Fast way of adding fields to a nested dict - python

I need a help with improving my code.
I've got a nested dict with many levels:
{
"11": {
"FacLC": {
"immty": [
"in_mm",
"in_mm"
],
"moood": [
"in_oo",
"in_oo"
]
}
},
"22": {
"FacLC": {
"immty": [
"in_mm",
"in_mm",
"in_mm"
]
}
}
}
And I want to add additional fields on every level, so my output looks like this:
[
{
"id": "",
"name": "11",
"general": [
{
"id": "",
"name": "FacLC",
"specifics": [
{
"id": "",
"name": "immty",
"characteristics": [
{
"id": "",
"name": "in_mm"
},
{
"id": "",
"name": "in_mm"
}
]
},
{
"id": "",
"name": "moood",
"characteristics": [
{
"id": "",
"name": "in_oo"
},
{
"id": "",
"name": "in_oo"
}
]
}
]
}
]
},
{
"id": "",
"name": "22",
"general": [
{
"id": "",
"name": "FacLC",
"specifics": [
{
"id": "",
"name": "immty",
"characteristics": [
{
"id": "",
"name": "in_mm"
},
{
"id": "",
"name": "in_mm"
},
{
"id": "",
"name": "in_mm"
}
]
}
]
}
]
}
]
I managed to write a 4-times nested for loop, what I find inefficient and inelegant:
for main_name, general in my_dict.items():
generals = []
for general_name, specific in general.items():
specifics = []
for specific_name, characteristics in specific.items():
characteristics_dicts = []
for characteristic in characteristics:
characteristics_dicts.append({
"id": "",
"name": characteristic,
})
specifics.append({
"id": "",
"name": specific_name,
"characteristics": characteristics_dicts,
})
generals.append({
"id": "",
"name": general_name,
"specifics": specifics,
})
my_new_dict.append({
"id": "",
"name": main_name,
"general": generals,
})
I am wondering if there is more compact and efficient solution.

In the past I created a function to do it. Basically you call this function everytime that you need to add new fields to a nested dict, independently on how many levels this nested dict have. You only have to inform the 'full path' , that I called the 'key_map'.
Like ['node1','node1a','node1apart3']
def insert_value_using_map(_nodes_list_to_be_appended, _keys_map, _value_to_be_inserted):
for _key in _keys_map[:-1]:
_nodes_list_to_be_appended = _nodes_list_to_be_appended.setdefault(_key, {})
_nodes_list_to_be_appended[_keys_map[-1]] = _value_to_be_inserted

Related

how to extract desired object JSON to table in python?

This is data JSON :
{ "activities": [ { "id": 1, "title": "likes your app x", "actor": { "type": "user", "id": 3 }, "verbs": [ "post" ], "object": { "type": "comment", "id": 1, "content": "Hello." }, "object": { "type": "app", "id": 1 } } ] }
I want the JSON object to table like this

Modify the value of a field of a specific nested object (its index) depending on a condition

I would like to modify the value of a field on a specific index of a nested type depending on another value of the same nested object or a field outside of the nested object.
As example, I have the current mapping of my index feed:
{
"feed": {
"mappings": {
"properties": {
"attacks_ids": {
"type": "keyword"
},
"created_by": {
"type": "keyword"
},
"date": {
"type": "date"
},
"groups_related": {
"type": "keyword"
},
"indicators": {
"type": "nested",
"properties": {
"date": {
"type": "date"
},
"description": {
"type": "text"
},
"role": {
"type": "keyword"
},
"type": {
"type": "keyword"
},
"value": {
"type": "keyword"
}
}
},
"malware_families": {
"type": "keyword"
},
"published": {
"type": "boolean"
},
"references": {
"type": "keyword"
},
"tags": {
"type": "keyword"
},
"targeted_countries": {
"type": "keyword"
},
"title": {
"type": "text"
},
"tlp": {
"type": "keyword"
}
}
}
}
}
Take the following document as example:
{
"took": 194,
"timed_out": false,
"_shards": {
"total": 1,
"successful": 1,
"skipped": 0,
"failed": 0
},
"hits": {
"total": {
"value": 1,
"relation": "eq"
},
"max_score": 1,
"hits": [
{
"_index": "feed",
"_type": "_doc",
"_id": "W3CS7IABovFpcGfZjfyu",
"_score": 1,
"_source": {
"title": "Test",
"date": "2022-05-22T16:21:09.159711",
"created_by": "finch",
"tlp": "white",
"published": true,
"references": [
"test",
"test"
],
"tags": [
"tag1",
"tag2"
],
"targeted_countries": [
"Italy",
"Germany"
],
"malware_families": [
"family1",
"family2"
],
"groups_related": [
"group1",
"griup2"
],
"attacks_ids": [
""
],
"indicators": [
{
"value": "testest",
"description": "This is a test",
"type": "sha256",
"role": "file",
"date": "2022-05-22T16:21:09.159560"
},
{
"value": "testest2",
"description": "This is a test 2",
"type": "ipv4",
"role": "c2",
"date": "2022-05-22T16:21:09.159699"
}
]
}
}
]
}
}
I would like to make this update: indicators[0].value = 'changed'
if _id == 'W3CS7IABovFpcGfZjfyu'
or if title == 'some_title'
or if indicators[0].role == 'c2'
I already tried with a script, but it seems I can't manage to get it work, I hope the explanation is clear, ask any question if not, thank you.
Edit 1:
I managed to make it work, however it needs the _id, still looking for a way to do that without it.
My partial solution:
update = Pulse.get(id="XHCz7IABovFpcGfZWfz9") #Pulse is my document
update.update(script="for (indicator in ctx._source.indicators) {if (indicator.value=='changed2') {indicator.value='changed3'}}")
# Modify depending on the value of a field inside the same nested object

Python Script to convert multiple json files in to single csv

{
"type": "Data",
"version": "1.0",
"box": {
"identifier": "abcdef",
"serial": "12345678"
},
"payload": {
"Type": "EL",
"Version": "1",
"Result": "Successful",
"Reference": null,
"Box": {
"Identifier": "abcdef",
"Serial": "12345678"
},
"Configuration": {
"EL": "1"
},
"vent": [
{
"ventType": "Arm",
"Timestamp": "2020-03-18T12:17:04+10:00",
"Parameters": [
{
"Name": "Arm",
"Value": "LT"
},
{
"Name": "Status",
"Value": "LD"
}
]
},
{
"ventType": "Arm",
"Timestamp": "2020-03-18T12:17:24+10:00",
"Parameters": [
{
"Name": "Arm",
"Value": "LT"
},
{
"Name": "Status",
"Value": "LD"
}
]
},
{
"EventType": "TimeUpdateCompleted",
"Timestamp": "2020-03-18T02:23:21.2979668Z",
"Parameters": [
{
"Name": "ActualAdjustment",
"Value": "PT0S"
},
{
"Name": "CorrectionOffset",
"Value": "PT0S"
},
{
"Name": "Latency",
"Value": "PT0.2423996S"
}
]
}
]
}
}
If you're looking to transfer information from a JSON file to a CSV, then you can use the following code to read in a JSON file into a dictionary in Python:
import json
with open('data.txt') as json_file:
data_dict = json.load(json_file)
You could then convert this dictionary into a list with either data_dict.items() or data_dict.values().
Then you just need to write this list to a CSV file which you can easily do by just looping through the list.

Adding an adaptive card to bot framework with python

I am playing a little bit with the samples of the bot framework in python from here https://github.com/Microsoft/botbuilder-python
Now I want to add a simple adaptive card to the response which I believe it is the part where it says await context.send_activity(response) but I can not attach the card. I grabbed the card from the docs sample:
{
"$schema": "http://adaptivecards.io/schemas/adaptive-card.json",
"type": "AdaptiveCard",
"version": "1.0",
"body": [
{
"type": "Container",
"items": [
{
"type": "TextBlock",
"text": "Publish Adaptive Card schema",
"weight": "bolder",
"size": "medium"
},
{
"type": "ColumnSet",
"columns": [
{
"type": "Column",
"width": "auto",
"items": [
{
"type": "Image",
"url": "https://pbs.twimg.com/profile_images/3647943215/d7f12830b3c17a5a9e4afcc370e3a37e_400x400.jpeg",
"size": "small",
"style": "person"
}
]
},
{
"type": "Column",
"width": "stretch",
"items": [
{
"type": "TextBlock",
"text": "Matt Hidinger",
"weight": "bolder",
"wrap": true
},
{
"type": "TextBlock",
"spacing": "none",
"text": "Created {{DATE(2017-02-14T06:08:39Z, SHORT)}}",
"isSubtle": true,
"wrap": true
}
]
}
]
}
]
},
{
"type": "Container",
"items": [
{
"type": "TextBlock",
"text": "Now that we have defined the main rules and features of the format, we need to produce a schema and publish it to GitHub. The schema will be the starting point of our reference documentation.",
"wrap": true
},
{
"type": "FactSet",
"facts": [
{
"title": "Board:",
"value": "Adaptive Card"
},
{
"title": "List:",
"value": "Backlog"
},
{
"title": "Assigned to:",
"value": "Matt Hidinger"
},
{
"title": "Due date:",
"value": "Not set"
}
]
}
]
}
],
"actions": [
{
"type": "Action.ShowCard",
"title": "Set due date",
"card": {
"type": "AdaptiveCard",
"body": [
{
"type": "Input.Date",
"id": "dueDate"
}
],
"actions": [
{
"type": "Action.Submit",
"title": "OK"
}
]
}
},
{
"type": "Action.ShowCard",
"title": "Comment",
"card": {
"type": "AdaptiveCard",
"body": [
{
"type": "Input.Text",
"id": "comment",
"isMultiline": true,
"placeholder": "Enter your comment"
}
],
"actions": [
{
"type": "Action.Submit",
"title": "OK"
}
]
}
}
]}
I can not find a way to attach the card to the python response.
You need to create the Attachment for the activity that is sent to the user:
ADAPTIVE_CARD_ATTACHMENT = Attachment(content_type='application/vnd.microsoft.card.adaptive',
content=ADAPTIVE_CARD)
After this, you can attach it to your response activity like this:
response.attachments = [ADAPTIVE_CARD_ATTACHMENT]
Or you could add it when you create the response:
response = Activity(type='message', attachments=[ADAPTIVE_CARD_ATTACHMENT])
Note: I left out the additional code needed to create a valid activity for brevity, you still need to add the fields such as channel_id, recipient and from_property, etc.

Convert deeply nested json from facebook to dataframe in python

I am trying to get user details of persons who has put likes, comments on Facebook posts. I am using python facebook-sdk package. Code is as follows.
import facebook as fi
import json
graph = fi.GraphAPI('Access Token')
data = json.dumps(graph.get_object('DSIfootcandy/posts'))
From the above, I am getting a highly nested json. Here I will put only a json string for one post in the fb.
{
"paging": {
"next": "https://graph.facebook.com/v2.0/425073257683630/posts?access_token=&limit=25&until=1449201121&__paging_token=enc_AdD0DL6sN3aDZCwfYY25rJLW9IZBZCLM1QfX0venal6rpjUNvAWZBOoxTjbOYZAaFiBImzMqiv149HPH5FBJFo0nSVOPqUy78S0YvwZDZD",
"previous": "https://graph.facebook.com/v2.0/425073257683630/posts?since=1450843741&access_token=&limit=25&__paging_token=enc_AdCYobFJpcNavx6STzfPFyFe6eQQxRhkObwl2EdulwL7mjbnIETve7sJZCPMwVm7lu7yZA5FoY5Q4sprlQezF4AlGfZCWALClAZDZD&__previous=1"
},
"data": [
{
"picture": "https://fbcdn-photos-e-a.akamaihd.net/hphotos-ak-xfa1/v/t1.0-0/p130x130/1285_5066979392443_n.png?oh=b37a42ee58654f08af5abbd4f52b1ace&oe=570898E7&__gda__=1461440649_aa94b9ec60f22004675c4a527e8893f",
"is_hidden": false,
"likes": {
"paging": {
"cursors": {
"after": "MTU3NzQxODMzNTg0NDcwNQ==",
"before": "MTU5Mzc1MjA3NDE4ODgwMA=="
}
},
"data": [
{
"id": "1593752074188800",
"name": "Maduri Priyadarshani"
},
{
"id": "427605680763414",
"name": "Darshi Mashika"
},
{
"id": "599793563453832",
"name": "Shakeer Nimeshani Shashikala"
},
{
"id": "1577418335844705",
"name": "Däzlling Jalali Muishu"
}
]
},
"from": {
"category": "Retail and Consumer Merchandise",
"name": "Footcandy",
"category_list": [
{
"id": "2239",
"name": "Retail and Consumer Merchandise"
}
],
"id": "425073257683630"
},
"name": "Timeline Photos",
"privacy": {
"allow": "",
"deny": "",
"friends": "",
"description": "",
"value": ""
},
"is_expired": false,
"comments": {
"paging": {
"cursors": {
"after": "WTI5dGJXVnVkRjlqZFhKemIzSUVXdNVFExTURRd09qRTBOVEE0TkRRNE5EVT0=",
"before": "WTI5dGJXVnVkRjlqZFhKemIzNE16Y3dNVFExTVRFNE9qRTBOVEE0TkRRME5UVT0="
}
},
"data": [
{
"from": {
"name": "NiFû Shafrà",
"id": "1025030640553"
},
"like_count": 0,
"can_remove": false,
"created_time": "2015-12-23T04:20:55+0000",
"message": "wow lovely one",
"id": "50018692683829_500458145118",
"user_likes": false
},
{
"from": {
"name": "Shamnaz Lukmanjee",
"id": "160625809961884"
},
"like_count": 0,
"can_remove": false,
"created_time": "2015-12-23T04:27:25+0000",
"message": "Nice",
"id": "500186926838929_500450145040",
"user_likes": false
}
]
},
"actions": [
{
"link": "https://www.facebook.com/425073257683630/posts/5001866838929",
"name": "Comment"
},
{
"link": "https://www.facebook.com/42507683630/posts/500186926838929",
"name": "Like"
}
],
"updated_time": "2015-12-23T04:27:25+0000",
"link": "https://www.facebook.com/DSIFootcandy/photos/a.438926536298302.1073741827.4250732576630/50086926838929/?type=3",
"object_id": "50018692838929",
"shares": {
"count": 3
},
"created_time": "2015-12-23T04:09:01+0000",
"message": "Reach new heights in the cute and extremely comfortable \"Silviar\" www.focandy.lk",
"type": "photo",
"id": "425077683630_50018926838929",
"status_type": "added_photos",
"icon": "https://www.facebook.com/images/icons/photo1.gif"
}
]
}
Now I need to get this data into a dataframe as follows(no need to get all).
item | Like_id |Like_username | comments_userid |comments_username|comment(msg)|
-----+---------+--------------+-----------------+-----------------+------------+
Bag | 45546 | noel | 641 | James | nice work |
-----+---------+--------------+-----------------+-----------------+------------+
Any Help will be Highly Appreciated.
Not exactly like your intended format, but here is the making of a solution :
import pandas
DictionaryObject_as_List = str(mydict).replace("{","").replace("}","").replace("[","").replace("]","").split(",")
newlist = []
for row in DictionaryObject_as_List :
row = row.replace('https://',' ').split(":")
exec('newlist.append ( ' + "[" + " , ".join(row)+"]" + ')')
DataFrame_Object = pandas.DataFrame(newlist)
print DataFrame_Object

Categories

Resources