i, e in enumerate(group)) for k, group in groupby(lst))
iterables = (index_groups(li) for li in ls)
flat = merge(*iterables)
res = [k for (k, _), g in groupby(flat) if sum(1 for _ in g) == len(ls)]
print(res)
Output
[1, 7]
The idea is to give an extra value (using enumerate) to differentiate between equal values within the same list (see the function index_groups).
The complexity of this algorithm is O(n) where n is the sum of the lengths of each list in the input.
Note that the output for (an extra 1 en each list):
ls = [[1, 1, 3, 5, 7], [1, 1, 3, 5, 7], [1, 1, 4, 7, 9]]
is:
[1, 1, 7]
You can use bit-masking with one-hot encoding. The inner lists become maxterms. You and them together for the intersection and or them for the union. Then you have to convert back, for which I've used a bit hack.
problem = [[1,3,5,7],[1,1,3,5,8,7],[1,4,7,9]];
debruijn = [0, 1, 28, 2, 29, 14, 24, 3, 30, 22, 20, 15, 25, 17, 4, 8,
31, 27, 13, 23, 21, 19, 16, 7, 26, 12, 18, 6, 11, 5, 10, 9];
u32 = accum = (1 << 32) - 1;
for vec in problem:
maxterm = 0;
for v in vec:
maxterm |= 1 << v;
accum &= maxterm;
# https://graphics.stanford.edu/~seander/bithacks.html#IntegerLogDeBruijn
result = [];
while accum:
power = accum;
accum &= accum - 1; # Peter Wegner CACM 3 (1960), 322
power &= ~accum;
result.append(debruijn[((power * 0x077CB531) & u32) >> 27]);
print result;
This uses (simulates) 32-bit integers, so you can only have [0, 31] in your sets.
*I am inexperienced at Python, so I timed it. One should definitely use set.intersection.
Here is the single-pass counting algorithm, a simplified version of what others have suggested.
def intersection(iterables):
target, count = None, 0
for it in itertools.cycle(map(iter, iterables)):
for value in it:
if count == 0 or value > target:
target, count = value, 1
break
if value == target:
count += 1
break
else: # exhausted iterator
return
if count >= len(iterables):
yield target
count = 0
Binary and exponential search haven't come up yet. They're easily recreated even with the "no builtins" constraint.
In practice, that would be much faster, and sub-linear. In the worst case - where the intersection isn't shrinking - the naive approach would repeat work. But there's a solution for that: integrate the binary search while splitting the arrays in half.
def intersection(seqs):
seq = min(seqs, key=len)
if not seq:
return
pivot = seq[len(seq) // 2]
lows, counts, highs = [], [], []
for seq in seqs:
start = bisect.bisect_left(seq, pivot)
stop = bisect.bisect_right(seq, pivot, start)
lows.append(seq[:start])
counts.append(stop - start)
highs.append(seq[stop:])
yield from intersection(lows)
yield from itertools.repeat(pivot, min(counts))
yield from intersection(highs)
Both handle duplicates. Both guarantee O(N) worst-case time (counting slicing as atomic). The latter will approach O(min_size) speed; by always splitting the smallest in half it essentially can't suffer from the bad luck of uneven splits.
I couldn't help but notice that this is seems to be a variation on the Welfare Crook problem; see David Gries's book, The Science of Programming. Edsger Dijkstra also wrote an EWD about this, see Ascending Functions and the Welfare Crook.
The Welfare Crook
Suppose we have three long magnetic tapes, each containing a list of names in alphabetical order:
all people working for IBM Yorktown
students at Columbia University
people on welfare in New York City
Practically speaking, all three lists are endless, so no upper bounds are given. It is know that at least one person is on all three lists. Write a program to locate the first such person.
Our intersection of the ordered lists problem is a generalization of the Welfare Crook problem.
Here's a (rather primitive?) Python solution to the Welfare Crook problem:
def find_welfare_crook(f, g, h, i, j, k):
"""f, g, and h are "ascending functions," i.e.,
i <= j implies f[i] <= f[j] or, equivalently,
f[i] < f[j] implies i < j, and the same goes for g and h.
i, j, k define where to start the search in each list.
"""
# This is an implementation of a solution to the Welfare Crook
# problems presented in David Gries's book, The Science of Programming.
# The surprising and beautiful thing is that the guard predicates are
# so few and so simple.
i , j , k = i , j , k
while True:
if f[i] < g[j]:
i += 1
elif g[j] < h[k]:
j += 1
elif h[k] < f[i]:
k += 1
else:
break
return (i,j,k)
# The other remarkable thing is how the negation of the guard
# predicates works out to be: f[i] == g[j] and g[j] == c[k].
Generalization to Intersection of K Lists
This generalizes to K lists, and here's what I devised; I don't know how Pythonic this is, but it pretty compact:
def findIntersectionLofL(lofl):
"""Generalized findIntersection function which operates on a "list of lists." """
K = len(lofl)
indices = [0 for i in range(K)]
result = []
#
try:
while True:
# idea is to maintain the indices via a construct like the following:
allEqual = True
for i in range(K):
if lofl[i][indices[i]] < lofl[(i+1)%K][indices[(i+1)%K]] :
indices[i] += 1
allEqual = False
# When the above iteration finishes, if all of the list
# items indexed by the indices are equal, then another
# item common to all of the lists must be added to the result.
if allEqual :
result.append(lofl[0][indices[0]])
while lofl[0][indices[0]] == lofl[1][indices[1]]:
indices[0] += 1
except IndexError as e:
# Eventually, the foregoing iteration will advance one of the
# indices past the end of one of the lists, and when that happens
# an IndexError exception will be raised. This means the algorithm
# is finished.
return result
This solution does not keep repeated items. Changing the program to include all of the repeated items by changing what the program does in the conditional at the end of the "while True" loop is an exercise left to the reader.
Improved Performance
Comments from #greybeard prompted refinements shown below, in the
pre-computation of the "array index moduli" (the "(i+1)%K" expressions) and further investigation also brought about changes to the inner iteration's structure, to further remove overhead:
def findIntersectionLofLunRolled(lofl):
"""Generalized findIntersection function which operates on a "list of lists."
Accepts a list-of-lists, lofl. Each of the lists must be ordered.
Returns the list of each element which appears in all of the lists at least once.
"""
K = len(lofl)
indices = [0] * K
result = []
lt = [ (i, (i+1) % K) for i in range(K) ] # avoids evaluation of index exprs inside the loop
#
try:
while True:
allUnEqual = True
while allUnEqual:
allUnEqual = False
for i,j in lt:
if lofl[i][indices[i]] < lofl[j][indices[j]]:
indices[i] += 1
allUnEqual = True
# Now all of the lofl[i][indices[i]], for all i, are the same value.
# Store that value in the result, and then advance all of the indices
# past that common value:
v = lofl[0][indices[0]]
result.append(v)
for i,j in lt:
while lofl[i][indices[i]] == v:
indices[i] += 1
except IndexError as e:
# Eventually, the foregoing iteration will advance one of the
# indices past the end of one of the lists, and when that happens
# an IndexError exception will be raised. This means the algorithm
# is finished.
return result
I'm trying to optimize the function 'pw' in the following code using only NumPy functions (or perhaps list comprehensions).
from time import time
import numpy as np
def pw(x, udata):
"""
Creates the step function
| 1, if d0 <= x < d1
| 2, if d1 <= x < d2
pw(x,data) = ...
| N, if d(N-1) <= x < dN
| 0, otherwise
where di is the ith element in data.
INPUT: x -- interval which the step function is defined over
data -- an ordered set of data (without repetitions)
OUTPUT: pw_func -- an array of size x.shape[0]
"""
vals = np.arange(1,udata.shape[0]+1).reshape(udata.shape[0],1)
pw_func = np.sum(np.where(np.greater_equal(x,udata)*np.less(x,np.roll(udata,-1)),vals,0),axis=0)
return pw_func
N = 50000
x = np.linspace(0,10,N)
data = [1,3,4,5,5,7]
udata = np.unique(data)
ti = time()
pw(x,udata)
tf = time()
print(tf - ti)
import cProfile
cProfile.run('pw(x,udata)')
The cProfile.run is telling me that most of the overhead is coming from np.where (about 1 ms) but I'd like to create faster code if possible. It seems that performing the operations row-wise versus column-wise makes some difference, unless I'm mistaken, but I think I've accounted for it. I know that sometimes list comprehensions can be faster but I couldn't figure out a faster way than what I'm doing using it.
Searchsorted seems to yield better performance but that 1 ms still remains on my computer:
(modified)
def pw(xx, uu):
"""
Creates the step function
| 1, if d0 <= x < d1
| 2, if d1 <= x < d2
pw(x,data) = ...
| N, if d(N-1) <= x < dN
| 0, otherwise
where di is the ith element in data.
INPUT: x -- interval which the step function is defined over
data -- an ordered set of data (without repetitions)
OUTPUT: pw_func -- an array of size x.shape[0]
"""
inds = np.searchsorted(uu, xx, side='right')
vals = np.arange(1,uu.shape[0]+1)
pw_func = vals[inds[inds != uu.shape[0]]]
num_mins = np.sum(xx < np.min(uu))
num_maxs = np.sum(xx > np.max(uu))
pw_func = np.concatenate((np.zeros(num_mins), pw_func, np.zeros(xx.shape[0]-pw_func.shape[0]-num_mins)))
return pw_func
This answer using piecewise seems pretty close, but that's on a scalar x0 and x1. How would I do it on arrays? And would it be more efficient?
Understandably, x may be pretty big but I'm trying to put it through a stress test.
I am still learning though so some hints or tricks that can help me out would be great.
EDIT
There seems to be a mistake in the second function since the resulting array from the second function doesn't match the first one (which I'm confident that it works):
N1 = pw1(x,udata.reshape(udata.shape[0],1)).shape[0]
N2 = np.sum(pw1(x,udata.reshape(udata.shape[0],1)) == pw2(x,udata))
print(N1 - N2)
yields
15000
data points that are not the same. So it seems that I don't know how to use 'searchsorted'.
EDIT 2
Actually I fixed it:
pw_func = vals[inds[inds != uu.shape[0]]]
was changed to
pw_func = vals[inds[inds[(inds != uu.shape[0])*(inds != 0)]-1]]
so at least the resulting arrays match. But the question still remains on whether there's a more efficient way of going about doing this.
EDIT 3
Thanks Tin Lai for pointing out the mistake. This one should work
pw_func = vals[inds[(inds != uu.shape[0])*(inds != 0)]-1]
Maybe a more readable way of presenting it would be
non_endpts = (inds != uu.shape[0])*(inds != 0) # only consider the points in between the min/max data values
shift_inds = inds[non_endpts]-1 # searchsorted side='right' includes the left end point and not right end point so a shift is needed
pw_func = vals[shift_inds]
I think I got lost in all those brackets! I guess that's the importance of readability.
A very abstract yet interesting problem! Thanks for entertaining me, I had fun :)
p.s. I'm not sure about your pw2 I wasn't able to get it output the same as pw1.
For reference the original pws:
def pw1(x, udata):
vals = np.arange(1,udata.shape[0]+1).reshape(udata.shape[0],1)
pw_func = np.sum(np.where(np.greater_equal(x,udata)*np.less(x,np.roll(udata,-1)),vals,0),axis=0)
return pw_func
def pw2(xx, uu):
inds = np.searchsorted(uu, xx, side='right')
vals = np.arange(1,uu.shape[0]+1)
pw_func = vals[inds[inds[(inds != uu.shape[0])*(inds != 0)]-1]]
num_mins = np.sum(xx < np.min(uu))
num_maxs = np.sum(xx > np.max(uu))
pw_func = np.concatenate((np.zeros(num_mins), pw_func, np.zeros(xx.shape[0]-pw_func.shape[0]-num_mins)))
return pw_func
My first attempt was utilising a lot of boardcasting operation from numpy:
def pw3(x, udata):
# the None slice is to create new axis
step_bool = x >= udata[None,:].T
# we exploit the fact that bools are integer value of 1s
# skipping the last value in "data"
step_vals = np.sum(step_bool[:-1], axis=0)
# for the step_bool that we skipped from previous step (last index)
# we set it to zerp so that we can negate the step_vals once we reached
# the last value in "data"
step_vals[step_bool[-1]] = 0
return step_vals
After looking at the searchsorted from your pw2 I had a new approach that utilise it with much higher performance:
def pw4(x, udata):
inds = np.searchsorted(udata, x, side='right')
# fix-ups the last data if x is already out of range of data[-1]
if x[-1] > udata[-1]:
inds[inds == inds[-1]] = 0
return inds
Plots with:
plt.plot(pw1(x,udata.reshape(udata.shape[0],1)), label='pw1')
plt.plot(pw2(x,udata), label='pw2')
plt.plot(pw3(x,udata), label='pw3')
plt.plot(pw4(x,udata), label='pw4')
with data = [1,3,4,5,5,7]:
with data = [1,3,4,5,5,7,11]
pw1,pw3,pw4 are all identical
print(np.all(pw1(x,udata.reshape(udata.shape[0],1)) == pw3(x,udata)))
>>> True
print(np.all(pw1(x,udata.reshape(udata.shape[0],1)) == pw4(x,udata)))
>>> True
Performance: (timeit by default runs 3 times, average of number=N of times)
print(timeit.Timer('pw1(x,udata.reshape(udata.shape[0],1))', "from __main__ import pw1, x, udata").repeat(number=1000))
>>> [3.1938983199979702, 1.6096494779994828, 1.962694135003403]
print(timeit.Timer('pw2(x,udata)', "from __main__ import pw2, x, udata").repeat(number=1000))
>>> [0.6884554479984217, 0.6075002400029916, 0.7799002879983163]
print(timeit.Timer('pw3(x,udata)', "from __main__ import pw3, x, udata").repeat(number=1000))
>>> [0.7369808239964186, 0.7557657590004965, 0.8088172269999632]
print(timeit.Timer('pw4(x,udata)', "from __main__ import pw4, x, udata").repeat(number=1000))
>>> [0.20514375300263055, 0.20203858999957447, 0.19906871100101853]
I have a numpy array with these values:
[10620.5, 11899., 11879.5, 13017., 11610.5]
import Numpy as np
array = np.array([10620.5, 11899, 11879.5, 13017, 11610.5])
I would like to get values that are "close" (in this instance, 11899 and 11879) and average them, then replace them with a single instance of the new number resulting in this:
[10620.5, 11889, 13017, 11610.5]
the term "close" would be configurable. let's say a difference of 50
the purpose of this is to create Spans on a Bokah graph, and some lines are just too close
I am super new to python in general (a couple weeks of intense dev)
I would think that I could arrange the values in order, and somehow grab the one to the left, and right, and do some math on them, replacing a match with the average value. but at the moment, I just dont have any idea yet.
Try something like this, I added a few extra steps, just to show the flow:
the idea is to group the data into adjacent groups, and decide if you want to group them or not based on how spread they are.
So as you describe you can combine you data in sets of 3 nummbers and if the difference between the max and min numbers are less than 50 you average them, otherwise you leave them as is.
import pandas as pd
import numpy as np
arr = np.ravel([1,24,5.3, 12, 8, 45, 14, 18, 33, 15, 19, 22])
arr.sort()
def reshape_arr(a, n): # n is number of consecutive adjacent items you want to compare for averaging
hold = len(a)%n
if hold != 0:
container = a[-hold:] #numbers that do not fit on the array will be excluded for averaging
a = a[:-hold].reshape(-1,n)
else:
a = a.reshape(-1,n)
container = None
return a, container
def get_mean(a, close): # close = how close adjacent numbers need to be, in order to be averaged together
my_list=[]
for i in range(len(a)):
if a[i].max()-a[i].min() > close:
for j in range(len(a[i])):
my_list.append(a[i][j])
else:
my_list.append(a[i].mean())
return my_list
def final_list(a, c): # add any elemts held in the container to the final list
if c is not None:
c = c.tolist()
for i in range(len(c)):
a.append(c[i])
return a
arr, container = reshape_arr(arr,3)
arr = get_mean(arr, 5)
final_list(arr, container)
You could use fuzzywuzzy here to gauge the ratio of cloesness between 2 data sets.
See details here: http://jonathansoma.com/lede/algorithms-2017/classes/fuzziness-matplotlib/fuzzing-matching-in-pandas-with-fuzzywuzzy/
Taking Gustavo's answer and tweaking it to my needs:
def reshape_arr(a, close):
flag = True
while flag is not False:
array = a.sort_values().unique()
l = len(array)
flag = False
for i in range(l):
previous_item = next_item = None
if i > 0:
previous_item = array[i - 1]
if i < (l - 1):
next_item = array[i + 1]
if previous_item is not None:
if abs(array[i] - previous_item) < close:
average = (array[i] + previous_item) / 2
flag = True
#find matching values in a, and replace with the average
a.replace(previous_item, value=average, inplace=True)
a.replace(array[i], value=average, inplace=True)
if next_item is not None:
if abs(next_item - array[i]) < close:
flag = True
average = (array[i] + next_item) / 2
# find matching values in a, and replace with the average
a.replace(array[i], value=average, inplace=True)
a.replace(next_item, value=average, inplace=True)
return a
this will do it if I do something like this:
candlesticks['support'] = reshape_arr(supres_df['support'], 150)
where candlesticks is the main DataFrame that I am using and supres_df is another DataFrame that I am massaging before I apply it to the main one.
it works, but is extremely slow. I am trying to optimize it now.
I added a while loop because after averaging, the averages can become close enough to average out again, so I will loop again, until it doesn't need to average anymore. This is total newbie work, so if you see something silly, please comment.
The input is an integer that specifies the amount to be ordered.
There are predefined package sizes that have to be used to create that order.
e.g.
Packs
3 for $5
5 for $9
9 for $16
for an input order 13 the output should be:
2x5 + 1x3
So far I've the following approach:
remaining_order = 13
package_numbers = [9,5,3]
required_packages = []
while remaining_order > 0:
found = False
for pack_num in package_numbers:
if pack_num <= remaining_order:
required_packages.append(pack_num)
remaining_order -= pack_num
found = True
break
if not found:
break
But this will lead to the wrong result:
1x9 + 1x3
remaining: 1
So, you need to fill the order with the packages such that the total price is maximal? This is known as Knapsack problem. In that Wikipedia article you'll find several solutions written in Python.
To be more precise, you need a solution for the unbounded knapsack problem, in contrast to popular 0/1 knapsack problem (where each item can be packed only once). Here is working code from Rosetta:
from itertools import product
NAME, SIZE, VALUE = range(3)
items = (
# NAME, SIZE, VALUE
('A', 3, 5),
('B', 5, 9),
('C', 9, 16))
capacity = 13
def knapsack_unbounded_enumeration(items, C):
# find max of any one item
max1 = [int(C / item[SIZE]) for item in items]
itemsizes = [item[SIZE] for item in items]
itemvalues = [item[VALUE] for item in items]
# def totvalue(itemscount, =itemsizes, itemvalues=itemvalues, C=C):
def totvalue(itemscount):
# nonlocal itemsizes, itemvalues, C
totsize = sum(n * size for n, size in zip(itemscount, itemsizes))
totval = sum(n * val for n, val in zip(itemscount, itemvalues))
return (totval, -totsize) if totsize <= C else (-1, 0)
# Try all combinations of bounty items from 0 up to max1
bagged = max(product(*[range(n + 1) for n in max1]), key=totvalue)
numbagged = sum(bagged)
value, size = totvalue(bagged)
size = -size
# convert to (iten, count) pairs) in name order
bagged = ['%dx%d' % (n, items[i][SIZE]) for i, n in enumerate(bagged) if n]
return value, size, numbagged, bagged
if __name__ == '__main__':
value, size, numbagged, bagged = knapsack_unbounded_enumeration(items, capacity)
print(value)
print(bagged)
Output is:
23
['1x3', '2x5']
Keep in mind that this is a NP-hard problem, so it will blow as you enter some large values :)
You can use itertools.product:
import itertools
remaining_order = 13
package_numbers = [9,5,3]
required_packages = []
a=min([x for i in range(1,remaining_order+1//min(package_numbers)) for x in itertools.product(package_numbers,repeat=i)],key=lambda x: abs(sum(x)-remaining_order))
remaining_order-=sum(a)
print(a)
print(remaining_order)
Output:
(5, 5, 3)
0
This simply does the below steps:
Get value closest to 13, in the list with all the product values.
Then simply make it modify the number of remaining_order.
If you want it output with 'x':
import itertools
from collections import Counter
remaining_order = 13
package_numbers = [9,5,3]
required_packages = []
a=min([x for i in range(1,remaining_order+1//min(package_numbers)) for x in itertools.product(package_numbers,repeat=i)],key=lambda x: abs(sum(x)-remaining_order))
remaining_order-=sum(a)
print(' '.join(['{0}x{1}'.format(v,k) for k,v in Counter(a).items()]))
print(remaining_order)
Output:
2x5 + 1x3
0
For you problem, I tried two implementations depending on what you want, in both of the solutions I supposed you absolutely needed your remaining to be at 0. Otherwise the algorithm will return you -1. If you need them, tell me I can adapt my algorithm.
As the algorithm is implemented via dynamic programming, it handles good inputs, at least more than 130 packages !
In the first solution, I admitted we fill with the biggest package each time.
I n the second solution, I try to minimize the price, but the number of packages should always be 0.
remaining_order = 13
package_numbers = sorted([9,5,3], reverse=True) # To make sure the biggest package is the first element
prices = {9: 16, 5: 9, 3: 5}
required_packages = []
# First solution, using the biggest package each time, and making the total order remaining at 0 each time
ans = [[] for _ in range(remaining_order + 1)]
ans[0] = [0, 0, 0]
for i in range(1, remaining_order + 1):
for index, package_number in enumerate(package_numbers):
if i-package_number > -1:
tmp = ans[i-package_number]
if tmp != -1:
ans[i] = [tmp[x] if x != index else tmp[x] + 1 for x in range(len(tmp))]
break
else: # Using for else instead of a boolean value `found`
ans[i] = -1 # -1 is the not found combinations
print(ans[13]) # [0, 2, 1]
print(ans[9]) # [1, 0, 0]
# Second solution, minimizing the price with order at 0
def price(x):
return 16*x[0]+9*x[1]+5*x[2]
ans = [[] for _ in range(remaining_order + 1)]
ans[0] = ([0, 0, 0],0) # combination + price
for i in range(1, remaining_order + 1):
# The not found packages will be (-1, float('inf'))
minimal_price = float('inf')
minimal_combinations = -1
for index, package_number in enumerate(package_numbers):
if i-package_number > -1:
tmp = ans[i-package_number]
if tmp != (-1, float('inf')):
tmp_price = price(tmp[0]) + prices[package_number]
if tmp_price < minimal_price:
minimal_price = tmp_price
minimal_combinations = [tmp[0][x] if x != index else tmp[0][x] + 1 for x in range(len(tmp[0]))]
ans[i] = (minimal_combinations, minimal_price)
print(ans[13]) # ([0, 2, 1], 23)
print(ans[9]) # ([0, 0, 3], 15) Because the price of three packages is lower than the price of a package of 9
In case you need a solution for a small number of possible
package_numbers
but a possibly very big
remaining_order,
in which case all the other solutions would fail, you can use this to reduce remaining_order:
import numpy as np
remaining_order = 13
package_numbers = [9,5,3]
required_packages = []
sub_max=np.sum([(np.product(package_numbers)/i-1)*i for i in package_numbers])
while remaining_order > sub_max:
remaining_order -= np.product(package_numbers)
required_packages.append([max(package_numbers)]*np.product(package_numbers)/max(package_numbers))
Because if any package is in required_packages more often than (np.product(package_numbers)/i-1)*i it's sum is equal to np.product(package_numbers). In case the package max(package_numbers) isn't the one with the samllest price per unit, take the one with the smallest price per unit instead.
Example:
remaining_order = 100
package_numbers = [5,3]
Any part of remaining_order bigger than 5*2 plus 3*4 = 22 can be sorted out by adding 5 three times to the solution and taking remaining_order - 5*3.
So remaining order that actually needs to be calculated is 10. Which can then be solved to beeing 2 times 5. The rest is filled with 6 times 15 which is 18 times 5.
In case the number of possible package_numbers is bigger than just a handful, I recommend building a lookup table (with one of the others answers' code) for all numbers below sub_max which will make this immensely fast for any input.
Since no declaration about the object function is found, I assume your goal is to maximize the package value within the pack's capability.
Explanation: time complexity is fixed. Optimal solution may not be filling the highest valued item as many as possible, you have to search all possible combinations. However, you can reuse the possible optimal solutions you have searched to save space. For example, [5,5,3] is derived from adding 3 to a previous [5,5] try so the intermediate result can be "cached". You may either use an array or you may use a set to store possible solutions. The code below runs the same performance as the rosetta code but I think it's clearer.
To further optimize, use a priority set for opts.
costs = [3,5,9]
value = [5,9,16]
volume = 130
# solutions
opts = set()
opts.add(tuple([0]))
# calc total value
cost_val = dict(zip(costs, value))
def total_value(opt):
return sum([cost_val.get(cost,0) for cost in opt])
def possible_solutions():
solutions = set()
for opt in opts:
for cost in costs:
if cost + sum(opt) > volume:
continue
cnt = (volume - sum(opt)) // cost
for _ in range(1, cnt + 1):
sol = tuple(list(opt) + [cost] * _)
solutions.add(sol)
return solutions
def optimize_max_return(opts):
if not opts:
return tuple([])
cur = list(opts)[0]
for sol in opts:
if total_value(sol) > total_value(cur):
cur = sol
return cur
while sum(optimize_max_return(opts)) <= volume - min(costs):
opts = opts.union(possible_solutions())
print(optimize_max_return(opts))
If your requirement is "just fill the pack" it'll be even simpler using the volume for each item instead.
This question already has answers here:
Merging Overlapping Intervals
(4 answers)
Closed last year.
I am trying to solve a question where in overlapping intervals need to be merged.
The question is:
Given a collection of intervals, merge all overlapping intervals.
For example, Given [1,3],[2,6],[8,10],[15,18], return [1,6],[8,10],[15,18].
I tried my solution:
# Definition for an interval.
# class Interval:
# def __init__(self, s=0, e=0):
# self.start = s
# self.end = e
class Solution:
def merge(self, intervals):
"""
:type intervals: List[Interval]
:rtype: List[Interval]
"""
start = sorted([x.start for x in intervals])
end = sorted([x.end for x in intervals])
merged = []
j = 0
new_start = 0
for i in range(len(start)):
if start[i]<end[j]:
continue
else:
j = j + 1
merged.append([start[new_start], end[j]])
new_start = i
return merged
However it is clearly missing the last interval as:
Input : [[1,3],[2,6],[8,10],[15,18]]
Answer :[[1,6],[8,10]]
Expected answer: [[1,6],[8,10],[15,18]]
Not sure how to include the last interval as overlap can only be checked in forward mode.
How to fix my algorithm so that it works till the last slot?
Your code implicitly already assumes the starts and ends to be sorted, so that sort could be left out. To see this, try the following intervals:
intervals = [[3,9],[2,6],[8,10],[15,18]]
start = sorted([x[0] for x in intervals])
end = sorted([x[1] for x in intervals]) #mimicking your start/end lists
merged = []
j = 0
new_start = 0
for i in range(len(start)):
if start[i]<end[j]:
continue
else:
j = j + 1
merged.append([start[new_start], end[j]])
new_start = i
print(merged) #[[2, 9], [8, 10]]
Anyway, the best way to do this is probably recursion, here shown for a list of lists instead of Interval objects.
def recursive_merge(inter, start_index = 0):
for i in range(start_index, len(inter) - 1):
if inter[i][1] > inter[i+1][0]:
new_start = inter[i][0]
new_end = inter[i+1][1]
inter[i] = [new_start, new_end]
del inter[i+1]
return recursive_merge(inter.copy(), start_index=i)
return inter
sorted_on_start = sorted(intervals)
merged = recursive_merge(sorted_on_start.copy())
print(merged) #[[2, 10], [15, 18]]
I know the question is old, but in case it might help, I wrote a Python library to deal with (set of) intervals. Its name is portion and makes it easy to merge intervals:
>>> import portion as P
>>> inputs = [[1,3],[2,6],[8,10],[15,18]]
>>> # Convert each input to an interval
>>> intervals = [P.closed(a, b) for a, b in inputs]
>>> # Merge these intervals
>>> merge = P.Interval(*intervals)
>>> merge
[1,6] | [8,10] | [15,18]
>>> # Output as a list of lists
>>> [[i.lower, i.upper] for i in merge]
[[1,6],[8,10],[15,18]]
Documentation can be found here: https://github.com/AlexandreDecan/portion
We can have intervals sorted by the first interval and we can build the merged list in the same interval list by checking the intervals one by one not appending to another one so. we increment i for every interval and interval_index is current interval check
x =[[1,3],[2,6],[8,10],[15,18]]
#y = [[1,3],[2,6],[8,10],[15,18],[19,25],[20,26],[25,30], [32,40]]
def merge_intervals(intervals):
sorted_intervals = sorted(intervals, key=lambda x: x[0])
interval_index = 0
#print(sorted_intervals)
for i in sorted_intervals:
if i[0] > sorted_intervals[interval_index][1]:
interval_index += 1
sorted_intervals[interval_index] = i
else:
sorted_intervals[interval_index] = [sorted_intervals[interval_index][0], i[1]]
#print(sorted_intervals)
return sorted_intervals[:interval_index+1]
print(merge_intervals(x)) #-->[[1, 6], [8, 10], [15, 18]]
#print ("------------------------------")
#print(merge_intervals(y)) #-->[[1, 6], [8, 10], [15, 18], [19, 30], [32, 40]]
This is very old now, but in case anyone stumbles across this, I thought I'd throw in my two cents, since I wasn't completely happy with the answers above.
I'm going to preface my solution by saying that when I work with intervals, I prefer to convert them to python3 ranges (probably an elegant replacement for your Interval class) because I find them easy to work with. However, you need to remember that ranges are half-open like everything else in Python, so the stop coordinate is not "inside" of the interval. Doesn't matter for my solution, but something to keep in mind.
My own solution:
# Start by converting the intervals to ranges.
my_intervals = [[1, 3], [2, 6], [8, 10], [15, 18]]
my_ranges = [range(start, stop) for start, stop in my_intervals]
# Next, define a check which will return True if two ranges overlap.
# The double inequality approach means that your intervals don't
# need to be sorted to compare them.
def overlap(range1, range2):
if range1.start <= range2.stop and range2.start <= range1.stop:
return True
return False
# Finally, the actual function that returns a list of merged ranges.
def merge_range_list(ranges):
ranges_copy = sorted(ranges.copy(), key=lambda x: x.stop)
ranges_copy = sorted(ranges_copy, key=lambda x: x.start)
merged_ranges = []
while ranges_copy:
range1 = ranges_copy[0]
del ranges_copy[0]
merges = [] # This will store the position of ranges that get merged.
for i, range2 in enumerate(ranges_copy):
if overlap(range1, range2): # Use our premade check function.
range1 = range(min([range1.start, range2.start]), # Overwrite with merged range.
max([range1.stop, range2.stop]))
merges.append(i)
merged_ranges.append(range1)
# Time to delete the ranges that got merged so we don't use them again.
# This needs to be done in reverse order so that the index doesn't move.
for i in reversed(merges):
del ranges_copy[i]
return merged_ranges
print(merge_range_list(my_ranges)) # --> [range(1, 6), range(8, 10), range(15, 18)]
Make pairs for every endpoint: (value; kind = +/-1 for start or end of interval)
Sort them by value. In case of tie choose paie with -1 first if you need to merge intervals with coinciding ends like 0-1 and 1-2
Make CurrCount = 0, walk through sorted list, adding kind to CurrCount
Start new resulting interval when CurrCount becomes nonzero, finish interval when CurrCount becomes zero.
Late to the party, but here is my solution. I typically find recursion with an invariant easier to conceptualize. In this case, the invariant is that the head is always merged, and the tail is always waiting to be merged, and you compare the last element of head with the first element of tail.
One should definitely use sorted with the key argument rather than using a list comprehension.
Not sure how efficient this is with slicing and concatenating lists.
def _merge(head, tail):
if tail == []:
return head
a, b = head[-1]
x, y = tail[0]
do_merge = b > x
if do_merge:
head_ = head[:-1] + [(a, max(b, y))]
tail_ = tail[1:]
return _merge(head_, tail_)
else:
head_ = head + tail[:1]
tail_ = tail[1:]
return _merge(head_, tail_)
def merge_intervals(lst):
if len(lst) <= 1:
return lst
lst = sorted(lst, key=lambda x: x[0])
return _merge(lst[:1], lst[1:])