Include groupby statement in function - Python - python

The following function counts the number of points within different segments of a circle. This function works as intended when exporting counts for a single point in time. However, when trying export this count at different points in time using a groupby call, it still combines all counts to a single output.
import pandas as pd
import numpy as np
df = pd.DataFrame({
'Time' : ['19:50:10.1','19:50:10.1','19:50:10.1','19:50:10.1','19:50:10.2','19:50:10.2','19:50:10.2','19:50:10.2'],
'id' : ['A','B','C','D','A','B','C','D'],
'x' : [1,8,0,-5,1,-1,-6,0],
'y' : [-5,2,-5,2,5,-5,-2,2],
'X2' : [0,0,0,0,0,0,0,0],
'Y2' : [0,0,0,0,0,0,0,0],
'Angle' : [0,0,0,0,0,0,0,0],
})
def checkPoint(x, y, rotation_angle, refX, refY, radius = 10):
section_angle_start = [(i + rotation_angle - 45) for i in [0, 90, 180, 270, 360]]
Angle = np.arctan2(x-refX, y-refY) * 180 / np.pi
Angle = Angle % 360
# adjust range
if Angle > section_angle_start[-1]:
Angle -= 360
elif Angle < section_angle_start[0]:
Angle += 360
for i in range(4):
if section_angle_start[i] < Angle < section_angle_start[i+1]:
break
else:
i = 0
return i+1
tmp = []
result = []
The following is my attempt to pass the checkPoint function to each unique group in Time.
for group in df.groupby('Time'):
for i, row in df.iterrows():
seg = checkPoint(row.x, row.y, row.Angle, row.X2, row.Y2)
tmp.append(seg)
result.append([tmp.count(i) for i in [1,2,3,4]])
df = pd.DataFrame(result, columns = ['1','2','3','4'])
Out:
1 2 3 4
0 2 1 3 2
1 4 2 6 4
Intended Out:
1 2 3 4
0 0 1 2 1
1 2 0 1 1

Your inner loop is running through your entire DataFrame, and generating the double-counting you are observing.
As #Kenan suggested, you can limit the inner loop to the group:
for group in df.groupby('Time'):
for i, row in group[1].iterrows():
seg = checkPoint(row.x_live, row.y_live, row.Angle, row.BallX, row.BallY)
tmp.append(seg)
result.append([tmp.count(i) for i in [1,2,3,4]])
df_result = pd.DataFrame(result, columns = ['1','2','3','4'])
print(df_result)
Resulting in
1 2 3 4
0 0 1 2 1
1 2 1 3 2
Or you can use a groupby-apply construct to avoid the explicit loop:
def result(g):
tmp = []
for i, row in g.iterrows():
seg = checkPoint(row.x_live, row.y_live, row.Angle, row.BallX, row.BallY)
tmp.append(seg)
return pd.Series([tmp.count(i) for i in [1,2,3,4]], index=[1,2,3,4])
print(df.groupby('Time').apply(result))
Which gets you:
1 2 3 4
Time
19:50:10.1 0 1 2 1
19:50:10.2 2 0 1 1

Related

How can I fill empty DataFrame based on conditions?

I have following dataframe called condition:
[0] [1] [2] [3]
1 0 0 1 0
2 0 1 0 0
3 0 0 0 1
4 0 0 0 1
For easier reproduction:
import numpy as np
import pandas as pd
n=4
t=3
condition = pd.DataFrame([[0,0,1,0], [0,1,0,0], [0,0,0, 1], [0,0,0, 1]], columns=['0','1', '2', '3'])
condition.index=np.arange(1,n+1)
Further I have several dataframes that should be filled in a foor loop
df = pd.DataFrame([],index = range(1,n+1),columns= range(t+1) ) #NaN DataFrame
df_2 = pd.DataFrame([],index = range(1,n+1),columns= range(t+1) )
df_3 = pd.DataFrame(3,index = range(1,n+1),columns= range(t+1) )
for i,t in range(t,-1,-1):
if condition[t]==1:
df.loc[:,t] = df_3.loc[:,t]**2
df_2.loc[:,t]=0
elif (condition == 0 and no 1 in any column after t)
df.loc[:,t] = 2.5
....
else:
df.loc[:,t] = 5
df_2.loc[:,t]= df.loc[:,t+1]
I am aware that this for loop is not correct, but what I wanted to do, is to check elementwise condition (recursevly) and if it is 1 (in condition) to fill dataframe df with squared valued of df_3. If it is 0 in condition, I should differentiate two cases.
In the first case, there are no 1 after 0 (row 1 and 2 in condition) then df = 2.5
Second case, there was 1 after and fill df with 5 (row 3 and 4)
So the dataframe df should look something like this
[0] [1] [2] [3]
1 5 5 9 2.5
2 5 9 2.5 2.5
3 5 5 5 9
4 5 5 5 9
The code should include for loop.
Thanks!
I am not sure if this is what you want, but based on your desired output you can do this with only masking operations (which is more efficient than looping over the rows anyway). Your code could look like this:
is_one = condition.astype(bool)
is_after_one = (condition.cumsum(axis=1) - condition).astype(bool)
df = pd.DataFrame(5, index=condition.index, columns=condition.columns)
df_2 = pd.DataFrame(2.5, index=condition.index, columns=condition.columns)
df_3 = pd.DataFrame(3, index=condition.index, columns=condition.columns)
df.where(~is_one, other=df_3 * df_3, inplace=True)
df.where(~is_after_one, other=df_2, inplace=True)
which yields:
0 1 2 3
1 5 5 9.0 2.5
2 5 9 2.5 2.5
3 5 5 5.0 9.0
4 5 5 5.0 9.0
EDIT after comment:
If you really want to loop explicitly over the rows and columns, you could do it like this with the same result:
n_rows = condition.index.size
n_cols = condition.columns.size
for row_index in range(n_rows):
for col_index in range(n_cols):
cond = condition.iloc[row_index, col_index]
if col_index < n_cols - 1:
rest_row = condition.iloc[row_index, col_index + 1:].to_list()
else:
rest_row = []
if cond == 1:
df.iloc[row_index, col_index] = df_3.iloc[row_index, col_index] ** 2
elif cond == 0 and 1 not in rest_row:
# fill whole row at once
df.iloc[row_index, col_index:] = 2.5
# stop iterating over the rest
break
else:
df.iloc[row_index, col_index] = 5
df_2.loc[:, col_index] = df.iloc[:, col_index + 1]
The result is the same, but this is much more inefficient and ugly, so I would not recommend it like this

Sliding Window and comparing elements of DataFrame to a threshold

Assume I have the following dataframe:
Time Flag1
0 0
10 0
30 0
50 1
70 1
90 0
110 0
My goal is to identify if within any window that time is less than lets the number in the row plus 35, then if any element of flag is 1 then that row would be 1. For example consider the above example:
The first element of time is 0 then 0 + 35 = 35 then in the window of values less than 35 (which is Time =0, 10, 30) all the flag1 values are 0 therefore the first row will be assigned to 0 and so on. Then the next window will be 10 + 35 = 45 and still will include (0,10,30) and the flag is still 0. So the complete output is:
Time Flag1 Output
0 0 0
10 0 0
30 0 1
50 1 1
70 1 1
90 1 1
110 1 1
To implement this type of problem, I thought I can use two for loops like this:
Output = []
for ii in range(Data.shape[0]):
count =0
th = Data.loc[ii,'Time'] + 35
for jj in range(ii,Data.shape[0]):
if (Data.loc[jj,'Time'] < th and Data.loc[jj,'Flag1'] == 1):
count = 1
break
output.append(count)
However this looks tedious. since the inner for loop should go for continue for the entire length of data. Also I am not sure if this method checks the boundary cases for out of bound index when we are reaching to end of the dataframe. I appreciate if someone can comment on something easier than this. This is like a sliding window operation only comparing number to a threshold.
Edit: I do not want to compare two consecutive rows only. I want if for example 30 + 35 = 65 then as long as time is less than 65 then if flag1 is 1 then output is 1.
The second example:
Time Flag1 Output
0 0 0
30 0 1
40 0 1
60 1 1
90 1 1
140 1 1
200 1 1
350 1 1
Assuming a window k rows before and k rows after as mentioned in my comment:
import pandas as pd
Data = pd.DataFrame([[0,0], [10,0], [30,0], [50,1], [70,1], [90,1], [110,1]],
columns=['Time', 'Flag1'])
k = 1 # size of window: up to k rows before and up to k rows after
n = len(Data)
output = [0]*n
for i in range(n):
th = Data['Time'][i] + 35
j0 = max(0, i - k)
j1 = min(i + k + 1, n) # the +1 is because range is non-inclusive of end
output[i] = int(any((Data['Time'][j0 : j1] < th) & (Data['Flag1'][j0 : j1] > 0)))
Data['output'] = output
print(Data)
gives the same output as the original example. And you can change the size of the window my modifying k.
Of course, if the idea is to check any row afterward, then just use j1 = n in my example.
import pandas as pd
Data = pd.DataFrame([[0,0],[10,0],[30,0],[50,1],[70,1],[90,1],[110,1]],columns=['Time','Flag1'])
output = Data.index.map(lambda x: 1 if any((Data.Time[x+1:]<Data.Time[x]+35)*(Data.Flag1[x+1:]==1)) else 0).values
output[-1] = Data.Flag1.values[-1]
Data['output'] = output
print(Data)
# show
Time Flag1 output
0 0 0
30 0 1
40 0 1
50 1 1
70 1 1
90 1 1
110 1 1

How to set ranges of rows in pandas?

I have the following working code that sets 1 to "new_col" at the locations pointed by intervals dictated by starts and ends.
import pandas as pd
import numpy as np
df = pd.DataFrame({"a": np.arange(10)})
starts = [1, 5, 8]
ends = [1, 6, 10]
value = 1
df["new_col"] = 0
for s, e in zip(starts, ends):
df.loc[s:e, "new_col"] = value
print(df)
a new_col
0 0 0
1 1 1
2 2 0
3 3 0
4 4 0
5 5 1
6 6 1
7 7 0
8 8 1
9 9 1
I want these intervals to come from another dataframe pointer_df.
How to vectorize this?
pointer_df = pd.DataFrame({"starts": starts, "ends": ends})
Attempt:
df.loc[pointer_df["starts"]:pointer_df["ends"], "new_col"] = 2
print(df)
obviously doesn't work and gives
raise AssertionError("Start slice bound is non-scalar")
AssertionError: Start slice bound is non-scalar
EDIT:
it seems all answers use some kind of pythonic for loop.
the question was how to vectorize the operation above?
Is this not doable without for loops/list comprehentions?
You could do:
pointer_df = pd.DataFrame({"starts": starts, "ends": ends})
rang = np.arange(len(df))
indices = [i for s, e in pointer_df.to_numpy() for i in rang[slice(s, e + 1, None)]]
df.loc[indices, 'new_col'] = value
print(df)
Output
a new_col
0 0 0
1 1 1
2 2 0
3 3 0
4 4 0
5 5 1
6 6 1
7 7 0
8 8 1
9 9 1
If you want a method that do not uses uses any for loop or list comprehension, only relies on numpy, you could do:
def indices(start, end, ma=10):
limits = end + 1
lens = np.where(limits < ma, limits, end) - start
np.cumsum(lens, out=lens)
i = np.ones(lens[-1], dtype=int)
i[0] = start[0]
i[lens[:-1]] += start[1:]
i[lens[:-1]] -= limits[:-1]
np.cumsum(i, out=i)
return i
pointer_df = pd.DataFrame({"starts": starts, "ends": ends})
df.loc[indices(pointer_df.starts.values, pointer_df.ends.values, ma=len(df)), "new_col"] = value
print(df)
I adapted the method to your use case from the one in this answer.
for i,j in zip(pointer_df["starts"],pointer_df["ends"]):
print (i,j)
Apply same method but on your dictionary

Vectorized function with counter on pandas dataframe column

Consider this pandas dataframe where the condition column is 1 when value is below 5 (any threshold).
import pandas as pd
d = {'value': [30,100,4,0,80,0,1,4,70,70],'condition':[0,0,1,1,0,1,1,1,0,0]}
df = pd.DataFrame(data=d)
df
Out[1]:
value condition
0 30 0
1 100 0
2 4 1
3 0 1
4 80 0
5 0 1
6 1 1
7 4 1
8 70 0
9 70 0
What I want is to have all consecutive values below 5 to have the same id and all values above five have 0 (or NA or a negative value, doesn't matter, they just need to be the same). I want to create a new column called new_id that contains these cumulative ids as follows:
value condition new_id
0 30 0 0
1 100 0 0
2 4 1 1
3 0 1 1
4 80 0 0
5 0 1 2
6 1 1 2
7 4 1 2
8 70 0 0
9 70 0 0
In a very inefficient for loop I would do this (which works):
for i in range(0,df.shape[0]):
if (df.loc[df.index[i],'condition'] == 1) & (df.loc[df.index[i-1],'condition']==0):
new_id = counter # assign new id
counter += 1
elif (df.loc[df.index[i],'condition']==1) & (df.loc[df.index[i-1],'condition']!=0):
new_id = counter-1 # assign current id
elif (df.loc[df.index[i],'condition']==0):
new_id = df.loc[df.index[i],'condition'] # assign 0
df.loc[df.index[i],'new_id'] = new_id
df
But this is very inefficient and I have a very big dataset. Therefore I tried different kinds of vectorization but I so far failed to keep it from counting up inside each "cluster" of consecutive points:
# First try using cumsum():
df['new_id'] = 0
df['new_id_temp'] = ((df['condition'] == 1)).astype(int).cumsum()
df.loc[(df['condition'] == 1), 'new_id'] = df['new_id_temp']
df[['value', 'condition', 'new_id']]
# Another try using list comprehension but this just does +1:
[row+1 for ind, row in enumerate(df['condition']) if (row != row-1)]
I also tried using apply() with a custom if else function but it seems like this does not allow me to use a counter.
There is already a ton of similar posts about this but none of them keep the same id for consecutive rows.
Example posts are:
Maintain count in python list comprehension
Pandas cumsum on a separate column condition
Python - keeping counter inside list comprehension
python pandas conditional cumulative sum
Conditional count of cumulative sum Dataframe - Loop through columns
You can use the cumsum(), as you did in your first try, just modify it a bit:
# calculate delta
df['delta'] = df['condition']-df['condition'].shift(1)
# get rid of -1 for the cumsum (replace it by 0)
df['delta'] = df['delta'].replace(-1,0)
# cumulative sum conditional: multiply with condition column
df['cumsum_x'] = df['delta'].cumsum()*df['condition']
Welcome to SO! Why not just rely on base Python for this?
def counter_func(l):
new_id = [0] # First value is zero in any case
counter = 0
for i in range(1, len(l)):
if l[i] == 0:
new_id.append(0)
elif l[i] == 1 and l[i-1] == 0:
counter += 1
new_id.append(counter)
elif l[i] == l[i-1] == 1:
new_id.append(counter)
else: new_id.append(None)
return new_id
df["new_id"] = counter_func(df["condition"])
Looks like this
value condition new_id
0 30 0 0
1 100 0 0
2 4 1 1
3 0 1 1
4 80 0 0
5 0 1 2
6 1 1 2
7 4 1 2
8 70 0 0
9 70 0 0
Edit :
You can also use numba, which sped up the function quite a lot for me about : about 1sec to ~60ms.
You should input numpy arrays into the function to use it, meaning you'll have to df["condition"].values.
from numba import njit
import numpy as np
#njit
def func(arr):
res = np.empty(arr.shape[0])
counter = 0
res[0] = 0 # First value is zero anyway
for i in range(1, arr.shape[0]):
if arr[i] == 0:
res[i] = 0
elif arr[i] and arr[i-1] == 0:
counter += 1
res[i] = counter
elif arr[i] == arr[i-1] == 1:
res[i] = counter
else: res[i] = np.nan
return res
df["new_id"] = func(df["condition"].values)

How to multiply every column of one Pandas Dataframe with every column of another Dataframe efficiently?

I'm trying to multiply two pandas dataframes with each other. Specifically, I want to multiply every column with every column of the other df.
The dataframes are one-hot encoded, so they look like this:
col_1, col_2, col_3, ...
0 1 0
1 0 0
0 0 1
...
I could just iterate through each of the columns using a for loop, but in python that is computationally expensive, and I'm hoping there's an easier way.
One of the dataframes has 500 columns, the other has 100 columns.
This is the fastest version that I've been able to write so far:
interact_pd = pd.DataFrame(index=df_1.index)
df1_columns = [column for column in df_1]
for column in df_2:
col_pd = df_1[df1_columns].multiply(df_2[column], axis="index")
interact_pd = interact_pd.join(col_pd, lsuffix='_' + column)
I iterate over each column in df_2 and multiply all of df_1 by that column, then I append the result to interact_pd. I would rather not do it using a for loop however, as this is very computationally costly. Is there a faster way of doing it?
EDIT: example
df_1:
1col_1, 1col_2, 1col_3
0 1 0
1 0 0
0 0 1
df_2:
2col_1, 2col_2
0 1
1 0
0 0
interact_pd:
1col_1_2col_1, 1col_2_2col_1,1col_3_2col_1, 1col_1_2col_2, 1col_2_2col_2,1col_3_2col_2
0 0 0 0 1 0
1 0 0 0 0 0
0 0 0 0 0 0
# use numpy to get a pair of indices that map out every
# combination of columns from df_1 and columns of df_2
pidx = np.indices((df_1.shape[1], df_2.shape[1])).reshape(2, -1)
# use pandas MultiIndex to create a nice MultiIndex for
# the final output
lcol = pd.MultiIndex.from_product([df_1.columns, df_2.columns],
names=[df_1.columns.name, df_2.columns.name])
# df_1.values[:, pidx[0]] slices df_1 values for every combination
# like wise with df_2.values[:, pidx[1]]
# finally, I marry up the product of arrays with the MultiIndex
pd.DataFrame(df_1.values[:, pidx[0]] * df_2.values[:, pidx[1]],
columns=lcol)
Timing
code
from string import ascii_letters
df_1 = pd.DataFrame(np.random.randint(0, 2, (1000, 26)), columns=list(ascii_letters[:26]))
df_2 = pd.DataFrame(np.random.randint(0, 2, (1000, 52)), columns=list(ascii_letters))
def pir1(df_1, df_2):
pidx = np.indices((df_1.shape[1], df_2.shape[1])).reshape(2, -1)
lcol = pd.MultiIndex.from_product([df_1.columns, df_2.columns],
names=[df_1.columns.name, df_2.columns.name])
return pd.DataFrame(df_1.values[:, pidx[0]] * df_2.values[:, pidx[1]],
columns=lcol)
def Test2(DA,DB):
MA = DA.as_matrix()
MB = DB.as_matrix()
MM = np.zeros((len(MA),len(MA[0])*len(MB[0])))
Col = []
for i in range(len(MB[0])):
for j in range(len(MA[0])):
MM[:,i*len(MA[0])+j] = MA[:,j]*MB[:,i]
Col.append('1col_'+str(i+1)+'_2col_'+str(j+1))
return pd.DataFrame(MM,dtype=int,columns=Col)
results
You can multiply along the index axis your first df with each column of the second df, this is the fastest method for big datasets (see below):
df = pd.concat([df_1.mul(col[1], axis="index") for col in df_2.iteritems()], axis=1)
# Change the name of the columns
df.columns = ["_".join([i, j]) for j in df_2.columns for i in df_1.columns]
df
1col_1_2col_1 1col_2_2col_1 1col_3_2col_1 1col_1_2col_2 \
0 0 0 0 0
1 1 0 0 0
2 0 0 0 0
1col_2_2col_2 1col_3_2col_2
0 1 0
1 0 0
2 0 0
--> See benchmark for comparisons with other answers to choose the best option for your dataset.
Benchmark
Functions:
def Test2(DA,DB):
MA = DA.as_matrix()
MB = DB.as_matrix()
MM = np.zeros((len(MA),len(MA[0])*len(MB[0])))
Col = []
for i in range(len(MB[0])):
for j in range(len(MA[0])):
MM[:,i*len(MA[0])+j] = MA[:,j]*MB[:,i]
Col.append('1col_'+str(i+1)+'_2col_'+str(j+1))
return pd.DataFrame(MM,dtype=int,columns=Col)
def Test3(df_1, df_2):
df = pd.concat([df_1.mul(i[1], axis="index") for i in df_2.iteritems()], axis=1)
df.columns = ["_".join([i,j]) for j in df_2.columns for i in df_1.columns]
return df
def Test4(df_1,df_2):
pidx = np.indices((df_1.shape[1], df_2.shape[1])).reshape(2, -1)
lcol = pd.MultiIndex.from_product([df_1.columns, df_2.columns],
names=[df_1.columns.name, df_2.columns.name])
return pd.DataFrame(df_1.values[:, pidx[0]] * df_2.values[:, pidx[1]],
columns=lcol)
def jeanrjc_imp(df_1, df_2):
df = pd.concat([df_1.mul(‌​i[1], axis="index") for i in df_2.iteritems()], axis=1, keys=df_2.columns)
return df
Code:
Sorry, ugly code, the plot at the end matters :
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
df_1 = pd.DataFrame(np.random.randint(0, 2, (1000, 600)))
df_2 = pd.DataFrame(np.random.randint(0, 2, (1000, 600)))
df_1.columns = ["1col_"+str(i) for i in range(len(df_1.columns))]
df_2.columns = ["2col_"+str(i) for i in range(len(df_2.columns))]
resa = {}
resb = {}
resc = {}
for f, r in zip([Test2, Test3, Test4, jeanrjc_imp], ["T2", "T3", "T4", "T3bis"]):
resa[r] = []
resb[r] = []
resc[r] = []
for i in [5, 10, 30, 50, 150, 200]:
a = %timeit -o f(df_1.iloc[:,:i], df_2.iloc[:, :10])
b = %timeit -o f(df_1.iloc[:,:i], df_2.iloc[:, :50])
c = %timeit -o f(df_1.iloc[:,:i], df_2.iloc[:, :200])
resa[r].append(a.best)
resb[r].append(b.best)
resc[r].append(c.best)
X = [5, 10, 30, 50, 150, 200]
fig, ax = plt.subplots(1, 3, figsize=[16,5])
for j, (a, r) in enumerate(zip(ax, [resa, resb, resc])):
for i in r:
a.plot(X, r[i], label=i)
a.set_xlabel("df_1 columns #")
a.set_title("df_2 columns # = {}".format(["10", "50", "200"][j]))
ax[0].set_ylabel("time(s)")
plt.legend(loc=0)
plt.tight_layout()
With T3b <=> jeanrjc_imp. Which is a bit faster that Test3.
Conclusion:
Depending on your dataset size, pick the right function, between Test4 and Test3(b). Given the OP's dataset, Test3 or jeanrjc_imp should be the fastest, and also the shortest to write!
HTH
You can use numpy.
Consider this example code, I did modify the variable names, but Test1() is essentially your code. I didn't bother create the correct column names in that function though:
import pandas as pd
import numpy as np
A = [[1,0,1,1],[0,1,1,0],[0,1,0,1]]
B = [[0,0,1,0],[1,0,1,0],[1,1,0,0],[1,0,0,1],[1,0,0,0]]
DA = pd.DataFrame(A).T
DB = pd.DataFrame(B).T
def Test1(DA,DB):
E = pd.DataFrame(index=DA.index)
DAC = [column for column in DA]
for column in DB:
C = DA[DAC].multiply(DB[column], axis="index")
E = E.join(C, lsuffix='_' + str(column))
return E
def Test2(DA,DB):
MA = DA.as_matrix()
MB = DB.as_matrix()
MM = np.zeros((len(MA),len(MA[0])*len(MB[0])))
Col = []
for i in range(len(MB[0])):
for j in range(len(MA[0])):
MM[:,i*len(MA[0])+j] = MA[:,j]*MB[:,i]
Col.append('1col_'+str(i+1)+'_2col_'+str(j+1))
return pd.DataFrame(MM,dtype=int,columns=Col)
print Test1(DA,DB)
print Test2(DA,DB)
Output:
0_1 1_1 2_1 0 1 2 0_3 1_3 2_3 0 1 2 0 1 2
0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0
1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
2 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0
1col_1_2col_1 1col_1_2col_2 1col_1_2col_3 1col_2_2col_1 1col_2_2col_2 \
0 0 0 0 1 0
1 0 0 0 0 0
2 1 1 0 1 1
3 0 0 0 0 0
1col_2_2col_3 1col_3_2col_1 1col_3_2col_2 1col_3_2col_3 1col_4_2col_1 \
0 0 1 0 0 1
1 0 0 1 1 0
2 0 0 0 0 0
3 0 0 0 0 1
1col_4_2col_2 1col_4_2col_3 1col_5_2col_1 1col_5_2col_2 1col_5_2col_3
0 0 0 1 0 0
1 0 0 0 0 0
2 0 0 0 0 0
3 0 1 0 0 0
Performance of your function:
%timeit(Test1(DA,DB))
100 loops, best of 3: 11.1 ms per loop
Performance of my function:
%timeit(Test2(DA,DB))
1000 loops, best of 3: 464 µs per loop
It's not beautiful, but it's efficient.

Categories

Resources